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Abstract
We define a simplicial category called the category of derived manifolds. It contains
the category of smooth manifolds as a full discrete subcategory, and it is closed under
taking arbitrary intersections in a manifold. A derived manifold is a space together with
a sheaf of local C∞-rings that is obtained by patching together homotopy zero sets of
smooth functions on Euclidean spaces. We show that derived manifolds come equipped
with a stable normal bundle and can be imbedded into Euclidean space. We define a
cohomology theory called derived cobordism, and use a Pontrjagin-Thom argument
to show that the derived cobordism theory is isomorphic to the classical cobordism
theory. This allows us to define fundamental classes in cobordism for all derived
manifolds. In particular, the intersection A ∩ B of submanifolds A, B ⊂ X exists on
the categorical level in our theory, and a cup product formula [A] � [B] = [A ∩ B]
holds, even if the submanifolds are not transverse. One can thus consider the theory
of derived manifolds as a categorification of intersection theory.

Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2. The axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3. Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4. Layout for the construction of dMan . . . . . . . . . . . . . . . . . . . 81
5. C∞-rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6. Local C∞-ringed spaces and derived manifolds . . . . . . . . . . . . . 87
7. Cotangent complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8. Proofs of technical results . . . . . . . . . . . . . . . . . . . . . . . . . 105
9. Derived manifolds are good for doing intersection theory . . . . . . . . 120
10. Relationship to similar articles . . . . . . . . . . . . . . . . . . . . . . 122
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

1. Introduction
Let � denote the unoriented cobordism ring (although what we say applies to other
cobordism theories as well, e.g., oriented cobordism). The fundamental class of a
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compact manifold X is an element [X] ∈ �. By the Pontrjagin-Thom construction,
such an element is classified by a homotopy class of maps from a large enough sphere
Sn to a large enough Thom space MO. One can always choose a map f : Sn → MO

which represents this homotopy class, is smooth (away from the base point), and
which meets the zero section B ⊂ MO transversely. The pullback f −1(B) is a
compact manifold which is cobordant to X, so we have an equality [X] = [f −1(B)]
of elements in �.

This construction provides a correspondence which is homotopical in nature: one
begins with a homotopy class of maps and receives a cobordism class. However,
it is close to existing on the nose, in that a dense subset of all representing maps
f : Sn → MO is transverse to B and yields an imbedded manifold rather than
merely its image in �. If transversality were not an issue, Pontrjagin and Thom would
indeed provide a correspondence between smooth maps Sn → MO and their zero
sets.

The purpose of this article is to introduce the category of derived manifolds
wherein nontransverse intersections make sense. In this setting, f −1(B) is a derived
manifold which is derived cobordant to X, regardless of one’s choice of smooth map
f , and in terms of fundamental cobordism classes we have [f −1(B)] = [X]. Our hope
is that by using derived manifolds, researchers can avoid having to make annoying
transversality arguments. This could be of use in string topology or Floer homology,
for example.

As an example, let us provide a short story that can only take place in the derived
setting. Consider the case of a smooth degree d hypersurface X ⊂ CP 3 in complex
projective space. One can express the K-theory fundamental class of X as

[X] =
(

d

1

)
[CP 2] −

(
d

2

)
[CP 1] +

(
d

3

)
[CP 0]. (1.0.1)

It may be difficult to see exactly where this formula comes from; let us give the derived
perspective, which should make the formula more clear.

The union Y of d distinct hyperplanes in CP 3 is not smooth, but it does exist as
an object in the category of derived manifolds. Moreover, as the zero set of a section
of the line bundle O(d), one has that Y is a degree d derived submanifold of CP 3

which is derived cobordant to X. As such, the fundamental class of Y is equal to that
of X (i.e., [Y ] = [X]).

The point is that the above formula (1.0.1) takes on added significance as the
fundamental class of Y , because it has the form of an inclusion-exclusion formula.
One could say that the K-theory fundamental class of Y is obtained by adding the
fundamental classes of d hyperplanes, subtracting off the fundamental classes of
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the overcounted
(
d

2

)
lines of two-fold intersection, and adding back the fundamental

classes of the missed
(
d

3

)
points of three-fold intersection. Hopefully, this convinces

the reader that derived manifolds may be of use.
To construct the virtual fundamental class on an arbitrary intersection of compact

submanifolds, we follow an idea of Kontsevich (see [15, Section 1.4]), explained to
us by Jacob Lurie. Basically, we take our given intersection X = A ∩ B, realize
it as the zero set of a section of a vector bundle, and then deform that section until
it is transverse to zero. The result is a derived cobordism between X and a smooth
manifold.

While dispensing with the transversality requirement for intersecting manifolds
is appealing, it does come with a cost, namely that defining the category of derived
manifolds is a bit technical. However, anyone familiar with homotopy sheaves should
not be too surprised by our construction. One starts with Lawvere’s algebraic theory of
C∞-rings, which are rings whose elements are closed under composition with smooth
functions. Simplicial (lax) C∞-rings are the appropriate homotopy-theoretic analogue
and as such are objects in a simplicial model category. We then form the category
of local C∞-ringed spaces, wherein an object is a topological space together with a
homotopy sheaf of simplicial C∞-rings whose stalks are local rings. Euclidean space,
with its (discrete) C∞-ring of smooth real-valued functions is such an object, and
the zero set of finitely many smooth functions on Euclidean space is called an affine
derived manifold. A derived manifold is a local C∞-ringed space which is obtained
by patching together affine derived manifolds (see Definition 6.15).

Notation 1.1
Let sSets denote the monoidal category of simplicial sets. A simplicial category C is
a category enriched over sSets; we denote the mapping space functor MapC (−, −).
If all of the mapping spaces in C are fibrant (i.e., Kan complexes), we call C fibrant
as a simplicial category; in the following discussion we consider only this case. By a
map between objects X and Y in C , we mean a zero-simplex in MapC (X, Y ).

An object X ∈ C is called homotopy initial if for every Y ∈ C , the mapping
space Map(X, Y ) is contractible. Similarly, X is called homotopy terminal if for every
Y ∈ C , the mapping space Map(Y, X) is contractible. We say that a vertex in a
contractible space is homotopy unique. We sometimes abuse notation and refer to a
contractible space as though it were just a single point, saying something like “the
natural map Y → X.”
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Let C be a simplicial category. The homotopy pullback of a diagram A
f−→ B

g←− C

is a diagram

A ×B C
f ′

��

g′

��

�
C

g

��
A

f

�� B

(1.1.1)

By this we mean an object A×B C equipped with maps g′, h′, and f ′ to A, B, and C,
respectively, and further equipped with homotopies between gf ′ and h and between
fg′ and h. Finally, we require that A ×B C is homotopy terminal in the category of
such objects. More succinctly, Diagram (1.1.1) expresses that for any object X ∈ C ,
the natural map

Map(X, A ×B C) → Map(X, A) ×h
Map(X,B) Map(X, C)

is a weak equivalence in the usual model category of simplicial sets (see [11, Defini-
tion 7.8.10]), where by ×h we mean the homotopy pullback in sSets. The diamond in
the upper left corner of the square in Diagram (1.1.1) serves to remind the reader that
object in the upper left corner is a homotopy pullback, and that the diagram does not
commute on the nose but up to chosen homotopies. We can define homotopy pushouts
similarly.

Two objects X and Y in C are said to be equivalent if there exist maps f : X → Y

and g : Y → X such that g ◦ f and f ◦ g are homotopic to the identity maps on X

and Y . By [20, Proposition 1.2.4.1], this is equivalent to the assertion that the map
Map(Z, X) → Map(Z, Y ) is a weak equivalence for all Z ∈ C .

If C is a discrete simplicial category (i.e., a category in the usual sense), then the
homotopy pullback of a diagram in C is the pullback of that diagram. The pullback

of a diagram A
f−→ B

g←− C is a commutative diagram

A ×B C
f ′

��

g′

��

�
C

g

��
A

f

�� B

The symbol in the upper left corner serves to remind the reader that the object in the
upper left corner is a pullback in the usual sense. Two objects are equivalent if and
only if they are isomorphic.
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Remark 1.2
If C is a simplicial model category (see, e.g., [11] for an introduction to this subject),
then the full subcategory of cofibrant-fibrant objects is a simplicial category in which
all mapping spaces are fibrant. Moreover, we can replace any diagram with a diagram of
the same shape in which all objects are cofibrant-fibrant. Our definitions of homotopy
pullback, homotopy pushout, and equivalence match the model category terminology.
In keeping with this, if we are in the setting of model categories, the result of a
construction (such as taking a homotopy limit) is always assumed to be cofibrant and
fibrant.

Whenever we speak of pullbacks in a simplicial category, we are always referring
to homotopy pullbacks unless otherwise specified. Similarly, whenever we speak of
terminal (resp., initial) objects, we are always referring to homotopy terminal (resp.,
homotopy initial) objects. Finally, we sometimes use the word category to mean
simplicial category.

Given a functor F : C → D , we say that an object D ∈ D is in the essential
image of F if there is an object C ∈ C such that F (C) is equivalent to D.

We denote the category of smooth manifolds by Man; whenever we refer to a
manifold, it is always assumed smooth. It is discrete as a simplicial category. In other
words, we do not include any kind of homotopy information in Man.

We now recall a few well-known facts and definitions about Man. Every manifold A

has a tangent bundle TA → A which is a vector bundle whose rank is equal to the
dimension of A. A morphism of smooth manifolds f : A → B induces a morphism
Tf : TA → f ∗TB of vector bundles on A, from the tangent bundle of A to the pullback
of the tangent bundle on B. We say that f is an immersion if Tf is injective and we say
that f is a submersion if Tf is surjective. A pair of maps f : A → B and g : C → B

are called transverse if the induced map f � g : A � C → B is a submersion. If f

and g are transverse, then their fiber product (over B) exists in Man.

1.1. Results
In this article, we hope to convince the reader that we have a reasonable category
in which to do intersection theory on smooth manifolds. The following definition
expresses what we mean by reasonable. Definition 1.7 expresses what we mean by
doing intersection theory on such a category. The main result of the article, Theorem
1.8, is that there is a simplicial category which satisfies Definition 1.7.

Definition 1.3
A simplicial category C is called geometric if it satisfies the following axioms:
(1) Fibrant. For any two objects X, Y ∈ C , the mapping space MapC (X, Y) is a

fibrant simplicial set.



60 DAVID I. SPIVAK

(2) Smooth manifolds. There exists a fully faithful functor i : Man → C . We say
that M ∈ C is a manifold if it is in the essential image of i.

(3) Manifold limits. The functor i commutes with transverse intersections. That is,
if A → M and B → M are transverse, then a homotopy limit i(A) ×i(M) i(B)
exists in C , and the natural map

i(A ×M B) → i(A) ×i(M) i(B)

is an equivalence in C .
Furthermore, the functor i preserves the terminal object (i.e., the object i(R0)
is homotopy terminal in C ).

(4) Underlying spaces. Let CG denote the discrete simplicial category of com-
pactly generated Hausdorff spaces. There exists an underlying space functor
U : C → CG, such that the diagram

Man
i

��

��

C

U����
��

��
��

CG

commutes, where the vertical arrow is the usual underlying space functor on
smooth manifolds. Furthermore, the functor U commutes with finite limits
when they exist.

Remark 1.4
When we speak of an object (resp., a morphism or a set of morphisms) in C having
some topological property (e.g., Hausdorff or compact object, proper morphism, open
cover, and so on), we mean that the underlying object (resp., the underlying morphism
or set of morphisms) in CG has that property.

Since any discrete simplicial category has fibrant mapping spaces, it is clear that Man
and CG are geometric.

If C is a geometric category and if M ∈ Man is a manifold, then we generally
abuse notation and write M in place of i(M), as though M were itself an object of C .

Remark 1.5
Note that in Axiom (3) of Definition 1.3, we are not requiring that i commute with
all limits which exist in Man, only those which we have deemed appropriate. For
example, if one has a line L and a parabola P which meet tangentially in R2, their
fiber product L ×R2 P does exist in the category of manifolds (it is a point). However,
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limits like these are precisely the kind we wish to avoid! We are searching for a
category in which intersections are in some sense stable under perturbations (see
Definition 1.7, Condition (4)), and thus we should not ask i to preserve intersections
which are not stable in this sense.

Remark 1.6
In all of the axioms of Definition 1.3, we are working with simplicial categories,
so when we speak of pullbacks and pushouts, we mean homotopy pullbacks and
homotopy pushouts. Axiom (4) requires special comment however. We take CG, the
category of compactly generated Hausdorff spaces, as a discrete simplicial category, so
homotopy pullbacks and pushouts are just pullbacks and pushouts in the usual sense.
The underlying space functor U takes finite homotopy pullbacks in C to pullbacks in
CG.

Again, our goal is to find a category in which intersections of arbitrary submanifolds
exist at the categorical level and descend correctly to the level of cobordism groups.
We make this precise in the following definition.

Definition 1.7
We say that a simplicial category C has the general cup product formula in cobordism
if the following conditions hold.
(1) Geometric. The simplicial category C is geometric in the sense of Definition

1.3.
(2) Intersections. If M is a manifold and if A and B are submanifolds (possibly

not transverse), then there exists a homotopy pullback A×M B in C , which we
denote by A ∩ B and which we call the derived intersection of A and B in M .

(3) Derived cobordism. There exists an equivalence relation on the compact ob-
jects of C called derived cobordism, which extends the cobordism relation
on manifolds. That is, for any manifold T , there is a ring �der(T ) called the
derived cobordism ring over T , and the functor i : Man → C induces a
homomorphism of cobordism rings over T ,

i∗ : �(T ) → �der(T ).

We further impose the condition that i∗ be an injection.
(4) Cup product formula. If A and B are compact submanifolds of a manifold M

with derived intersection A ∩ B := A ×M B, then the cup product formula

[A] � [B] = [A ∩ B] (1.7.1)
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holds, where [−] is the functor taking a compact derived submanifold of M

to its image in the derived cobordism ring �der(M), and where � denotes the
multiplication operation in that ring (i.e., the cup product).

Without the requirement (Condition (3)) that i∗ : �(T ) → �der(T ) be an injection, the
general cup product formula could be trivially attained. For example, one could extend
Man by including nontransverse intersections which were given no more structure
than their underlying space, and the derived cobordism relation could be chosen to
be maximal (i.e., one equivalence class); then the cup product formula would trivially
hold.

In fact, when we eventually prove that there is a category which has the general
cup product formula, we find that i∗ is not just an injection but an isomorphism (see
Theorem 2.6). We did not include that as an axiom here, however, because it does not
seem to us to be an inherently necessary aspect of a good intersection theory.

The category of smooth manifolds does not have the general cup product formula
because it does not satisfy Condition (2). Indeed, suppose that A and B are subman-
ifolds of M . If A and B meet transversely, then their intersection naturally has the
structure of a manifold, and the cup product formula (1.7.1) holds. If they do not, then
one of two things can happen: either their intersection cannot be given the structure
of a manifold (so in the classical setting, equation (1.7.1) does not have meaning),
or their intersection can be given the structure of a smooth manifold, but it does not
satisfy equation (1.7.1).

Therefore, we said that a category which satisfies the conditions of Definition
1.7 satisfies the general cup product formula because Condition (4) holds even for
nontransverse intersections. Of course, to accomplish this, one needs to find a more
refined notion of intersection; that is, find a setting in which homotopy limits have the
desired properties.

Suppose that a simplicial category C has the general cup product formula in
cobordism. It follows that any cohomology theory E which has fundamental classes
for compact manifolds (i.e., for which there exists a map MO → E) also has
fundamental classes for compact objects of C , and that these satisfy the cup product
formula as well. Returning to our previous example, the union of d hyperplanes in
complex projective space is a derived manifold which is derived cobordant to a smooth
degree d hypersurface (see Example 2.7). Thus, these two subspaces have the same
K-theory fundamental classes, which justifies equation 1.0.1.

Our main result is that the conditions of Definition 1.7 can be satisfied.

THEOREM 1.8
There exists a simplicial category dMan, called the category of derived manifolds,
which has the general cup product formula in cobordism, in the sense of Defini-
tion 1.7.
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The category dMan is defined in Definition 6.15, and the above theorem is proved as
Theorem 9.6 (see also Definition 2.1 for a list of axioms satisfied by dMan).

Remark 1.9
We do not offer a uniqueness counterpart to Theorem 1.8. We purposely left Definition
1.7 loose, because we could not convince the reader that any more structure on a
category C was necessary in order to say that it has the general cup formula. For
example, we could have required that the morphism i∗ be an isomorphism instead of
just an injection (this is indeed the case for dMan, see Corollary 3.13); however, doing
so would be hard to justify as being necessary. Because of the generality of Definition
1.7, we are precluded from offering a uniqueness result here.

Finally, the following proposition justifies the need for simplicial categories in
this article.

PROPOSITION 1.10
If C is a discrete simplicial category (i.e., a category in the usual sense), then C cannot
have the general cup product formula in cobordism.

Proof
We assume that Conditions (1), (2), and (3) hold, and we show that Condition (4)
cannot.

Since C is geometric, the object R0 (technically i(R0)) is homotopy terminal in
C . Since C is discrete, R0 is terminal in C , all equivalences in C are isomorphisms,
and all homotopy pullbacks in C are categorical pullbacks. Let 0 : R0 → R be the
origin, and let X be defined as the pullback in the diagram

X ��

��

�
R0

0

��

R0

0

�� R

A morphism from an arbitrary object Y to X consists of two morphisms Y → R0

which agree under composition with 0. For any Y , there is exactly one such morphism
Y → X because R0 is terminal in C . That is, X represents the same functor as R0

does, so X ∼= R0 (i.e., R0 ∩ R0 = R0). This equation forces Condition (4) to fail.
Indeed, to see that the cup product formula

[R0] � [R0] =? [R0 ∩ R
0]
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does not hold in �(R), note that the left-hand side is homogeneous of degree
two, whereas the right-hand side is homogeneous of degree one in the cohomology
ring. �

1.2. Structure of the article
We have decided to present this article in a hierarchical fashion. In the introduction,
we presented the goal: to find a geometric category that has the general cup product
formula in cobordism (see Definition 1.7).

In Section 2, we present a set of axioms that suffice to achieve this goal. In other
words, any category that satisfies the axioms of Definition 2.1 is said to be “good for
doing intersection theory on manifolds,” and we prove in Theorem 2.6 that such a
category has the general cup product formula. Of course, we could have chosen our
axioms in a trivial way, but this would not have given a useful layer of abstraction.
Instead, we chose axioms that resemble axioms satisfied by smooth manifolds. These
axioms imply the general cup product formula, but are not implied by it.

In Sections 5 – 9, we give an explicit formulation of a category that is good for
doing intersection theory. This category can be succinctly described as the category of
homotopical C∞-schemes of finite type. To make this precise and prove that it satisfies
the axioms of Definition 2.1 takes five sections. We lay out our methodology for this
undertaking in Section 4.

Finally, in Section 10, we discuss related constructions. First we see the way
that derived manifolds are related to Jacob Lurie’s “structured spaces” (see [21]).
Then we discuss manifolds with singularities, Chen spaces, diffeological spaces, and
synthetic C∞-spaces, all of which are generalizations of the category Man of smooth
manifolds. In this section, we show how the theory of derived manifolds fits into the
existing literature.

2. The axioms
Theorem 1.8 makes clear our objectives: to find a simplicial category in which the
general cup product formula holds. In this section, specifically in Definition 2.1, we
provide a set of axioms which
• naturally extend corresponding properties of smooth manifolds, and
• together imply Theorem 1.8.
This is an attempt to give the reader the ability to work with derived manifolds (at
least at a surface level) without fully understanding their technical underpinnings.

In the following section, Section 3, we prove Theorem 1.8 from the axioms
presented in Definition 2.1. Then in Section 4, we give an outline of the internal
structure of a simplicial category which satisfies the axioms in Definition 2.1. Finally,
in the remaining sections we fulfill the outline given in Section 4, proving our main
result in Section 9.
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Definition 2.1
A simplicial category dM is called good for doing intersection theory on manifolds if
it satisfies the following axioms:
(1) Geometric. The simplicial category dM is geometric in the sense of Definition

1.3. That is, roughly, dM has fibrant mapping spaces, contains the category
Man of smooth manifolds, has reasonable limits, and has underlying Hausdorff
spaces.

(2) Open subobjects.

Definition 2.2
Suppose that X ∈ dM is an object with underlying space X = U(X), and
suppose that j : V ↪→ X is a open inclusion of topological spaces. We say that
a map k : V → X in dM is an open subobject over j if it is Cartesian over j ;
that is,
• U(V ) = V,

• U(k) = j , and
• if k′ : V ′ → X is a map with U(V ′) = V ′ and U(k′) = j ′, such that j ′

factors through j , then k′ factors homotopy-uniquely through k; that is,
the space of dotted arrows making the diagram

V ′
�

U
��

k′

���� V
�

U
��

k

�� X
�

U
��

V ′

j ′

���� V
j

�� X

commute is contractible.

For any X ∈ dM and for any open inclusion j as above, there exists an open
subobject k over j . Moreover, if a map f : Z → X of topological spaces
underlies a map g : Z → X in dM, then for any open neighborhood U of
f (Z), the map g factors through the open subobject U over U .

(3) Unions.
(a) Suppose that X and Y are objects of dM with underlying spaces X and

Y , and suppose that i : U → X and j : V → Y are open subobjects with
underlying spaces U and V . If a : U → V is an equivalence, and if the
union of X and Y along U ∼= V is Hausdorff (so X ∪ Y exists in CG),
then the union X ∪ Y (i.e., the colimit of j ◦ a and i) exists in dM, and
one has as expected U(X ∪ Y) = X ∪ Y .



66 DAVID I. SPIVAK

(b) If f : X → Z and g : Y → Z are morphisms whose restrictions to U

agree, then there is a morphism X ∪ Y → Z which restricts to f and g,
respectively, on X and Y.

(4) Finite limits. Given objects X, Y ∈ dM, a smooth manifold M , and maps
f : X → M and g : Y → M , there exists an object Z ∈ dM and a homotopy
pullback diagram

Z ��

i

��

�
Y

g

��
X

f

�� M

(2.2.1)

We denote Z by X ×M Y. If Y = R0, M = Rk , and if g : R0 → Rk is the
origin, then we denote Z by Xf =0, and we call i the canonical inclusion of the
zero set of f into X.

(5) Local models. We say that an object U ∈ dM is a local model if there exists a
smooth function f : Rn → Rk such that U ∼= R

n
f =0. The virtual dimension of

U is n − k. For any object X ∈ dM, the underlying space X = U(X) can be
covered by open subsets in such a way that the corresponding open subobjects
of X are all local models. More generally, any open cover of U(X) by open
sets can be refined to an open cover whose corresponding open subobjects are
local models.

(6) Local extensions for imbeddings.

Definition 2.3
For any map f : Y → Rn in dM, the canonical inclusion of the zero set
Yf =0 → Y is called a model imbedding. A map g : X → Y is called an
imbedding if there is a cover of Y by open subobjects Yi such that, if we set
Xi = g−1(Yi), the induced maps g|Xi

: Xi → Yi are model imbeddings.
Such open subobjects Yi ⊂ Y are called trivializing neighborhoods of the
imbedding.

Let g : X → Y be an imbedding, and let h : X → R be a map in dM. Then
there exists a dotted arrow such that the diagram

X
h

��

g

��

R

Y

���
�

�
�

commutes up to homotopy.
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(7) Normal bundle. Let M be a smooth manifold, and let X ∈ dM with underlying
space X = U(X). If g : X → M is an imbedding, then there exists an open
neighborhood U ⊂ M of X, a real vector bundle E → U , and a section
s : U → E such that

X
g

��

g

��

�
U

z

��
U

s

�� E

is a homotopy pullback diagram, where z : U → E is the zero section of the
vector bundle. Let g = U(g) also denote the underlying map X → U ; then
the pullback bundle g∗(E) on X is unique up to isomorphism. We call g∗(E)
the normal bundle of X in M and we call s a defining section.

Objects in dM are called derived manifolds (of type dM) and morphisms in dM
are called morphisms of derived manifolds (of type dM).

Remark 2.4
We defined the virtual dimension of a local model U = R

n
f =0 in Axiom (5) in

Definition 2.1. We often drop the word virtual and refer to the virtual dimension of U

simply as the dimension of U.
We eventually define the virtual dimension of an arbitrary derived manifold as the

Euler characteristic of its cotangent complex (see Definition 7.5). For now, the reader
only needs to know that if Z, X, Y, and M are as in Diagram (2.2.1), and if these
objects have constant dimension z, x, y, and m, respectively, then z + m = x + y, as
expected.

Let us briefly explain the definition of imbedding (see Definition 2.3) given in
Axiom (6) in Definition 2.1. If we add the word transverse in the appropriate places,
we are left with the usual definition of imbedding for smooth manifolds. This is proved
in Proposition 2.5.

Recall that a map of manifolds is called a (smooth) imbedding if the induced map
on the total spaces of their respective tangent bundles is an injection. Say that a map
of manifolds X → U is the inclusion of a level manifold if there exists a smooth
function f : U → Rn, transverse to 0 : R0 → Rn, such that X ∼= Uf =0 over U .

PROPOSITION 2.5
Let X and Y be smooth manifolds, and let g : X → Y be a smooth map. Then g is an
imbedding if and only if there is a cover of Y by open submanifolds Ui such that, if
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we set Xi = g−1(Ui), each of the induced maps g|Xi
: Xi → Ui is the inclusion of a

level manifold.

Sketch of proof
We may assume that X is connected. If g is a smooth imbedding of codimension d ,
let U be a tubular neighborhood, take the Ui ⊂ U to be open subsets that trivialize
the normal bundle of X, and take the f i : Ui → Rk to be identity on the fibers. The
zero sets of the f i are open subsets of X, namely Ui

f i=0
∼= Xi . Since they are smooth

of the correct codimension, the f i are transverse to zero.
For the converse, note that the property of being an imbedding is local on the target,

so we may assume that X is the preimage of the origin under a map f : U → Rk that
is transverse to zero, where U ⊂ Y is some open subset. The induced map X → U

is clearly injective on tangent bundles. �

We now present a refinement of Theorem 1.8, which we prove as Corollary 3.13 in
the following section. Recall that i : Man → dMan denotes the inclusion guaranteed
by Axiom (1) of Definition 2.1.

THEOREM 2.6
If dM is good for doing intersection theory on manifolds, then dM has the general
cup product formula in cobordism, in the sense of Definition 1.7. Moreover, for any
manifold T , the functor

i∗ : �(T ) → �der(T )

is an isomorphism between the classical cobordism ring and the derived cobordism
ring (over T ).

Example 2.7
Let dM denote a simplicial category which is good for doing intersection theory. By
the unproven theorem (2.6), we have a cobordism theory �der and a nice cup product
formula for doing intersection theory. We now give several examples which illustrate
various types of intersections. The last few examples are cautionary.

Transverse planes. Consider a k-plane K and an �-plane L inside of projective space
Pn. If K and L meet transversely, then they do so in a (k + � − n)-plane, which we
denote A. In dM there is an equivalence A ∼= K ×Pn L. Of course, this descends to
an equality [A] = [K] � [L] both in the cobordism ring �(Pn) and in the derived
cobordism ring �der(Pn).

Nontransverse planes. Suppose now that K and L are as above but do not meet
transversely. Their topological intersection A′ has the structure of a smooth manifold
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but of the wrong dimension (i.e., dim(A) > k + � − n). Moreover, the formula
[A′] =? [K] � [L] does not hold in �(Pn).

However, the intersection of K and L as a derived manifold is different from A′; let
us denote it A. Although the underlying spaces U(A′) = U(A) are the same, the virtual
dimension of A is k + � − n as expected. Moreover, the formula [A] = [K] � [L]
holds in the derived cobordism ring �der(Pn). (The formula does not makes sense in
�(Pn) because A is not a smooth manifold.)

Fiber products and zero sets. Let M → P ← N be a diagram of smooth manifolds
with dimensions m, p, and n. The fiber product X of this diagram exists in dM, and
the (virtual) dimension of X is m + n − p.

For example, if f1, . . . fk is a finite set of smooth functions M → R on a manifold
M , then their zero set is a derived manifold X, even if the f1, . . . , fk are not transverse.
To see this, let f = (f1, . . . , fk) : M → Rk and realize X as the fiber product in the
diagram

X ��

��

�
R0

0
��

M
f

��
Rk

The dimension of X is m − k, where m is the dimension of M .
For example, let T denote the two-dimensional torus, and let f : T → R denote a

Morse function. If p ∈ R is a critical value of index one, then the pullback f −1(p) is a
figure eight (as a topological space). It comes with the structure of a derived manifold
of dimension one. It is derived cobordant both to a pair of disjoint circles and to a
single circle; however, it is not isomorphic as a derived manifold to either of these
because its underlying topological space is different.

Euler classes. Let M denote a compact smooth manifold and let p : E → M denote
a smooth vector bundle; consider M as a submanifold of E by way of the zero
section z : M → E. The Euler class e(p) is often thought of as the cohomology class
represented by the intersection of M with itself inside E. However, classically one
must always be careful to perturb M ⊂ E before taking this self intersection. In the
theory of derived manifolds, it is not necessary to choose a perturbation. The fiber
product M ×E M exists as a compact derived submanifold of M , and one has

e(p) = [M ×E M].
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Vector bundles. More generally, let M denote a smooth manifold, let p : E → M

denote a smooth vector bundle, and let z : M → E denote the zero section. Given
an arbitrary section s : M → E, the zero set Z(s) := z(M) ∩ s(M) of s is a derived
submanifold of M . If s is transverse to z inside E, then Z(s) is a submanifold of M ,
and its manifold structure coincides with its derived manifold structure. Otherwise,
Z(s) is a derived manifold that is not equivalent to any smooth manifold.

Changing s by a linear automorphism of E (over M) does not change the ho-
motopy type of the derived manifold Z(s). Arbitrary changes of section do change
the homotopy type: if s and t are any two sections of E, then Z(s) is not generally
equivalent to Z(t) as a derived manifold. However, these two derived manifolds are
derived cobordant. The derived cobordism can be given by a straight-line homotopy
in E.

Failure of Nullstellensatz. Suppose that X and Y are varieties (resp., manifolds), and
suppose that X → Y is a closed imbedding. Let I (X) denote the ideal of functions
on Y which vanish on X; given an ideal J , let Z(J ) denote the zero set of J in Y .
A classical version of the Nullstellensatz states that if k is an algebraically closed
field, then I induces a bijection between the Zariski closed subsets of affine space
An = Spec k[x1, . . . , xn] and the radical ideals of the ring k[x1, . . . , xn]. A corollary
is that for any closed subset X ⊂ Y , one has X = Z(I (X)); that is, X is the zero set
of the ideal of functions which vanish on X.

This radically fails in the derived setting. The simultaneous zero set of n functions
Y → R always has codimension n in Y . For example, the x-axis in R2 is the zero set
of a single function y : R2 → R, as a derived manifold.

However, y is not the only function that vanishes on the x-axis; for example,
so do the functions 2y, 3y, y2, and 0. If we find the simultaneous zero set of all
five functions, the resulting derived manifold has codimension five inside of R2.
Its underlying topological space is indeed the x-axis, but its structure sheaf is very
different from that of R.

Thus, if we take a closed subvariety of Y and quotient the coordinate ring of
Y by the infinitely many functions which vanish on it, then the result has infinite
codimension. The formula X = Z(I (X)) fails in the derived setting (i.e., both for
derived manifolds and for derived schemes).

We note one upshot of this. Given a closed submanifold N ⊂ M , one cannot
identify N with the zero set of the ideal sheaf of functions on M which vanish on N .
Given an arbitrary closed subset X of a manifold, one may wish to find an appropriate
derived manifold structure on X; this cannot be done in a canonical way as it can in
classical algebraic geometry, unless X is a local complete intersection (see the “vector
bundles” example above).
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Unions not included. Note that the union of manifolds along closed subobjects does
not generally come equipped with the structure of a derived manifold. The reason we
include this cautionary note is that, in the introduction, we spoke of the union Y of d

hyperplanes in CP n. However, we were secretly regarding Y as the zero set of a single
section of the bundle O(d) on CP n, and not as a union. We referred to it as a union
only so as to aid the reader’s imagination of Y (see the “vector bundles” example
above for more information on Y ).

Twisted cubic. We include one more cautionary example. Let C denote the twisted
cubic in P3; that is, the image of the map [t3, t2u, tu2, u3] : P1 → P3. Scheme-
theoretically, the curve C cannot be defined as the zero set of two homogeneous
polynomials on P3, but it can be defined as the zero set of three homogeneous polyno-
mials on P3 (or more precisely, three sections of the line bundle O(2) on P3); namely
C is the zero set of the polynomials f1 = xz−y2, f2 = yw−z2, f3 = xw−yz. This
might lead one to conclude that C is 3 − 3 = 0 dimensional as a derived manifold
(see Definition 2.2(5)).

It is true that the zero set of f1, f2, f3 is a zero-dimensional derived manifold,
however this zero set is probably not what one means by C. Instead, one should think
of C as locally the zero set of two functions. That is, C is the zero set of a certain
section of a rank 2 vector bundle on P3. As such, C is a one-dimensional derived
manifold.

The reason for the discrepancy is this. The scheme-theoretic intersection does
not take into account the dependency relations among f1, f2, f3. While these three
functions are globally independent, they are locally dependent everywhere. That is,
for every point p ∈ C, there is an open neighborhood on which two of these three
polynomials generate the third (ideal-theoretically). This is not an issue scheme-
theoretically, but it is an issue in the derived setting.

3. Main results
In this section, we prove Theorem 2.6, which says that any simplicial category that
satisfies the axioms presented in the last section (see Definition 2.1) has the general
cup product formula (see Definition 1.7).

Before we do so, we prove an imbedding theorem (see Proposition 3.3) for
compact derived manifolds, which says that any compact derived manifold can be
imbedded into a large enough Euclidean space. The proof very closely mimics the
corresponding proof for compact smooth manifolds, except we do not have to worry
about the rank of Jacobians.

Fix a category dM which is good for doing intersection theory on manifolds,
in the sense of Definition 2.1. In this section, we refer to objects in dM as derived



72 DAVID I. SPIVAK

manifolds, and we refer to morphisms in dM as morphisms of derived manifolds.
When we speak of an axiom, we are referring to the axioms of Definition 2.1.

Before proving Proposition 3.3, let us state a few lemmas.

LEMMA 3.1
Let f : X → Y, and let g : Y ′ → Y be morphisms of derived manifolds such that g

is an open subobject. Then there exists an open subobject X ′ → X and a homotopy
pullback diagram

X ′ ��

��

�
Y ′

g

��
X

f

�� Y

Sketch of proof
Apply U and let X′ denote the preimage of U(Y ′) in U(X). The corresponding open
subobject X ′ → X, guaranteed by Axiom (2), satisfies the universal property of the
homotopy fiber product. �

We state one more lemma about imbeddings.

LEMMA 3.2
(1) The pullback of an imbedding is an imbedding.
(2) If M is a manifold, if X is a derived manifold, and if f : X → M is a

morphism, then the graph �(f ) : X → X × M is an imbedding.

Proof
The first result is obvious by Definition 2.3, Lemma 3.1, and the basic properties of
pullbacks. For the second result, we may assume that X is an affine derived manifold
and that M = Rp. We have a homotopy pullback diagram

X ��

��

�
R0

��

Rn ��
Rk

and by Axiom (6), the map f : X → Rp is homotopic to some composite X →
Rn f ′

−→ Rp.
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By Proposition 2.5, the graph �(f ′) : Rn → Rn × Rp is an imbedding, and since
the diagram

X
�(f )

��

��

�
X × Rp

��

Rn

�(f ′)

�� Rn × Rp

is a homotopy pullback, it follows from the first result that the top map is also an
imbedding, as desired. �

The next theorem says that any compact derived manifold can be imbedded into
Euclidean space. This result is proved for smooth manifolds in [6, Theorem II.10.7],
and we simply adapt that proof to the derived setting.

PROPOSITION 3.3
Let dM be good for intersection theory, and let X ∈ dM be an object whose underlying
space U(X) is compact. Then X can be imbedded into some Euclidean space RN .

Proof
By Axiom (5), we can cover X by local models Vi ; let Vi = U(Vi) denote the
underlying space. For each Vi , there is a homotopy pullback diagram

Vi
��

xi

��

�
R0

0

��
Rmi

f i

�� Rni

in dM.
For each i, let βi : Rmi → R be a smooth function that is one on some open disk

Dmi (centered at the origin), zero outside of some bigger open disk, and nonnegative
everywhere. Define zi = βi ◦ xi : Vi → R. Then zi is identically one on an open
subset V ′

i ⊂ Vi (the preimage of Dmi ) and is identically zero outside some closed
neighborhood of V ′

i in Vi . Let V ′
i denote the open subobject of Vi over V ′

i ⊂ Vi .
Define functions yi : Vi → Rmi by multiplication: yi = zixi.

By construction, we have

yi |V ′
i
= xi |V ′

i
,
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and each yi is constantly equal to zero outside of a closed neighborhood of V ′
i in Vi .

We can thus extend the zi and the yi to all of X by making them zero outside of Vi (see
Axiom (3)(b)). By Axiom (5) and by the compactness of X = U(X), we can choose
a finite number of indices i so that the V ′

i cover all of X, say for indices 1 ≤ i ≤ k.
For each i, we have an all-Cartesian diagram

V ′
i

�
��

yi

��

Vi

�
��

xi

��

R0

0

��
Dmi �� Rmi

f i

�� Rni

(3.3.1)

by Lemma 3.1.
Let N = ∑k

i=1 mi . Let b1 : RN → Rm1 denote the first m1 coordinate projections,
let b2 : RN → Rm2 denote the next m2 coordinate projections, and so on for each
1 ≤ i ≤ k. The sequence W = (y1, . . . , yk) gives a map

W : X → R
N

such that for each 1 ≤ i ≤ k one has bi ◦ W = yi .
We show that W is an imbedding in the sense of Definition 2.3; that is, that the

restriction of W to each V ′
i comes as the inclusion of the zero set of smooth functions

ci on a certain open subset of RN . The work has already been done; we just need to
tease out what we already have. The ci should act like f i on the relevant coordinates
for V ′

i , and should act like coordinate projections everywhere else. With that in mind,
we define for each 1 ≤ i ≤ k the function

ci = (b1, . . . , bi−1, f i, bi+1, . . . , bk) : R
N → R

N−mi+ni .

We construct the following diagram:

V ′
i

�
��

yi

��

Vi

xi

��

��

�
R0

0

��
Dmi

�
��

�� Rmi

��

f i

��

�
Rni

��

Dmi × RN−mi ��
RN

ci

��
R(N−mi )+ni

The lower right-hand vertical map is a coordinate imbedding. The lower right square
and the lower left square are pullbacks in the category of manifolds, so they are
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homotopy pullback in dM by Axiom (1). The upper squares are pullbacks (see (3.3.1)).
Therefore, the diagram is (homotopy) all Cartesian. The vertical composite V ′

i →
Dmi × RN−mi is the restriction of W to V ′

i , and it is also the zero set of the horizontal
composite Dmi × RN−mi → R(N−mi )+ni . Since Dmi × RN−mi → RN is the inclusion
of an open subset, we have shown that W is an imbedding in the sense of Defini-
tion 2.3. �

The following relative version of Proposition 3.3 is proven in almost exactly the same
way. Recall that a map f of topological spaces is said to be proper if the inverse image
under f of any compact subspace is compact. A morphism of derived manifolds is
said to be proper if the underlying morphism of topological spaces is proper.

COROLLARY 3.4
Let dM be good for intersection theory, let X ∈ dM be a derived manifold, and
let M ∈ Man be a manifold. Suppose that f : X → M is proper, that A ⊂ M is
a compact subset, and that A ⊂ f (U(X)). Let A′ denote the interior of A, and let
X ′ = f −1(A′). There exists an imbedding W : X ′ → RN ×A′ such that the diagram

X ′ ��

W

��

X

f

��

RN × A′

π2

��
A′ �� M

commutes, and such that the composite π2 ◦ W : X ′ → A′ is proper.

Sketch of proof
Copy the proof of Proposition 3.3 verbatim until it requires the compactness of
X = U(X), which does not hold in our case. Instead, use the compactness of f −1(A)
and choose finitely many indices 1 ≤ i ≤ k such that the union ∪iV

′
i contains f −1(A).

Continue to copy the proof verbatim, except replace instances of X with ∪iV
′
i . In this

way, we prove that one has an imbedding of the derived manifold

W ′ : ∪i V ′
i → R

N.

Let f ′ : X ′ → A′ be the pullback of f , and note that X ′ = f −1(A′) is contained
in ∪iVi . The restriction W ′|X ′ : X ′ → RN and the map f ′ together induce a map
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W : X ′ → RN × A′, which is an imbedding by Lemma 3.2. By construction, f ′ =
π2 ◦ W is the pullback of f , so it is proper. �

3.1. Derived cobordism
Fix a simplicial category dM that is good for doing intersection theory on manifolds
in the sense of Definition 2.1. One generally defines cobordism using the idea of
manifolds with boundary. Under the above definitions, manifolds with boundary are
not derived manifolds.

One can define derived manifolds with boundary in a way that emulates Definition
2.1; that is, one could give axioms for a simplicial category with local models that look
like generalizations of manifolds with boundary, and so on. One could then prove that
the local definition was equivalent to a global one; that is, one could prove that derived
manifolds with boundary can be imbedded into Euclidean half-space. All of this was
the approach of the author’s dissertation (see [27]). For this article, in the interest of
space, we dispense with all that and define cobordism using the idea of proper maps
to R.

To orient the reader to Definition 6, we reformulate the usual cobordism relation
for manifolds using this approach. Two compact smooth manifolds Z0 and Z1 are
cobordant if there exists a manifold (without boundary) X and a proper map f : X →
R such that
• for the points i = 0, 1 ∈ R, the map f is i-collared in the sense of Definition

3.5, and
• for i = 0, 1, there is an isomorphism Zi

∼= f −1(i), also written Zi
∼= Xf =i .

For the definition of derived cobordism, we simply drop the requirement that zero and
one be regular values of f .

Definition 3.5
Let X denote a derived manifold, and let f : X → R define a morphism. Given a
point i ∈ R, we say that f is i-collared if there exists an ε > 0 and an equivalence

X|f −i|<ε � Xf =i × (−ε, ε), (3.5.1)

where X|f −i|<ε denotes the open subobject of X over (i − ε, i + ε) ⊂ R (see Lemma
3.1).

Definition 3.6
Let dM be good for intersection theory. Compact derived manifolds Z0 and Z1 are
said to be derived cobordant if there exists a derived manifold X and a proper map
f : X → R such that for i = 0, 1, there is an equivalence Zi � Xf =i . The map
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f : X → R is called a derived cobordism between Z0 and Z1. We refer to Z0 � Z1

as the boundary of the cobordism.
If T is a CW complex, then a derived cobordism over T is a pair (a, f ), where

f : X → R is a derived cobordism and where a : UX → T is a continuous map to
T .

If T is a manifold, we denote the ring whose elements are derived cobordism
classes over T (with sum given by disjoint union and product given by fiber product
over T ) by �der(T ). We use �der to denote �der(R0).

Remark 3.7
In Definition 3.6, we speak of derived cobordism classes, even though we have not
yet shown that derived cobordism is an equivalence relation on compact derived
manifolds. We prove this fact in Proposition 3.10.

Remark 3.8
We did not define oriented derived manifolds, so all of our cobordism rings �(T ) and
derived cobordism rings �der(T ) should be taken to be unoriented.

However, the oriented case is no harder; we must simply define oriented derived
manifolds and oriented derived cobordisms. To do so, imbed a compact derived
manifold X into some Rn (which is possible by Proposition 3.3), and consider the
normal bundle guaranteed by Axiom (7). We define an orientation on X to be an
orientation on some such normal bundle. One orients derived cobordisms similarly.

All results which we prove in the unoriented case also work in the oriented case.

Remark 3.9
One show that if U is an open neighborhood of the closed interval [0, 1] ⊂ R, then
any proper map f : X → U can be extended to a proper map g : X → R with an
isomorphism f −1([0, 1]) ∼= g−1([0, 1]) over [0, 1]. So, one can consider such an f

to be a derived cobordism between f −1(0) and f −1(1).

PROPOSITION 3.10
Let dM be good for intersection theory. Derived cobordism is an equivalence relation
on compact objects in dM.

Proof
Derived cobordism is clearly symmetric. To see that it is reflexive, let X be a compact
derived manifold and consider the projection map X × R → R. It is a derived
cobordism between X and X.

Finally, we must show that derived cobordism is transitive. Suppose that f : X →
R is a derived cobordism between Z0 and Z1, and suppose that g : Y → R is a
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derived cobordism between Z1 and Z2. By Axiom (3), we can glue open subobjects
Xf <1+ε ⊂ X and Yg>−ε ⊂ Y together along the common open subset Z1 × (−ε, ε)
to obtain a derived manifold W together with a proper map h : W → R such that for
i = 0, 2, we have Wh=i = Zi . The result follows. �

LEMMA 3.11
Let dM be good for intersection theory. The functor i : Man → dM induces a
homomorphism on cobordism rings

i∗ : � → �der.

Proof
It suffices to show that manifolds which are cobordant are derived cobordant. If Z0 and
Z1 are manifolds which are cobordant, then there exists a compact manifold X with
boundary Z0 � Z1. It is well known that one can imbed X into Rn in such a way that
for i = 0, 1 we have Zi

∼= Xxn=i , where xn denotes the last coordinate of Rn. Because
each Zi has a collar neighborhood, we can assume that X|xn−i|<ε

∼= Xxn=i ×(−ε, ε) for
some ε > 0. The preimage X̃ ⊂ X of (−ε, 1 + ε) is a manifold (without boundary),
and hence a derived manifold (under i). By Remark 3.9, xn : X̃ → R is a derived
cobordism between Z0 and Z1. �

THEOREM 3.12
Let dM be good for intersection theory. The functor

i∗ : � → �der

is an isomorphism.

Proof
We first show that i∗ is surjective, that is, that every compact derived manifold Z is
derived cobordant to a smooth manifold. Let W : Z → RN denote a closed imbedding,
which exists by Proposition 3.3. Let U ⊂ RN , E → U , and s, z : U → E be the
open neighborhood, vector bundle, zero section, and defining section from Axiom (7),
so that the diagram

Z
g

��

g

��

�
U

z

��
U

s

�� E
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is a homotopy pullback. Note that U and E are smooth manifolds and that the image
z(U ) ⊂ E is a closed subset.

Since Z is compact, we can choose a compact subset U ′ ⊂ U whose interior
contains Z. Let A ⊂ U be the compliment of the interior of U ′. Then s(A)∩z(U ) = ∅,
so in particular they are transverse as closed submanifolds of E.

By [28, Appendix 2, p. 24], there exists a regular homotopy H : [0, 1] × U → E

such that
• H0 = s : U → E;
• H1 = t , where t : U → E is transverse to the closed subset z(U ) ⊂ E; and
• for all 0 ≤ i ≤ 1, we have Hi |A = s|A.
For any ε > 0 we can extend H to a homotopy H : (−ε, 1 + ε) × U → E, with the
same three bulleted properties, by making it constant on (−ε, 0] and [1, 1 + ε).

Consider the all-Cartesian diagram

Zi

�
��

��

P

�
��

a

��

U

z

��
R0 × U

�

i×idU

��

π

��

(−ε, 1 + ε) × U
H

��

π

��

E

R0

i

�� R

for i = 0, 1. Notice that Z0 = Z and that Z1 is a smooth manifold. It suffices to show
that the map π ◦a : P → R is proper, that is, that for each 0 ≤ i ≤ 1, the intersection
of Hi(U ) and z(U ) is compact. Since Hi(A) ∩ z(U ) = ∅, one has

Hi(U ) ∩ z(U ) = Hi(U
′) ∩ z(U ),

and the right-hand side is compact. Thus H is a derived cobordism between Z and a
smooth manifold.

To prove that i∗ is injective, we must show that if smooth manifolds M0, M1 are
derived cobordant, then they are smoothly cobordant. Let f : X → R denote a derived
cobordism between M0 and M1. Let A′ denote the open interval (−1, 2) ⊂ R, and
let X ′ = f −1(A′). By Corollary 3.4, we can find an imbedding W : X ′ → RN × A′

such that

f ′ := f |X ′ = π2 ◦ W
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is proper. Note that for i = 0, 1 we still have X ′
f ′=i = Mi . By Remark 3.9, f ′ induces

a derived cobordism between M0 and M1 with the added benefit of factoring through
an imbedding X ′ → RN into Euclidean space.

Again we use Axiom (7) to find a vector bundle and section s on an open subset
of RN × R whose zero set is X ′. We apply [28, Appendix 2, p. 24] to find a regular
homotopy between s and a section t which is transverse to zero, all the while keeping
the closed submanifold M0 � M1 fixed. The zero set of t is a smooth cobordism
between M0 and M1. �

COROLLARY 3.13
If dM is good for doing intersection theory on manifolds, then dM has the general
cup product formula in cobordism, in the sense of Definitions 1.3 and 1.7. Moreover,
for any manifold T , the functor

i∗ : �(T ) → �der(T )

is an isomorphism between the classical cobordism ring and the derived cobordism
ring (over T ).

Proof
Suppose that dM is good for doing intersection theory on manifolds. Since T is
assumed to be a CW complex, if Z ⊂ X is a closed subset of a metrizable topological
space, then any map f : Z → T extends to a map f ′ : U → T , where U ⊂ X is
an open neighborhood of Z. One can now modify the proof of Theorem 3.12 so that
all constructions are suitably over T , which implies that i∗ is an isomorphism. Let us
quickly explain how to make this modification.

We begin with a compact derived manifold Z = (Z, OZ) and a map of topological
spaces σ : Z → T . Since Z is Hausdorff and paracompact, it is metrizable. It follows
that the map σ extends to a map σ ′ : U → T , where U ⊂ RN is an open neighborhood
of T and σ ′|Z = σ . By intersecting if necessary, we can take this U to be the open
neighborhood given in the proof of Theorem 3.12. The vector bundle p is canonically
defined over T (via σ ′), as are the sections s, z. One can continue in this way and see
that the proof extends without any additional work to the relative setting (over T ).

Now that we have proved the second assertion, that i∗ is an isomorphism, we go
back and show the first, which is that dM has the general cup product formula in
cobordism. The first three conditions of Definition 1.7 follow from Axiom (1), Axiom
(4), and Theorem 3.12.

To prove the last condition, let M be a manifold and suppose that j : A → M and
k : B → M are compact submanifolds. There is a map H : A × R → M such that
H0 = j and such that H1 : A → M is transverse to k. For i = 0, 1, let Xi denote the
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intersection of (the images of) Hi and k. Note that X0 = A×M B is a compact derived
manifold which we also denote A ∩ B. Further, X1 is a compact smooth manifold,
often called the transverse intersection of A and B (because A is made transverse to
B), and X0 and X1 are derived cobordant over M .

It is well known that [X1] = [A] � [B] as elements of �(M). Since �(M) ∼=
�der(M), and since [X0] = [X1] as elements of �der(M), the formula

[A] � [B] = [A ∩ B]

holds. �

4. Layout for the construction of dMan
In the next few sections we construct a simplicial category dMan which is good for
doing intersection theory on manifolds, in the sense of Definition 2.1. An object of
dMan is called a derived manifold, and a morphism in dMan is called a morphism of
derived manifolds.

A derived manifold could be called a homotopical C∞-scheme of finite type. In
the coming sections, we build up to a precise definition. In this section, we give a brief
outline of the construction.

Let us first recall the process by which one defines a scheme in algebraic geometry.
One begins with the category of commutative rings, which can be defined as the
category of algebras of a certain algebraic theory (see [5, Example 3.3.5.a]). One then
defines a ringed space to be a space X together with a sheaf of rings OX on X. A
local ringed space is a ringed space in which all stalks are local rings. One must then
functorially assign to each commutative ring A a local ringed space Spec A, called
its prime spectrum. Once that is done, a scheme is then defined as a local ringed
space which can be covered by open subobjects, each of which is isomorphic to the
prime spectrum of a ring. Note that the purpose of defining local ringed spaces is
that morphisms of schemes have to be morphisms of local ringed spaces, not just
morphisms of ringed spaces.

If one is interested only in schemes of finite type (over Z), one does not need to
define prime spectra for all rings. One could get away with just defining the category
of affine spaces An = Spec Z[x1, . . . , xn] as local ringed spaces. One then uses as
local models the fiber products of affine spaces, as taken in the category of local ringed
spaces.

We recall quickly the notion of an algebraic theory (see [16]). A model for an
algebraic theory is a category T with objects {T i | i ∈ N} such that T i is the i-fold
product of T 1. An algebraic theory is a product preserving functor from T to Sets.
A simplicial theory is a product preserving functor from T to sSets. The category
of rings is the category of algebraic theories on the category with objects A

n
Z

and
morphisms given by polynomial maps between affine spaces.
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The basic outline of our construction of derived manifolds follows the above
construction fairly closely, but with the following differences.
• Rings are not sufficient as our basic objects. We need a smooth version of the

theory, whose algebras are called C∞-rings.
• Everything must be done homotopically. Our basic objects are in fact lax

simplicial C∞-rings, which means that the defining functor is not required to
be product preserving on the nose but instead weakly product preserving.

• Furthermore, our sheaves are homotopy sheaves, which means that they satisfy
a homotopical version of descent.

• Our affine spaces are quite familiar, they are simply the Euclidean spaces Rn

(as smooth manifolds). A morphism of affine spaces is a smooth function
Rn → Rm.

• We use as our local models the homotopy fiber products of affine spaces, as
taken in the category of local C∞-ringed spaces.

A derived manifold is hence a smooth, homotopical version of a scheme. In Section
5, we define our basic objects, the lax C∞-rings, and prove some lemmas about their
relationship with C∞-rings (in the usual sense) and with commutative rings. In Section
6, we define local C∞-ringed spaces and derived manifolds (see Definition 6.15). We
then must discuss cotangent complexes for derived manifolds in Section 7. In Section
8, we give the proofs of several technical results. Finally, in Section 9 we prove that
our category of derived manifolds is good for doing intersection theory on manifolds,
in the sense of Definition 2.1.

Convention 4.1
In this article, we rely heavily on the theory of model categories and their localizations
(see [11] or [12] for a good introduction to this subject).

If X is a category, then there are two common model structures on the simplicial
presheaf category sSetsX called the injective and the projective model structures.
In this article, we always use the injective model structure. If we speak of a model
structure on sSetsX without specifying it, we mean the injective model structure. The
injective model structure on sSetsX is given by object-wise cofibrations, object-wise
weak equivalences, and fibrations determined by the right lifting property with respect
to acyclic cofibrations.

With the injective model structure, sSetsX is a left proper, combinatorial, simpli-
cial model category. As stated above, weak equivalences and cofibrations are deter-
mined object-wise; in particular, every object in sSetsX is cofibrant (see, e.g., [4] or
[20] for further details).
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5. C∞-rings
Let E denote the full subcategory of Man spanned by the Euclidean spaces Ri , for
i ∈ N; we refer to E as the Euclidean category. Lawvere, Dubuc, Moerdijk and Reyes,
and others have studied E as an algebraic theory (see [17], [9], [22]). The E-algebras,
which are defined as the product preserving functors from E to sets, are called C∞-
rings. We use a homotopical version, in which we replace sets with simplicial sets,
and strictly product preserving functors with functors which preserve products up to
weak equivalence.

Let sSetsE denote the simplicial model category of functors from E to the category
of simplicial sets. As usual (see Convention 4.1), we use the injective model structure
on sSetsE, in which cofibrations and weak equivalences are determined object-wise,
and fibrations are determined by the right lifting property.

For i ∈ N, let Hi ∈ sSetsE denote the functor Hi(Rn) = HomE(Ri , Rn). For
each i, j ∈ N, let

pi,j : Hi � Hj → Hi+j (5.0.1)

denote the natural map induced by coordinate projections Ri+j → Ri and Ri+j →
Rj . We also refer to Hi as HRi (see Example 5.6).

Note that if F : E → sSets is any functor, then the Yoneda lemma gives a natural
isomorphism of simplicial sets

Map(Hi, F ) ∼= F (Ri).

Definition 5.1
With notation as above, define the category of lax simplicial C∞-rings, denoted sC∞,
to be the localization of sSetsE at the set P = {pi,j |i, j ∈ N} (see [11, Defini-
tion 3.1.1]).

We often refer to the objects of sC∞ simply as C∞-rings, dropping the words
lax simplicial. We can identify a discrete object in sC∞ with a (strict) C∞-ring in the
classical sense (see [22]), and thus we refer to these objects as discrete C∞-rings.

The model category sC∞ is a left proper, cofibrantly-generated simplicial model
category (see [11, Proposition 3.4.4]), in which all objects are cofibrant. Let F ∈
sSetsE be a fibrant object, considered as an object of sC∞. Then F is fibrant in sC∞

if and only if it is local with respect to all the pi,j ; that is, for each i, j ∈ N the natural
map

Map(Hi+j , F ) → Map(Hi � Hj, F )

is a weak equivalence. Since each Hi is the functor represented by Ri , this is equivalent
to the condition that the natural map

F (Ri+j ) → F (Ri) × F (Rj )
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be a weak equivalence. In other words, F : E → sSets is fibrant in sC∞ if and only
if it is weakly product preserving (and fibrant as an object of sSetsE).

Remark 5.2
There is a model category of strict simplicial C∞-rings consisting of (strictly) product
preserving functors from E to sSets. It is Quillen equivalent to our sC∞ (see [19,
Corollary 13.3]). The reason we use the lax version is that, as a localization of a left
proper model category, it is clearly left proper. (Note that, by [24], we could have used
a simplicial version of the theory to obtain a proper model of strict algebras, but this
model is more difficult to use for our purposes.)

This left properness of sC∞ is necessary for the further localization we use to
define the category of homotopy sheaves of C∞-rings. The use of homotopy sheaves
is one of the key ways in which our theory differs from the synthetic differential
geometry literature.

PROPOSITION 5.3
Suppose that φ : F → G is a morphism of fibrant C∞-rings. Then φ is a weak
equivalence if and only if φ(R) : F (R) → G(R) is a weak equivalence of simplicial
sets.

Proof
Follows from basic facts about Bousfield localization. �

Note that if F ∈ sC∞ is fibrant and if for all i ∈ N the simplicial set F (Ri) is a
discrete set, then F is a C∞-ring in the classical sense; that is, it is a strictly product
preserving functor from E to Sets.

LEMMA 5.4
The functor π0 : sSetsE → SetsE sends fibrant objects in sC∞ to C∞-rings (in the
classical sense). It sends object-wise fibrant homotopy pushout diagrams in sC∞ to
pushouts of C∞-rings.

Proof
If F ∈ sC∞ is fibrant, then Map(pi,j , F ) is a weak equivalence of simplicial sets
for each pi,j ∈ P . Hence π0Map(pi,j , F ) is a bijection of sets. Since each pi,j is a
map between discrete objects in sC∞, we have π0Map(pi,j , F ) = Hom(pi,j , π0F ),
so π0F is indeed a C∞-ring.

To prove the second assertion, suppose that

� = (A
f←− B

g−→ C)
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is a diagram of fibrant objects in sC∞. Factor f as a cofibration B → A′ followed
by an acyclic fibration A′ → A. The homotopy colimit of � is given by the usual
colimit of the diagram � ′ of functors A′ ← B → C. Applying π0 commutes with
taking colimits. Since A′ and A are both fibrant and weakly equivalent in sC∞, they
are weakly equivalent in sSetsE, so π0A

′ → π0A is an isomorphism in SetsE. Hence
we have

π0 hocolim(�) ∼= π0 colim(� ′) ∼= colim(π0�
′) ∼= colim(π0�),

completing the proof. �

The following lemma is perhaps unnecessary, but we include it to give the reader more
of an idea of how classical (i.e., discrete) C∞-rings work.

LEMMA 5.5
Let F be a discrete fibrant C∞-ring. Then the set F (R) naturally has the structure of
a ring.

Proof
Let R = F (R) ∈ Sets, and note that F (Ri) ∼= Ri, and that in particular F (R0) =
{∗} is a singleton set. Let 0, 1: R0 → R denote the additive and multiplicative
units, let +,� : R2 → R denote the addition and multiplication functions, and let
ι : R → R denote the additive inverse. All of these are smooth functions and are
hence morphisms in E. Applying F , we obtain elements F (0), F (1) : {∗} → R, two
binary functions F (+), F (�) : R × R → R, and a function F (ι) : R → R. Since all
of the ring axioms can be written as the commutativity condition on a diagram, and
since F is a functor and preserves commutative diagrams, one sees that the operations
F (0), F (1), F (+), F (�), and F (ι) satisfy all the axioms for R to be a ring. �

If F ∈ sC∞ is fibrant but not necessarily discrete, then the ring axioms hold up
to homotopy. Note, however, that even in the discrete case, R = F (R) has much
more structure than just that of a ring. Any smooth function Rn → Rm gives rise
to a function Rn → Rm, satisfying all appropriate commutative diagrams (e.g., the
functions 3a+b and 3a3b taking R2 → R are equal, so they are sent to equal vertices
of the mapping space Map(R2, R)).

Example 5.6
Let M be a manifold. Let HM : E → sSets be defined by HM (Ri) :=
HomMan(M, Ri). One checks easily that HM is a discrete fibrant C∞-ring. We usually
denote HM by C∞(M), though this notation tends to obscure the role of HM as a
functor, instead highlighting the value of HM on R, the set of C∞-functions M → R.
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Since sC∞ is a model category, it is closed under homotopy colimits. The homo-
topy colimit of the diagram C∞(R0) ← C∞(R) → C∞(R0), induced by the diagram

of manifolds R0 0−→ R
0←− R0, is an example of a nondiscrete C∞-ring.

Definition 5.7
Let Ealg denote the subcategory of E whose objects are the Euclidean spaces Ri , but
in which we take as morphisms only those maps Ri → Rj which are given by j

polynomials in the i coordinate functions on Ri . For each i, j ∈ N, let Hi(Rj ) =
HomE-alg (Ri , Rj ), and let pi,j : Hi � Hj → Hi+j be as above (see (5.0.1)).

Let sR denote the localization of the injective model category sSetsE
alg

at the set
{pi,j |i, j ∈ N}. We call sR the category of (lax) simplicial R-algebras.

The functor Ealg → E induces a functor U : sC∞ → sR, which we refer to as
the underlying R-algebra functor. It is a right Quillen functor, and as such preserves
fibrant objects. Similarly, the functor sC∞ → sSets given by F �→ F (R) is a right
Quillen functor, which we refer to as the underlying simplicial set functor. Both of
these right Quillen functors preserve cofibrations as well, because cofibrations in all
three model categories are monomorphisms.

COROLLARY 5.8
The functor U : sC∞ → sR preserves and reflects weak equivalences between fibrant
objects.

Proof
Since U is a right Quillen functor, it preserves fibrant objects. The result now follows
from Proposition 5.3 and the corresponding fact about sR. �

We do not need the following proposition, but we include it for the reader’s convenience
and edification. For example, it may help orient the reader to Section 7 on cotangent
complexes.

PROPOSITION 5.9
The model category sR of simplicial R-algebras is Quillen equivalent to the model
category of connective commutative differential graded R-algebras.

Proof
In [26, Theorem 1.1(3)], Schwede and Shipley prove that the model category of
connective commutative differential grade R-algebras is Quillen equivalent to the
model category of strict simplicial commutative R-algebras. This is in turn Quillen
equivalent to the category of lax simplicial commutative R-algebras by [19, Corol-
lary 13.3]. �
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Definition 5.10
A C∞-ring F is called local if its underlying discrete R-algebra π0(U (F )) is local in
the usual sense, and a morphism φ : F → G of local C∞-rings is called local if its
underlying morphism of discrete R-algebras π0(U (φ)) is local in the usual sense.

We give a more intuitive version of the locality condition in Proposition 8.10.

Remark 5.11
We regret the overuse of the word local; when we “localize” a model category to add
weak equivalences, when we demand a “locality condition” on the stalks of a ringed
space, and later when we talk about derived manifolds as having “local models” (as
the local models for manifolds are Euclidean spaces), we are using the word local in
three different ways. But each is in line with typical usage, so it seems that overloading
the word could not be avoided.

6. Local C∞-ringed spaces and derived manifolds
In this section, we define the category of (lax simplicial) C∞-ringed spaces, a sub-
category called the category of local C∞-ringed spaces, and a full subcategory of
that called the category of derived manifolds. These definitions resemble those of
ringed spaces, local ringed spaces, and schemes from algebraic geometry. Ordinary
C∞-ringed spaces and C∞-schemes have been studied for quite a while (see [17], [9],
[22]).

Let X be a topological space, and let Op(X) denote the category of open inclusions
in X. A homotopy sheaf of simplicial sets on X is a functor F : Op(X)op → sSets
which is fibrant as an object of sSetsOp(X)op

and which satisfies a homotopy descent
condition. Roughly, the descent condition says that given open sets U and V , a section
of F over each one, and a choice of homotopy between the restricted sections on
U ∩ V , there is a homotopically unique section over U ∪ V which restricts to the
given sections. Jardine showed in [14] that there is a model category structure on
sSetsOp(X)op

in which the fibrant objects are homotopy sheaves on X; we denote this
model category Shv(X, sSets).

In [10], the authors show that Shv(X, sSets) is a localization of the injective
model structure on sSetsOp(X)op

at a certain set of morphisms (called the hypercovers)
to obtain Shv(X, sSets). From this, one deduces that Shv(X, sSets) is a left proper,
cofibrantly generated simplicial model category in which all objects are cofibrant.
A weak equivalence between fibrant objects of Shv(X, sSets) is a morphism which
restricts to a weak equivalence on every open subset of X.

We wish to find a suitable category of homotopy sheaves of C∞-rings. This is
obtained as a localization of the injective model structure on sSetsOp(X)op×E.
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PROPOSITION 6.1
Let A and B be categories, let P be a set of morphisms in sSetsA, and let Q be a set of
morphisms in sSetsB . There exists a localization of sSetsA×B , called the factor-wise
localization and denoted M, in which an object F ∈ M is fibrant if and only if
(1) F is fibrant as an object of sSetsA×B;
(2) for each a ∈ A, the induced object F (a, −) ∈ sSetsB is Q-local; and
(3) for each b ∈ B, the induced object F (−, b) ∈ sSetsA is P -local.

Proof
The projection A × B → A induces a Quillen pair

sSetsA

LA

��sSetsA×B

RA

��

(see Convention 4.1). Similarly, there is a Quillen pair (LB, RB). The union of the
image of P under LA and the image of Q under LB is a set of morphisms in sSetsA×B ,
which we denote R = LA(P ) � LB(Q). Let M denote the localization of sSetsA×B

at R. The result follows from [11, Proposition 3.1.12]. �

Definition 6.2
Let X be a topological space. Let Q be the set of hypercovers in sSetsOp(X)op

and
let P = {pi,j |i, j ∈ N} denote the set of maps from Definition 5.1. We denote by
Shv(X, sC∞) the factor-wise localization of sSetsOp(X)op×E with respect to Q and P ,
and refer to it as the model category of sheaves of C∞-rings on X.

We refer to F ∈ Shv(X, sC∞) as a sheaf of C∞-rings on X if F is fibrant;
otherwise, we simply refer to it as an object of Shv(X, sC∞).

Similarly, one defines the model category of sheaves of simplicial R-algebras, denoted
Shv(X, sR), as the factor-wise localization of sSetsOp(X)op×E

alg
with respect to the same

sets, Q and P .
Given a morphism of topological spaces f : X → Y , one has pushforward and

pullback functors f∗ : Shv(X, sC∞) → Shv(Y, sC∞) and f −1 : Shv(Y, sC∞) →
Shv(X, sC∞) as usual. The functor f −1 is left adjoint to f∗, and this adjunction is
a Quillen adjunction. Recall that when we speak of sheaves on X, we always mean
fibrant objects in Shv(X). To that end, we write f ∗ : Shv(Y, sC∞) → Shv(X, sC∞)
to denote the composition of f −1 with the fibrant replacement functor.

Definition 6.3
Let X ∈ CG be a topological space. An object F ∈ Shv(X, sC∞) is called a sheaf of
local C∞-rings on X if
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(1) F is fibrant, and
(2) for every point p : {∗} → X, the stalk p∗F is a local C∞-ring.
In this case, the pair (X, F ) is called a local C∞-ringed space.

Let F and G be sheaves of local C∞-rings on X. A morphism a : F → G

is called a local morphism if, for every point p : {∗} → X, the induced morphism
on stalks p∗(a) : p∗(F ) → p∗(G) is a local morphism (see Definition 5.10). We
denote by Maploc(F, G) the simplicial subset of Map(F, G) spanned by the vertices
a ∈ Map(F, G)0 which represent local morphisms a : F → G.

Let (X, OX) and (Y, OY ) denote local C∞-ringed spaces. A morphism of local
C∞-ringed spaces

(f, f ) : (X, OX) → (Y, OY )

consists of a map of topological spaces f : X → Y and a morphism f  : f ∗OY → OX,
such that f  is a local morphism of sheaves of C∞-rings on X.

More generally, we define a simplicial category LRS whose objects are the local
C∞-ringed spaces and whose mapping spaces have as vertices the morphisms of
local C∞-ringed spaces. Precisely, we define for local C∞-ringed spaces (X, OX) and
(Y, OY ) the mapping space

MapLRS

(
(X, OX), (Y, OY )

)
:=

∐
f ∈HomCG(X,Y )

Maploc(f
∗OY , OX).

Example 6.4
Given a local C∞-ringed space (X, OX), any subspace is also a local C∞-ringed space.
For example, a manifold with boundary is a local C∞-ringed space. We do not define
derived manifolds with boundary in this article, but we could do so inside the category
of local C∞-ringed spaces. In fact, that was done in the author’s dissertation (see [27]).

If i : U ⊂ X is the inclusion of an open subset, then we let OU = i∗OX be
the restricted sheaf, and we refer to the local C∞-ringed space (U, OU ) as the open
subobject of X over U ⊂ X.

Definition 6.5
A map (f, f ) : (X, OX) → (Y, OY ) is an equivalence of local C∞-ringed spaces if
f : X → Y is a homeomorphism of topological spaces and if f  : f ∗OY → OX is a
weak equivalence in Shv(X, sC∞).

Remark 6.6
The relation which we called equivalence of local C∞-ringed spaces in Defini-
tion 6.5 is clearly reflexive and transitive. Since the sheaves OX and OY are assumed
cofibrant-fibrant, it is symmetric as well (see, e.g., [11, Theorem 7.5.10]).
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Remark 6.7
Note that the notion of equivalence in Definition 6.5 is quite strong. If (f, f ) is
an equivalence, the underlying map f of spaces is a homeomorphism, and the mor-
phism π0(f ) is an isomorphism of the underlying sheaves of C∞-rings. Therefore,
equivalence in this sense should not be thought of as a generalization of homotopy
equivalence, but instead a generalization of diffeomorphism.

In the next lemma, we need to use the mapping cylinder construction for a
morphism f : A → B in a model category. To define it, factor the morphism f �
idB : A � B → B as a cofibration followed by an acyclic fibration,

A � B �� ��Cyl(f )
�

�� ��B;

the intermediate object Cyl(f ) is called the mapping cylinder. Note that if f is a weak
equivalence, then so are the induced cofibrations A → Cyl(f ) and B → Cyl(f );
consequently, A and B are strong deformation retracts of Cyl(f ).

LEMMA 6.8
Suppose that X = (X, OX) and Y = (Y, OY ) are local C∞-ringed spaces and that
U = (U, OU ) and U′ = (U ′, OU ′) are open subobjects of X and Y, respectively, and
suppose that U and U′ are equivalent. Then in particular there is a homeomorphism
U ∼= U ′.

If the union X �U Y of underlying topological spaces is Hausdorff, then there is
a local C∞-ringed space denoted X ∪Y with underlying space X�U Y and structure
sheaf O, such that the diagram

U ��

��

k

����
��

��
��

� Y

j

��
X

i

�� X ∪ Y

(6.8.1)

commutes (up to homotopy), and such that the natural maps i∗O → OX, j ∗O → OY ,

and k∗O → OU are weak equivalences.

Proof
We define the structure sheaf O as follows. First, let V = U , let OV denote the
mapping cylinder for the equivalence OU → OU ′ , and let V = (V, OV ). Then the
natural maps U, U′ → V are equivalences, and we have natural maps V → X and
V → Y which are equivalent to the original subobjects U → X and U′ → Y.
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Redefine k to be the natural map k : V → X�V Y . We take O to be the homotopy
limit in Shv(X �V Y, sC∞), given by the diagram

O ��

��

�
j∗OY

��
i∗OX

�� k∗OV

On the open set X ⊂ X∪Y , the structure sheaf O restricts to OX(X)×OV (V )OY (V ).
Since V is an open subobject of Y, we in particular have an equivalence OY (V ) �
OV (V ). This implies that O(X) → OX(X) is a weak equivalence. The same holds
for any open subset of X, so we have a weak equivalence i∗O ∼= OX. Symmetric
reasoning implies that j ∗O → OY is also a weak equivalence.

The property of being a local sheaf is local on X �V Y , and the open sets in X

and in Y together form a basis for the topology on X �V Y . Thus, O is a local sheaf
on X �V Y . �

PROPOSITION 6.9
Let X, Y, U, and U′ be as in Lemma 6.8. Then Diagram 6.8.1 is a homotopy colimit
diagram.

Proof
Let Z ∈ LRS denote a local C∞-ringed space, and let V � U � U′, X ∪ Y =
(X �V Y, O) and k : V → X �V Y be as in the proof of Lemma 6.8. We must show
that the natural map

Map(X ∪ Y, Z) → Map(X, Z) ×Map(V,Z) Map(Y, Z) (6.9.1)

is a weak equivalence.
Recall that for local C∞-ringed spaces A, B, the mapping space is defined as

MapLRS(A, B) =
∐

f : A→B

Maploc(f
∗OB, OA);

that is, it is a disjoint union of spaces, indexed by maps of underlying topological
spaces A → B. Since X �V Y is the colimit of X ← V → Y in CG, the indexing
set of MapLRS(X ∪ Y, Z) is the fiber product of the indexing sets for the mapping
spaces on the right-hand side of equation 6.9.1. Thus, we may apply Lemma 8.12 to
reduce to the case of a single index f : X �V Y → Z. That is, we must show that the
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natural map

Maploc(f
∗OZ, O) → Maploc(i

∗f ∗OZ, OX) ×Maploc(k∗f ∗OZ,OV ) Maploc(j
∗f ∗OZ, OY ),

(6.9.2)

indexed by f , is a weak equivalence. By definition of O, we have the first weak
equivalence in the following display

Maploc(f
∗OZ, O) � Maploc(f

∗OZ, i∗OX ×k∗OV
j∗OY )

� Maploc(f
∗OZ, i∗OX) ×Maploc(f ∗OZ,k∗OV ) Maploc(f

∗OZ, j∗OY ), (6.8.3)

and the second weak equivalence follows from the fact that the property of a map
being local is itself a local property.

Note that i, j, and k are open inclusions. We have reduced to the following: given
an open inclusion of topological spaces � : A ⊂ B and given sheaves F on A and G

on B, we have a solid arrow diagram

Maploc(F , �∗G ) �����

��

Maploc(�
∗F , G )

��
Map(F , �∗G )

∼=
�� Map(�∗F , G )

coming from the adjointness of �∗ and �∗. We must show that the dotted map exists
and is an isomorphism.

Recall that a simplex is in Maploc if all of its vertices are local morphisms. So it
suffices to show that local morphisms F → �∗G are in bijective correspondence with
local morphisms �∗F → G . This is easily checked by taking stalks: one simply uses
the fact that for any point a ∈ A, a basis of open neighborhoods of a are sent under �

to a basis of open neighborhoods of �(a), and vice versa.
Now we can see that the right-hand sides of equations 6.9.2 and 6.8.3 are equiva-

lent, which shows that equation 6.9.1 is indeed a weak equivalence, as desired. �

Definition 6.10
Let X, Y, U, and U′ be as in Lemma 6.8. We refer to X ∪ Y as the union of X and
Y along the equivalent local C∞-ringed spaces U � U′.

PROPOSITION 6.11
There is a fully faithful functor i : Man → LRS.
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Proof
Given a manifold M , let i(M) denote the local C∞-ringed space (M, C∞

M ) whose
underlying space is that of M , and such that for any open set U ⊂ M , the discrete
C∞-ring C∞

M (U ) is the functor E → Sets given by

C∞
M (U )(Rn) = HomMan(U, R

n).

It is easy to check that C∞
M is a fibrant object in Shv(M, sC∞). It satisfies the locality

condition in the sense of Definition 6.3 because, for every point p in M , the smooth
real-valued functions which are defined on a neighborhood of p, but are not invertible
in any neighborhood of p, are exactly those functions that vanish at p.

We need to show that i takes morphisms of manifolds to morphisms of local
C∞-ringed spaces. If f : M → N is a smooth map, if p ∈ M is a point, and if one
has a smooth map g : N → Rm such that g has a root in every sufficiently small open
neighborhood of f (p), then g ◦f has a root on every sufficiently small neighborhood
of p.

It only remains to show that i is fully faithful. It is clear by definition that i is
injective on morphisms, so we must show that any local morphism i(M) → i(N)
in LRS comes from a morphism of manifolds. Suppose that (f, f ) : (M, C∞

M ) →
(N, C∞

N ) is a local morphism; we must show that f : M → N is smooth. This
does not even use the locality condition: for every chart V ⊂ N with c : V ∼= Rn, a
smooth map f (c) : f −1(V ) → Rn is determined, and these are compatible with open
inclusions. �

Notation 6.12
Suppose that (X, OX) is a C∞-ringed space. Recall that OX is a fibrant sheaf of
(simplicial) C∞-rings on X, so that for any open subset U ⊂ X, the object OX(U )
is a (weakly) product preserving functor from E to sSets. The value which “matters
most” is

|OX(U )| := OX(U )(R),

because every other value OX(U )(Rn) is weakly equivalent to an n-fold product of it.
We similarly denote |F | := F (R) for a C∞-ring F . Lemmas 5.3 and 5.5 further

demonstrate the importance of |F |.

The theorem below states that for local C∞-ringed spaces X = (X, OX), the
sheaf OX holds the answer to the question, what are the real-valued functions
on X?
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THEOREM 6.13
Let (X, OX) be a local C∞-ringed space, and let (R, C∞

R
) denote (the image under i

of) the manifold R ∈ Man. There is a homotopy equivalence

MapLRS

(
(X, OX), (R, C∞

R
)
) ∼=−→ |OX(X)|.

We prove Theorem 6.13 in Section 8 as Theorem 8.11.
As in algebraic geometry, there is a prime spectrum functor taking C∞-rings to

local C∞-ringed spaces. We do not use this construction in any essential way, so we
present it as a remark without proof.

Remark 6.14
The global sections functor � : LRS → sC∞, given by �(X, OX) := OX(X), has
a right adjoint, denoted Spec (see [9]). Given a C∞-ring R, let us briefly explain
Spec R = (Spec R, O). The points of the underlying space of Spec R are the maximal
ideals in π0R, and a closed set in the topology on Spec R is a set of points on which
some element of π0R vanishes. The sheaf O assigns to an open set U ⊂ Spec R the
C∞-ring R[χ−1

U ], where χU is any element of R that vanishes on the complement of
U .

The unit of the (�, Spec) adjunction is a natural transformation, ηX : (X, OX) →
Spec OX(X). If X is a manifold then ηX is an equivalence of local C∞-ringed spaces
(see [22, Theorem 1.2.8]).

The category of local C∞-ringed spaces contains a full subcategory, called the
category of derived smooth manifolds, which we now define. Basically, it is the full
subcategory of LRS spanned by the local C∞-ringed spaces that can be covered by
affine derived manifolds, where an affine derived manifold is the vanishing set of a
smooth function on affine space (see also Axiom (5) of Definition 2.1).

Definition 6.15
An affine derived manifold is a pair X = (X, OX) ∈ LRS, where OX ∈ sC∞ is
fibrant, and which can be obtained as the homotopy limit in a diagram of the form

(X, OX) ��

g

��

�
R0

0

��

Rn

f

��
Rk

We sometimes refer to an affine derived manifold as a local model for derived mani-
folds. We refer to the map g : X → Rn as the canonical inclusion of the zero set.
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A derived smooth manifold (or derived manifold) is a local C∞-ringed space
(X, OX) ∈ LRS, where OX ∈ sC∞ is fibrant, and for which there exists an open
covering

⋃
i Ui = X such that each (Ui, OX|Ui

) is an affine derived manifold.
We denote by dMan the full subcategory of LRS spanned by the derived smooth

manifolds, and refer to it as the (simplicial) category of derived manifolds. A morphism
of derived manifolds is called an equivalence of derived manifolds if it is an equivalence
of local C∞-ringed spaces.

Manifolds canonically have the structure of derived manifolds; more precisely, we
have the following lemma.

LEMMA 6.16
The functor i : Man → LRS factors through dMan.

Proof
Euclidean space (Rn, C∞

Rn) is a principle derived manifold. �

An imbedding of derived manifolds is a map g : X → Y that is locally a zero set.
Precisely, the definition is given by Definition 2.3, with the simplicial category dM
replaced by dMan. Note that if g is an imbedding, then the morphism g : g∗OY →
OX is surjective on π0, because it is a pushout of such a morphism.

7. Cotangent complexes
The idea behind cotangent complexes is as follows. Given a manifold M , the cotangent
bundle T ∗(M) is a vector bundle on M , which is dual to the tangent bundle. A smooth
map f : M → N induces a map on vector bundles

T ∗(f ) : T ∗(N) → T ∗(M).

Its cokernel, coker (T ∗(f )), is not necessarily a vector bundle, and is thus generally not
discussed in the basic theory of smooth manifolds. However, it is a sheaf of modules
on M and does have geometric meaning: its sections measure tangent vectors in the
fibers of the map f . Interestingly, if f : M → N is an embedding, then T ∗(f ) is a
surjection and the cokernel is zero. In this case, its kernel, ker(T ∗(f )), has meaning
instead—it is dual to the normal bundle to the imbedding f .

In general, the cotangent complex of f : M → N is a sheaf on M which encodes
all of the above information (and more) about f . It is in some sense the “universal
linearization” of f .

The construction of the cotangent complex Lf associated to any morphism
f : A → B of commutative rings was worked on by several people, including André
[1], Quillen [23], Lichtenbaum and Schlessinger [18], and Illusie [13]. Later, Schwede
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[25] introduced cotangent complexes in more generality by introducing spectra in
model categories, and by showing that Lf emerges in a canonical way when one
studies the stabilization of the model category of A-algebras over B.

The cotangent complex for a morphism of C∞-ringed spaces can be obtained
using the process given in Schwede’s article [25]. Let us call this the C∞-cotangent
complex. It has all of the usual formal properties of cotangent complexes (analogous to
those given in Theorem 7.1). Unfortunately, to adequately present this notion requires
a good bit of setup, namely the construction of spectra in the model category of sheaves
of lax simplicial C∞-rings, following [25]. Moreover, the C∞-cotangent complex is
unfamiliar and quite technical, and it is difficult to compute with.

Underlying a morphism of C∞-ringed spaces is a morphism of ringed spaces. It
too has an associated cotangent complex, which we call the ring-theoretic cotangent
complex. Clearly, the C∞-cotangent complex is more canonical than the ring-theoretic
cotangent complex in the setting of C∞-ringed spaces. However, for the reasons given
in the above paragraph, we opt to use the ring-theoretic version instead. This version
does not have quite as many useful formal properties as does the C∞-version (Property
(4) is weakened), but it has all the properties we need.

In [13], the cotangent complex for a morphism A → B of simplicial com-
mutative rings is a simplicial B-module. The model category of simplicial modules
over B is equivalent to the model category of nonnegatively graded chain com-
plexes over B, by the Dold-Kan correspondence. We use the latter approach for
simplicity.

Let us begin with the properties that we use about ring-theoretic cotangent com-
plexes.

THEOREM 7.1
Let X be a topological space. Given a morphism f : R → S of sheaves of sim-
plicial commutative rings on X, there exists a complex of sheaves of S-modules,
denoted Lf or LS/R , called the cotangent complex associated to f , with the following
properties.
(1) Let �1

f = H0Lf be the zeroth homology group. Then, as a sheaf on X, one
has that �1

f is the usual S-module of Kähler differentials of S over R.
(2) The cotangent complex is functorially related to f in the sense that a mor-

phism of arrows i : f → f ′; that is, a commutative diagram of sheaves
in sR,

R ��

f

��

R′

f ′

��
S �� S ′
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induces a morphism of S-modules

Li : Lf → Lf ′ .

(3) If i : f → f ′ is a weak equivalence (i.e., if both the top and bottom maps
in the above square are weak equivalences of simplicial commutative rings),
then Li : Lf → Lf ′ is a weak equivalence of S-modules, and its adjoint
Lf ⊗S S ′ → Lf ′ is a weak equivalence of S ′-modules.

(4) If the diagram from Property (2) is a homotopy pushout of sheaves of simplicial
commutative rings, then the induced morphsim Li : Lf → Lf ′ is a weak
equivalence of modules.

(5) To a pair of composable arrows R
f−→ S

g−→ T , one can functorially assign an
exact triangle in the homotopy category of T -modules,

LS/R ⊗S T → LT/R → LT/S → LS/R ⊗S T [−1].

Proof
The above five properties are proved in [13, Chapter 2] as Proposition 1.2.4.2,
Statement 1.2.3, Proposition 1.2.6.2, Proposition 2.2.1, and Proposition 2.1.2,
respectively. �

All of the above properties of the cotangent complex for morphisms of sheaves have
contravariant corollaries for morphisms of ringed spaces, and almost all of them
have contravariant corollaries for maps of C∞-ringed spaces. For example, a pair of

composable arrows of C∞-ringed spaces X
f←− Y

g←− Z induces an exact triangle in
the homotopy category of OZ-modules,

g∗LY/X → LZ/X → LZ/Y → g∗LY/X[−1].

It is in this sense that Properties (1), (2), (3), and (5) have contravariant corollaries.
The exception is Property (4); one asks, does a homotopy pullback in the category

of C∞-ringed spaces induce a weak equivalence of cotangent complexes? In general,
the answer is no because the ringed space underlying a homotopy pullback of C∞-
ringed spaces is not the homotopy pullback of the underlying ringed spaces. In other
words, the underlying simplicial R-algebra functor U : sC∞ → sR does not preserve
homotopy colimits. However, there are certain types of homotopy colimits that U does
preserve. In particular, if X → Z ← Y is a diagram of C∞-ringed spaces in which
one of the two maps is an imbedding of derived manifolds, then taking underlying rings
does commute with taking the homotopy colimit (this follows from Corollary 8.6),
and the cotangent complexes satisfy Property (4) of Theorem 7.1. This is the only
case in which cotangent complexes are necessary for our article. Thus, we restrict
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our attention to the ring-theoretic version rather than the C∞-version of cotangent
complexes.

Here is our analogue of Theorem 7.1.

COROLLARY 7.2
Given a local C∞-ringed space X = (X, OX), let U (OX) denote the underlying sheaf
of simplicial commutative rings on X. Given a morphism of local C∞-ringed spaces
f : X → Y, there exists a complex of sheaves of U (OX)-modules on X, denoted
Lf or LX/Y , called the ring-theoretic cotangent complex associated to f (or just the
cotangent complex for f ), with the following properties.
(1) Let �1

f = H0Lf be the zeroth homology group. Then �1
f is the usual OX-

module of Kähler differentials of X over Y.
(2) The cotangent complex is contravariantly related to f in the sense that a

morphism of arrows i = (i0, i1) : f → f ′; that is, a commutative diagram in
LRS,

Y
i1

�� Y ′

X

f

		

i0

�� X ′

f ′

		

induces a morphism of U (OX)-modules

Li : i∗
0Lf ′ → Lf .

(3) If i : f → f ′ is an equivalence (i.e., it induces equivalences on sheaves), then
Li : i∗

0Lf ′ → Lf is a weak equivalence of U (OX)-modules.
(4) If the diagram from Property (2) is a homotopy pullback in LRS and if either

f ′ or i1 is an immersion, then the induced morphism Li : Lf ′ → Lf is a weak
equivalence of U (OX)-modules.

(5) To a pair of composable arrows X
f−→ Y

g−→ Z, one can functorially assign
an exact triangle in the homotopy category of U (OX)-modules,

f ∗LY/Z → LX/Z → LX/Y → f ∗LY/Z[−1].

Proof
The map f : X → Y induces U (f ) : U (f ∗OY ) → U (OX), and we set Lf := LU (f ),
which is a sheaf of U (OX)-modules.
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Let h : X → Y be a morphism of topological spaces, and let F → G be a
map of sheaves of simplicial commutative rings on Y . By [13, Equation II.1.2.3.4],
since inductive limits commute with the cotangent complex functor for simplicial
commutative rings, one has an isomorphism

h∗(LG/F ) → Lh∗G/h∗F .

Properties (1), (2), and (5) now follow from Theorem 7.1.
Sheaves on local C∞-ringed spaces are assumed cofibrant-fibrant, and weak

equivalences between fibrant objects are preserved by U (see Corollary 5.8). Property
(3) follows from Theorem 7.1.

Finally, if f ′ or i1 is an immersion, then taking homotopy pullback commutes with
taking underlying ringed spaces, by Corollary 8.6, and so Property (4) also follows
from Theorem 7.1. �

If X is a local C∞-ringed space, then we write LX to denote the cotangent complex
associated to the unique map t : X → R0. It is called the absolute cotangent complex
associated to X.

COROLLARY 7.3
Let t : Rn → R0 be the unique map. Then the cotangent complex Lt is zero-truncated,
and its zeroth homology group

�1
t
∼= C∞

Rn〈dx1, . . . , dxn〉

is a free C∞
Rn module of rank n.

Let p : R0 → Rn be any point. Then the cotangent complex Lp on R0 has
homology concentrated in degree one, and H1(Lp) is an n-dimensional real vector
space.

Proof
The first statement follows from Property (1) of Theorem 7.1. The second statement
follows from the exact triangle, given by Property (5), for the composable arrows

R0 p−→ Rn t−→ R0. �

Let X = (X, OX) be a derived manifold, and let LX be its cotangent complex. For
any point x ∈ X, let LX,x denote the stalk of LX at x; it is a chain complex over the
field R so its homology groups are vector spaces. Let e(x) denote the alternating sum
of the dimensions of these vector spaces. As defined, e : X → Z is a just function
between sets.
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COROLLARY 7.4
Let X = (X, OX) be a derived manifold, let LX be its cotangent complex, and let
e : X → Z be the pointwise Euler characteristic of LX defined above. Then e is
continuous (i.e., locally constant), and for all i ≥ 2, we have Hi(LX) = 0.

Proof
We can assume that X is an affine derived manifold, that is, that there is a homotopy
limit square of the form

X
t

��

i

��

�
R0

0
��

Rn

f

��
Rk

By Property (4), the map Li : Lt → Lf is a weak equivalence of sheaves. Recall that
LX is shorthand for Lt , so it suffices to show that the Euler characteristic of Lf is
constant on X.

The composable pair of morphisms Rn f−→ Rk → R0 induces an exact triangle

f ∗LRk → LRn → Lf → f ∗LRk [−1].

By Corollary 7.3, this reduces to an exact sequence of real vector spaces

0 → H1(Lf ) → R
k → R

n → H0(Lf ) → 0. (7.4.1)

Note also that for all i ≥ 2, we have Hi(Lf ) = 0, proving the second assertion. The
first assertion follows from the exactness of (7.4.1), because

rank
(
H0(Lf )

) − rank
(
H1(Lf )

) = n − k

at all points in X. �

Definition 7.5
Let X = (X, OX) be a derived manifold, and let e : X → Z be the function defined in
Corollary 7.4. For any point x ∈ X, the value e(x) ∈ Z is called the virtual dimension,
or just the dimension, of X at x, and denoted dimxX.

COROLLARY 7.6
Suppose that X is a derived manifold, and suppose that M is a smooth manifold. If
i : X → M is an imbedding, then the cotangent complex Li has homology concen-
trated in degree one.
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The first homology group H1(Li) is a vector bundle on X, called the conormal
bundle of i, and is denoted Ni or NX/M . The rank of Ni at a point x ∈ X is given by
the formula

rankxNi = dimi(x)M − dimxX.

In case X ∼= L is a smooth manifold, the bundle NL/M is the dual to the usual
normal bundle for the imbedding. In particular, if i : L → E is the zero section of a
vector bundle E → L, then NL/E is canonically isomorphic to the dual E∨ of E.

Proof
All but the last claim are established locally on X. Imbeddings i of derived manifolds
are locally of the form

X ��

i

��

�
R0

z

��

Rn

f

��
Rk

By Property (4), we have a quasi isomorphism Li � Lz. The claim that Li is locally
free and has homology concentrated in degree one now follows from Corollary 7.3.
Note that the conormal bundle Ni = H1(Li) has rank k.

The exact triangle for the composable morphisms X
i−→ Rn f−→ Rk implies that

the Euler characteristic of LX is n − k, and the second assertion follows.
For the final assertion, we use the exact sequence

0 → NL/M → i∗�1
M → �1

L → 0.

�

7.1. Other calculations
In this section, we prove some results which are useful later.

LEMMA 7.7
Suppose that given a diagram

X
g

��

f

��

X ′

f ′

��
��

��
��

Y



102 DAVID I. SPIVAK

of local smooth-ringed spaces such that g, f, and f ′ are closed immersions, such that
the underlying map of topological spaces g : X → X′ is a homeomorphism, and such
that the induced map g∗Lf ′ → Lf is a quasi isomorphism. Then g is an equivalence.

Proof
It suffices to prove this on stalks; thus we may assume that X and X′ are points. Let
UX and UX′ denote the local simplicial commutative rings underlying OX and OX′ ,
and let Ug : UX′ → UX denote the map induced by g. By Corollary 5.8, it suffices to
show that Ug is a weak equivalence.

Since g is a closed immersion, Ug is surjective; let I be the kernel of Ug . It is
proved in [13, Corollary III.1.2.8.1] that the conormal bundle H1(LUg

) is isomorphic
to I/I 2. By the distinguished triangle associated to the composition f ′ ◦ g = f , we
find that LUg

= 0, so I/I 2 = 0. Thus, by Nakayama’s lemma, I = 0, so Ug is indeed
a weak equivalence. �

PROPOSITION 7.8
Suppose that p : E → M is a vector bundle. Suppose that s : M → E is a section of
p such that the diagram

(X, OX)
f

��

f

��

M

s

��
M

z

�� E

(7.8.1)

commutes and such that the underlying space X is a pullback. The diagram induces
a morphism of vector bundles

λs : f ∗(E)∨ → Nf ,

which is an isomorphism if and only if Diagram 7.8.1 is a pullback in LRS.

Proof
On any open subset U of X, we have a commutative square

OE(U ) ��

��

OM (U )

��
OM (U ) �� OX(U )
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of sheaves on X. By Property (2) of cotangent complexes, this square induces a
morphism f ∗Lz → Lf . By Corollary 7.6, we may identify H1(f ∗Lz) with f ∗(E)∨,
and H1(Lf ) with Nf , and we let λs : f ∗(E)∨ → Nf denote the induced map.

If Diagram 7.8.1 is a pullback, then λs is an isomorphism by Property (4), so we
have only to prove the converse.

Suppose that λs is an isomorphism, let X ′ be the fiber product in the diagram

X ′
f ′

��

f ′

��

�
M

s

��
M

z

�� E

and let g : X → X ′ be the induced map. Note that on underlying spaces g is a

homeomorphism. Since the composition X
g−→ X′ f ′

−→ M , namely f , is a closed
immersion, so is g. By assumption and by Property (4), g induces an isomor-

phism on cotangent complexes g∗Lf ′
∼=−→ f ∗Lz

∼=−→ Lf . The result follows from
Lemma 7.7. �

Here is a kind of linearity result.

PROPOSITION 7.9
Suppose that M is a manifold, and suppose that X1 and X2 are derived manifolds
which are defined as pullbacks

X1

j1
��

j1

��

�
M

z1

��

X2

j2
��

j2

��

�
M

z2

��

M
s1

�� E1 M
s2

�� E2

where Ei → M is a vector bundle, si is a section, and zi is the zero section, for
i = 1, 2. Then X1 and X2 are equivalent as derived manifolds over M if and only
if there exists an open neighborhood U ⊂ M containing both X1 and X2, and an
isomorphism σ : E1 → E2 over U , such that s2|U = σ ◦ s1|U .

Proof
Suppose first that U ⊂ M is an open neighborhood of both X1 and X2, and denote
Ei |U and si |U by Ei and si , respectively, for i = 1, 2. Suppose that σ : E1 → E2 is
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an isomorphism. Suppose that s2 = σ ◦ s1. Consider the diagram

X1

�
i

��

i

��

U

z1

��

U

z2

��

U
s1

�� E1
σ

�� E2

where the left-hand square is Cartesian. In fact, the right-hand square is Cartesian as
well, because σ is an isomorphism of vector bundles, and in particular fixes the zero
section. Thus we see that X1 and X2 are equivalent as derived manifolds over U .

For the converse, suppose that we have an equivalence f : X2 → X1 such that
j2 = j1 ◦ f . In particular, on underlying topological spaces, we have X1 = X2 =: X,

and on cotangent complexes, we have a quasi isomorphism f ∗Lj1

∼=−→ Lj2 . In particular,
this implies that H1(Lz1 ) is isomorphic to H1(Lz2 ), so E1 and E2 are isomorphic
vector bundles on U . We can write E to denote both bundles and adjust the sections
as necessary.

Consider the diagram

X1

j1
��

j1

��

M

z1

��

��
��

�
��

��
�

X2

f ������� j2
��

j2

��

M

z2

��

M

��
��

�
��

��
� s1

�� E

M
s2

�� E

By the commutativity of the left-hand square of the diagram and by Property (4) of
cotangent complexes, one has a chain of quasi isomorphisms

j ∗
2 Ls1 = f ∗j ∗

1 Ls1

∼=−→ f ∗Lj1

∼=−→ Lj2

∼=−→ j ∗
2 Ls2 .

We write part of the long-exact sequences coming from the composable arrows
U

s1−→ E → R0 and U
s2−→ E → R0, and we furnish some morphisms to obtain the
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solid arrow diagram:

0 �� H1(Ls1 ) ��

∼=
��

�1
E

s∗
1

��

τ

��

�1
U

�� 0

0 �� H1(Ls2 ) �� �1
E

s∗
2

�� �1
U

�� 0

By the five lemma, there is an isomorphism τ : �1
E → �1

E making the diagrams
commute.

Now every section s : U → E of a vector bundle E → U induces a pullback
map s∗ : �1

E → �1
U , and two sections induce equivalent pullback maps if and only

if they differ by an automorphism of E fixing U . Since s1 and s2 induce equivalent
pullback maps, there is an automorphism σ : E → E with s2 = σ ◦ s1. �

8. Proofs of technical results
Recall from Section 5 that HRi ∈ sC∞ is the discrete C∞-ring corepresenting Ri ∈ E.
A smooth map f : Ri → Rj (contravariantly) induces a morphism of C∞-rings
HRj → HRi , which we often denote by f for convenience. Recall also that in sC∞,
there is a canonical weak equivalence HRi+j

�−→ HRi � HRj .

Let U : sC∞ → sR denote the underlying simplicial commutative ring functor
from Corollary 5.8.

LEMMA 8.1
Let m, n, p ∈ N with p ≤ m. Let x : Rn+m → Rm denote the projection onto the first
m coordinates, let g : Rp → Rm denote the inclusion of a p-plane in Rm, and let �

be the diagram

HRm

x
��

g

��

HRn+m

HRp

of C∞-rings. The homotopy colimit of � is weakly equivalent to HRn+p .
Moreover, the application of U : sC∞ → sR commutes with taking homotopy

colimit of � in the sense that the natural map

hocolim(U�) → U hocolim(�)

is a weak equivalence of simplicial commutative R-algebras.
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Proof
We may assume that g sends the origin to the origin. For now, we assume that p = 0
and that m = 1.

Consider the all-Cartesian diagram of manifolds

Rn ��

��

�
Rn+1 ��

x

��

�
Rn

��

R0
g

�� R ��
R0

Apply H : Manop → sC∞ to obtain the diagram

HRn HRn+1�� HRn
��

HR0

x

		

HR

g
��

		

HR0

		

��

Since H sends products in E to homotopy pushouts in sC∞, the right-hand square
and the big rectangle are homotopy pushouts. Hence the left square is as well, proving
the first assertion.

For notational reasons, let Ui denote U (HRi ) so that Ui is the (discrete simplicial)
commutative ring whose elements are smooth maps Ri → R. Define a simplicial
commutative R-algebra D as the homotopy colimit in the diagram

U 1
x

��

g

�� �

Un+1

��

U 0 �� D

We must show that the natural map D → Un is a weak equivalence of simplicial
commutative rings. Recall that the homotopy groups of a homotopy pushout of sim-
plicial commutative rings are the Tor groups of the corresponding tensor product of
chain complexes.

Since x is a nonzero divisor in the ring Un+1, the homotopy groups of D are

π0(D) = Un+1 ⊗U 1 U 0; and πi(D) = 0, i > 0.

Thus, π0(D) can be identified with the equivalence classes of smooth functions
f : Rn+1 → R, where f ∼ g if f − g is a multiple of x.
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On the other hand, we can identify elements of the ring Un of smooth functions
on Rn with the equivalence classes of functions f : Rn+1 → R, where f ∼ g if

f (0, x2, x3, . . . , xn+1) = g(0, x2, x3, . . . , xn+1).

Thus to prove that the map D → Un is a weak equivalence, we must only show
that if a function f (x1, . . . , xn+1) : Rn+1 → R vanishes whenever x1 = 0, then
x1 divides f . This is called Hadamard’s lemma, and it follows from the definition
of smooth functions. Indeed, given a smooth function f (x1, . . . , xn+1) : Rn+1 → R

which vanishes whenever x1 = 0, define a function g : Rn+1 → R by the formula

g(x1, . . . , xn+1) = lim
a→x1

f (a, x2, x3, . . . , xn+1)

a
.

It is clear that g is smooth and that xg = f .
We have now completed the case when m = 1; we continue to assume that p = 0,

and we prove the result for general m + 1 by induction. The inductive step follows
from the all-Cartesian diagram below, in which each vertical arrow is an inclusion of
a plane and each horizontal arrow is a coordinate projection:

Rn ��

��

�
R0

��

Rm+n ��

��

�
Rm ��

��

�
R0

��

Rn+m+1 ��
Rm+1 �� R

Apply H to this diagram. The arguments above imply that the two assertions hold for
the right square and bottom rectangle; thus they hold for the bottom left square. The
inductive hypothesis implies that the two assertions hold for the top square, so they
hold for the left rectangle, as desired.

For the case of general p, let k : Rm → Rm−p denote the projection orthogonal
to g. Applying H to the diagram

Rn+p ��

��

�
Rp ��

g

��

�
R0

��

Rn+m

x

�� Rm

k

�� Rm−p
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the result holds for the right square and the big rectangle (for both of which p = 0),
so it holds for the left square as well. �

Remark 8.2
Note that (the nonformal part of) Lemma 8.1 relies heavily on the fact that we are
dealing with smooth maps. It is this lemma which fails in the setting of topological
manifolds, piecewise linear manifolds, and so on.

Let M be a model category, and let � denote the simplicial indexing category.
Recall that a simplicial resolution of an object X ∈ M consists of a simplicial
diagram X′� : �op → M and an augmentation map X′� → X, such that the induced
map hocolim(X′) → X is a weak equivalence in M.

Conversely, the geometric realization of a simplicial object Y� : �op → M is the
object in M obtained by taking the homotopy colimit of the diagram Y�.

PROPOSITION 8.3
The functors U : sC∞ → sR and −(R) : sC∞ → sSets each preserve geometric
realizations.

Proof
By [19, Proposition A.1], the geometric realization of any simplicial object in any of the
model categories sC∞, sR, and sSets is equivalent to the diagonal of the corresponding
bisimplicial object. Since both U and −(R) are functors which preserve the diagonal,
they each commute with geometric realization. �

Let −(R) : sC∞ → sSets denote the functor F �→ F (R). It is easy to see that −(R)
is a right Quillen functor. Its left adjoint is (− ⊗ HR) : K �→ K ⊗ HR (although note
that K ⊗ HR is not generally fibrant in sC∞). We call a C∞-ring free if it is in the
essential image of this functor − ⊗ HR, and similarly, we call a morphism of free
C∞-rings free if it is in the image of this functor.

Thus, a morphism d ′ : HRk → HR� is free if and only if it is induced by a function
d : {1, . . . , k} → {1, . . . , �}. To make d ′ explicit, we just need to provide a dual map
R� → Rk; for each 1 ≤ i ≤ k, we supply the map R� → R given by projection onto
the d(i) coordinate.

If K is a simplicial set such that each Ki is a finite set with cardinality |Ki | = ni ,
then X := K⊗HR is the simplicial C∞-ring with Xi = HRni , and for a map [�] → [k]
in �, the structure map Xk → X� is the free map defined by Kk → K�.

LEMMA 8.4
Let X be a simplicial C∞-ring. There exists a functorial simplicial resolution X′� → X

in which X′
n is a free simplicial C∞-ring for each n.
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Moreover, if f : X → Y is a morphism of C∞-rings and if f ′� : X′� → Y ′� is the
induced map on simplicial resolutions, then for each n ∈ N, the map f ′

n : X′
n → Y ′

n

is a morphism of free C∞-rings.

Proof
Let R denote the underlying simplicial set functor −(R) : sC∞ → sSets, and let F

denote its left adjoint. The cotriple FR gives rise to an augmented simplicial C∞-ring

� = · · · ������FRFR(X) ����FR(X) ��X.

By [31, Proposition 8.6.10], the induced augmented simplicial set

R� = · · · ������RFRFR(X) ����RFR(X) ��R(X)

is a weak equivalence. By Propositions 5.8 and 8.3, � is a simplicial resolution.
The second assertion is clear by construction. �

In the following theorem, we use a basic fact about simplicial sets: if g : F → H is a
fibration of simplicial sets and if π0g is a surjection of sets, then for each n ∈ N the
function gn : Fn → Hn is surjective. This is proved using the left lifting property for
the cone �0 → �n+1.

THEOREM 8.5
Let � be a diagram

F
f

��

g

��

G

H

of cofibrant-fibrant C∞-rings. Assume that π0g : π0F → π0H is a surjection. Then
application of U : sC∞ → sR commutes with taking the homotopy colimit of � in
the sense that the natural map

hocolim(U�) → U hocolim(�)

is a weak equivalence of simplicial commutative rings.
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Proof
We prove the result by using simplicial resolutions to reduce to the case proved in
Lemma 8.1. We begin with a series of replacements and simplifications of the diagram
�, each of which preserves both hocolim(U�) and U hocolim(�).

First, replace g with a fibration and replace f with a cofibration. Note that since
g is surjective on π0 and is a fibration, it is surjective in each degree; note also that f

is injective in every degree.
Next, replace the diagram by the simplicial resolution given by Lemma 8.4. This is

a diagram H ′� g′�←− F ′� f ′�−→ G′�, which has the same homotopy colimit. We can compute

this homotopy colimit by first computing the homotopy colimits hocolim(H ′
n

g′
n←−

F ′
n

f ′
n−→ G′

n) in each degree, and then by taking the geometric realization. Since U

preserves geometric realization (Lemma 8.3), we may assume that � is a diagram

H
g←− F

f−→ G, in which F, G, and H are free simplicial C∞-rings, and in which g

is surjective and f is injective. By performing another simplicial resolution, we may
assume further that F, G, and H are discrete.

A free C∞-ring is the filtered colimit of its finitely generated (free) sub-C∞-rings;
hence we may assume that F, G, and H are finitely generated. In other words, each
is of the form S ⊗ HR, where S is a finite set. We are reduced to the case in which �

is the diagram

HRm

f
��

g

��

HRn

HRp

where again g is surjective and f is injective. Since f and g are free maps, they
are induced by maps of sets f1 : {1, . . . , m} ↪→ {1, . . . , n} and g1 : {1, . . . , m} →
{1, . . . , p}. The map Rn → Rm underlying f is given by

(a1, . . . , an) �→ (af (1), . . . , af (m)),

which is a projection onto a coordinate plane through the origin, and we may arrange
that it is a projection onto the first m coordinates. The result now follows from Lem-
ma 8.1. �



DERIVED SMOOTH MANIFOLDS 111

COROLLARY 8.6
Suppose that the diagram

(A, OA)
G

��

F

��

�
(Y, OY )

f

��
(X, OX)

g

�� (Z, OZ)

is a homotopy pullback of local C∞-ringed spaces. If g is an imbedding, then the
underlying diagram of ringed spaces is also a homotopy pullback.

Proof
In both the context of local C∞-ringed spaces and local ringed spaces, the space A is
the pullback of the diagram X → Z ← Y . The sheaf on A is the homotopy colimit
of the diagram

F ∗OX

F ∗(g)←−−− F ∗g∗OZ

G∗(f )−−−→ G∗OY ,

either as a sheaf of C∞-rings or as a sheaf of simplicial commutative rings. Note that
taking inverse image sheaves commutes with taking underlying simplicial commuta-
tive rings.

Since g is an imbedding, we have seen that g : g∗OZ → OX is surjective on π0,
and thus so is its pullback F ∗(g). The result now follows from Theorem 8.5. �

We now give another way of viewing the locality condition on ringed spaces. Con-
sidering sections of the structure sheaf as functions to affine space, a ringed space is
local if these functions pull covers back to covers. This point of view can be found in
[2] and [7], for example.

Recall the notation |F | = F (R) for a C∞-ring F (see Notation 6.12). Recall also
that C∞(R) denotes the free (discrete) C∞-ring on one generator.

Definition 8.7
Let X be a topological space, and let F be a sheaf of C∞-rings on X. Given an open
set U ⊂ R, let χU : R → R denote a characteristic function of U (i.e., χU vanishes
precisely on R − U ). Let f ∈ |F (X)|0 denote a global section. We say that an open
subset V ⊂ X is contained in the preimage under f of U if there exists a dotted arrow
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making the diagram of C∞-rings

C∞(R)
f

��

��

F (X)

ρX,V

��

C∞(R)[χ−1
U ] �� F (V )

(8.7.1)

commute up to homotopy. We say that V is the preimage under f of U , and by abuse
of notation write V = f −1(U ), if it is maximal with respect to being contained in
the preimage. Note that these notions are independent of the choice of characteristic
function χU for a given U ⊂ R. Note also that since localization is an epimorphism of
C∞-rings (as it is for ordinary commutative rings; see [22, Corollary 1.2.2, Proposi-
tion 1.2.6]), the dotted arrow is unique if it exists.

If f, g ∈ |F (X)|0 are homotopic vertices, then for any open subset U ⊂ R,
one has f −1(U ) = g−1(U ) ⊂ X. Therefore, this preimage functor is well defined
on the set of connected components π0|F (X)|. Furthermore, if f ∈ |F (X)|n is
any simplex, all of its vertices are found in the same connected component, roughly
denoted π0(f ) ∈ π0|F (X)|, so we can write f −1(U ) to denote π0(f )−1(U ).

Example 8.8
The above definition can be understood from the viewpoint of algebraic geometry.
Given a scheme (X, OX) and a global section f ∈ OX(X) = π0OX(X), one can
consider f as a scheme morphism from X to the affine line A1. Given a principle
open subset U = Spec (k[x][g−1]) ⊂ A1, we are interested in its preimage in X. This

preimage is the largest V ⊂ X on which the map k[x]
f−→ OX(X) can be lifted to a

map k[x][g−1] → OX(V ). This is the content of Diagram 8.7.1.
Up next, we give an alternate formulation of the condition that a sheaf of C∞-

rings be a local in terms of these preimages. In the algebro-geometric setting, it comes
down to the fact that a sheaf of rings F is a sheaf of local rings on X if and only if,
for every global section f ∈ F (X), the preimages under f of a cover of Spec (k[x])
form a cover of X.

LEMMA 8.9
Suppose that U ⊂ R is an open subset of R, and let χU denote a characteristic
function for U . Then C∞(U ) = C∞(R)[χ−1

U ].
There is a natural bijection between the set of points p ∈ R and the set of C∞-

functions Ap : C∞(R) → C∞(R0). Under this correspondence, p is in U if and only
if Ap factors through C∞(R)[χ−1

U ].
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Proof
This follows from [22, Propositions 1.1.5, 1.1.6]. �

Recall that F ∈ sC∞ is said to be a local C∞-ring if the commutative ring underlying
π0F is a local ring (see Definition 5.10).

PROPOSITION 8.10
Let X be a space, and let F be a sheaf of finitely presented C∞-rings on X. Then F

is local if and only if, for any cover of R by open subsets R = ⋃
i Ui and for any open

V ⊂ X and local section f ∈ π0|F (V )|, the preimages f −1(Ui) form a cover of V .

Proof
Choose a representative for f ∈ π0|F |, call it f ∈ |F |0 for simplicity, and recall that
it can be identified with a map f : C∞(R) → F , which is unique up to homotopy.

Both the property of being a sheaf of local C∞-rings and the above “preimage
of a covering is a covering” property is local on X. Thus we may assume that X is
a point. We are reduced to proving that a C∞-ring F is a local C∞-ring if and only
if, for any cover of R by open sets R = ⋃

i Ui and for any element f ∈ |F |0, there
exists an index i and a dotted arrow making the diagram

C∞(R)

��

f
�� F

C∞(R)[χ−1
Ui

]

��

commute up to homotopy.
Suppose first that for any cover of R by open subsets R = ⋃

i Ui and that for
any element f ∈ F0, there exists a lift as above. Let U1 = (−∞, 1/2), and let
U2 = (0, ∞). By assumption, either f factors through C∞(U1) or through C∞(U2),
and 1 −f factors through the other by Lemma 8.9. It is easy to show that any element
of π0F which factors through C∞(U2) is invertible (using the fact that 0 �∈ U2). Hence,
either f or 1 − f is invertible in π0F , so π0F is a local C∞-ring.

Now suppose that F is local (i.e., that it has a unique maximal ideal), and suppose
that R = ⋃

i Ui is an open cover. Choose f ∈ |F |0, considered as a map of C∞-rings
f : C∞(R) → F . By [22, Proposition 1.3.8], π0F has a unique point F → π0F →
C∞(R0). By Lemma 8.9, there exists i such that the composition C∞(R)

f−→ F →
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C∞(R0) factors through C∞(R)[χ−1
Ui

], giving the solid arrow square

C∞(R)
f

��

��

F

��

C∞(R)[χ−1
Ui

] ��



C∞(R0)

Since χUi
∈ C∞(R) is not sent to 0 ∈ C∞(R0), its image f (χUi

) is not contained in
the maximal ideal of π0F , so a dotted arrow lift exists making the diagram commute
up to homotopy. This proves the proposition. �

In the following theorem, we use the notation |A| to denote the simplicial set A(R) =
MapsC∞(C∞(R), A) underlying a simplicial C∞-ring A ∈ sC∞.

THEOREM 8.11
Let X = (X, OX) be a local C∞-ringed space, and let iR = (R, C∞

R
) denote the

(image under i of the) real line. There is a natural homotopy equivalence of simplicial
sets

MapLRS

(
(X, OX), (R, C∞

R
)
) �−→ |OX(X)|.

Proof
We construct morphisms

K : MapLRS(X, iR) → |OX(X)| and

L : |OX(X)| → MapLRS(X, iR),

and show that they are homotopy inverses. For the reader’s convenience, we recall the
definition

MapLRS(X, R) =
∐

f : X→R

Maploc(f
∗C∞

R
, OX).

The map K is fairly easy and can be defined without use of the locality condition.
Suppose that φ : X → R is a map of topological spaces. The restriction of K to the
corresponding summand of MapLRS(X, iR) is given by taking global sections

Maploc(φ
∗C∞

R
, OX) → Map

(
C∞(R), OX(X)

) ∼= |OX(X)|.

To define L is a bit harder and depends heavily on the assumption that OX is
a local sheaf on X. First, given an n-simplex g ∈ |OX(X)|n, we need to define a
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map of topological spaces L(g) : X → R. Let g0 ∈ π0|OX(X)| denote the connected
component containing g. By Proposition 8.10, g0 gives rise to a function from open
covers of R to open covers of X, and this function commutes with refinement of open
covers. Since R is Hausdorff, there is a unique map of topological spaces X → R,
which we take as L(g), consistent with such a function. Denote L(g) by G, for ease
of notation.

Now we need to define a map of sheaves of C∞-rings

G� : C∞
R

⊗ �n → G∗(OX).

On global sections, we have such a function already, since g ∈ |OX(X)|n can be
considered as a map g : C∞

R
(R) → |OX(X)|n. Let V ⊂ R denote an open subset, and

let g−1(V ) ⊂ X denote its preimage under g. The map ρ : C∞
R

(R) → C∞
R

(V ) is a
localization; hence, it is an epimorphism of C∞-rings.

To define G�, we need to show that there exists a unique dotted arrow making the
diagram

C∞
R

(R) ⊗ �n
g

��

ρ⊗�n

��

|OX(X)|

��
C∞

R
(V ) ⊗ �n �� |OX(g−1(V ))|

(8.11.1)

commute. Such an arrow exists by definition of g−1. It is unique because ρ is an
epimorphism of C∞-rings, so ρ ⊗ �n is as well. We have now defined G�, and we
take G : G∗C∞

R
→ OX to be the left adjoint of G�.

We must show that for every g ∈ |OX(X)|0, the map G : G∗C∞
R

→ OX provided
by L is local. (We can choose g to be a vertex because, by definition, a simplex in
Map(G∗C∞

R
, OX) is local if all of its vertices are local.) To prove this, we may take X

to be a point, F = OX(X) to be a local C∞-ring, and x = G(X) ∈ R to be the image
point of X. We have a morphism of C∞-rings G : (C∞

R
)x → F , in which both the

domain and codomain are local. It is a local ring homomorphism because all prime
ideals in the local ring (C∞

R
)x are maximal.

The maps K and L have now been defined, and they are homotopy inverses by
construction. �

The following is a technical lemma that allows us to take homotopy limits component-
wise in the model category of simplicial sets.
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LEMMA 8.12
Let sSets denote the category of simplicial sets. Let I, J, and K denote sets and let

A =
∐
i∈I

Ai, B =
∐
j∈J

Bj , and C =
∐
k∈K

Ck

denote coproducts in sSets indexed by I, J, and K .
Suppose that f : I → J and g : K → J are functions, and suppose that F : A →

B and G : C → B are maps in sSets that respect f and g in the sense that F (Ai) ⊂
Bf (i) and G(Ck) ⊂ Bg(k) for all i ∈ I and k ∈ K . Let

I ×J K = {
(i, j, k) ∈ I × J × K | f (i) = j = g(k)

}
denote the fiber product of sets. For typographical reasons, we use ×h to denote
homotopy limit in sSets, and we use × to denote the one-categorical limit.

Then the natural map( ∐
(i,j,k)∈I×J K

Ai ×h
Bj

Ck

)
−→ A ×h

B C

is a weak equivalence in sSets.

Proof
If we replace F by a fibration, then each component Fi := F |Ai

: Ai → Bf (i) is a
fibration. We reduce to showing that the map( ∐

(i,j,k)∈I×J K

Ai ×Bj
Ck

)
−→ A ×B C (8.12.1)

is an isomorphism of simplicial sets. Restricting to the n-simplicies of both sides, we
may assume that A, B, and C are (discrete simplicial) sets. It is an easy exercise to
show that the map in (8.12.1) is injective and surjective; that is, an isomorphism in
Sets. �

PROPOSITION 8.13
Suppose that a : M0 → M and b : M1 → M are morphisms of manifolds, and
suppose that a fiber product N exists in the category of manifolds. If X = (X, OX) is
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the fiber product

X ��

��

�
M0

a

��
M1

b

�� M

taken in the category of derived manifolds, then the natural map g : N → X is an
equivalence if and only if a and b are transverse.

Proof
Since limits taken in Man and in dMan commute with taking underlying topological
spaces, the map N → X is a homeomorphism. We have a commutative diagram

N
g

��

f

��

X

f ′�����������

M0 × M1

in which f and f ′ are closed immersions (pullbacks of the diagonal M → M × M).
If a and b are not transverse, one shows easily that the first homology group

H1LX �= 0 of the cotangent complex for X is nonzero, whereas H1LN = 0 because
N is a manifold; hence X is not equivalent to N .

If a and b are transverse, then one can show that g induces a quasi isomorphism
g∗Lf ′ → Lf . By Lemma 7.7, the map g is an equivalence of derived manifolds. �

PROPOSITION 8.14
The simplicial category LRS of local C∞-ringed spaces is closed under taking finite
homotopy limits.

Proof
The local C∞-ringed space (R0, C∞(R0)) is a homotopy terminal object in LRS.
Hence it suffices to show that a homotopy limit exists for any diagram

(X, OX)
F←− (Y, OY )

G−→ (Z, OZ)

in LRS. We first describe the appropriate candidate for this homotopy limit.
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The underlying space of the candidate is X ×Y Z, and we label the maps as in the
diagram

X ×Y Z

h

����
��

��
��

�

g
��

f

��

Z

G

��
X

F

�� Y

The structure sheaf on the candidate is the homotopy colimit of pullback sheaves

OX×Y Z := (g∗OZ) ⊗(h∗OY ) (f ∗OX). (8.14.1)

To show that OX×Y Z is a sheaf of local C∞-rings, we take the stalk at a point, apply
π0, and show that it is a local C∞-ring. The homotopy colimit written in equation
(8.14.1) becomes the C∞-tensor product of pointed local C∞-rings. By [22, Corollary
1.3.12], the result is indeed a local C∞-ring.

One shows that (X ×Y Z, OX×Y Z) is the homotopy limit of the diagram in the
usual way. We do not prove it here, but refer the reader to [27, Proposition 2.3.21] or,
for a much more general result, to [21, Proposition 2.3.21]. �

THEOREM 8.15
Let M be a manifold, let X and Y be derived manifolds, and let f : X → M and
g : Y → M be morphisms of derived manifolds. Then a fiber product X ×M Y exists
in the category of derived manifolds.

Proof
We showed in Proposition 8.14 that X ×M Y exists as a local C∞-ringed space. To
show that it is a derived manifold, we must only show that it is locally an affine derived
manifold. This is a local property, so it suffices to look locally on M , X, and Y. We
prove the result by first showing that affine derived manifolds are closed under taking
products, then by showing that they are closed under solving equations, and finally by
showing that these two facts combine to prove the result.

Given affine derived manifolds R
n
a=0 and R

m
b=0, it follows formally that R

n+m
(f,g)=0

is their product, and it is an affine derived manifold.
Now let X = R

n
a=0, where a : Rn → Rm, and suppose that b : X → Rk is a

morphism. By Theorem 8.11, we can consider b as an element of OX(X)(Rk). By

Lemma 5.4, it is homotopic to a composite X → Rn b′−→ Rk , where X → Rn is
the canonical imbedding. Now we can realize Xb=0 as the homotopy limit in the
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all-Cartesian diagram

Xb=0
��

��

�
R0

��

X
b

��

��

�
Rk ��

��

�
R0

��

Rn

(b′,a)

�� Rk × Rm �� Rm

Therefore, Xb=0 = R
n
(b′,a)=0 is affine.

Finally, suppose that X and Y are affine, and suppose that M = Rp. Let − : Rp ×
Rp → Rp denote the coordinate-wise subtraction map. Then there is an all-Cartesian
diagram

X ×Rp Y ��

��

�
Rp

diag

��

��

�
R0

0

��
X × Y �� Rp × Rp

−
�� Rp

where diag : Rp → Rp × Rp is the diagonal map. We have seen that X × Y is affine,
so since X ×Rp Y is the solution to an equation on an affine derived manifold, it too
is affine. This completes the proof. �

Remark 8.16
Note that Theorem 8.15 does not say that the category dMan is closed under arbitrary
fiber products. Indeed, if M is not assumed to be a smooth manifold, then the fiber
product of derived manifolds over M need not be a derived manifold in our sense. The
cotangent complex of any derived manifold has homology concentrated in degrees
zero and one (see Corollary 7.4), whereas a fiber product of derived manifolds (over
a nonsmooth base) would not have that property.

Of course, using the spectrum functor Spec, defined in Remark 6.14, one could
define a more general category C of “derived manifolds” in the usual scheme-theoretic
way. Then our dMan would form a full subcategory of C , which one might call the
subcategory of quasi-smooth objects (see [27]). The reason we did not introduce this
category C is that it does not have the general cup product formula in cobordism; that
is, Theorem 1.8 does not apply to C .
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9. Derived manifolds are good for doing intersection theory
In this section, we prove that the simplicial category dMan of derived smooth mani-
folds, as defined in Definition 6.15, is good for doing intersection theory on manifolds,
in the sense of Definition 2.1.

PROPOSITION 9.1
The simplicial category dMan satisfies Axiom (1) of Definition 2.1. That is, in the
sense of that definition, dMan is geometric.

Proof
Given derived manifolds X = (X, OX) and Y = (Y, OY ), the mapping space
MapdMan(X, Y) is defined as a disjoint union over maps f : X → Y of simpli-
cial sets Maploc(f

∗OY , OX), each of which is a certain subset of the components of
Map(f ∗OY , OX). All objects of Shv(X, sC∞) are cofibrant, and OX is fibrant, so this
mapping space is fibrant, and it follows that dMan has fibrant mapping spaces.

Lemma 6.16 states that there is a fully faithful functor i : Man → dMan. The
fact that imbedding preserves transverse intersections is proved in Proposition 8.13.
The underlying space U(X) of a derived manifold X = (X, OX) is just X, and U
preserves limits (see Theorem 8.15). �

PROPOSITION 9.2
The simplicial category dMan satisfies Axioms (2), (3), and (5) of Definition 2.1. That
is, in the sense of that definition, dMan has enough open subobjects, has unions, and
has local models.

Proof
Axioms (2) and (5) follow directly from the definition of derived manifolds (see
Definition 6.15). Axiom (3) follows from Proposition 6.9. �

PROPOSITION 9.3
The simplicial category dMan satisfies Axiom (4) of Definition 2.1. That is, the fiber
product of two derived manifolds over a smooth manifold is a derived manifold.

Proof
This is Theorem 8.15. �

For the next proposition, one may recall that Axiom (6) of Definition 2.1 says roughly
that maps from embedded derived submanifolds X ↪→ Y to the affine line R can
locally be extended to maps from an open neighborhood of the imbedding.
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PROPOSITION 9.4
The simplicial category dMan satisfies Axiom (6) of Definition 2.1. That is, given
an imbedding g : X → Y, any real-valued function on X extends to a real-valued
function on Y, up to homotopy.

Proof
By the definition of imbedding, there is a cover of Y by open subobjects Yi such that,
if we set Xi = g−1(Yi), then for each i there is a homotopy pullback square

Xi
��

gi

��

�
R0

0

��
Yi

fi

�� Rni

that is, gi is a model imbedding. We must show that the morphism of sheaves
g : g∗OY → OX is surjective after applying π0. It suffices to work locally; hence we
may drop the i-subscripts and assume that g : X → Y is a model imbedding. That is,
there is some map f : Y → Rn such that X ∼= Yf =0. Let X = U(X) and Y = U(Y)
denote the underlying spaces.

By construction (see Theorem 8.14), the structure sheaf OX of X is the homotopy
colimit in the diagram

ORn
��

f 

��

OR0

��
OY

g

�� OX

�

(9.4.1)

of sheaves on X, where as usual we have suppressed the fact that three of these sheaves
are preimage sheaves under various maps out of X.

By Definition 6.3, all of the objects in Diagram (9.4.1) are fibrant, so by Lemma
5.4, the map g(X) : g∗OY (X) → OX(X) is sent under π0 to a pushout diagram of
C∞-rings. Thus the map π0(g(X)) is the pushout of a surjection, and hence is itself
a surjection. �

PROPOSITION 9.5
The simplicial category dMan satisfies Axiom (7) of Definition 2.1. That is, in the sense
of that definition, there is a normal bundle and defining section for any imbedding
g : X → M of a derived manifold into a smooth manifold.
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Proof
We may assume that M and X are equidimensional; let k = dimM − dimX denote
the codimension of X in M . Let Lg denote the cotangent complex for g, which is
a sheaf of simplicial modules over the sheaf of simplicial commutative rings U (OX)
underlying the structure sheaf of X. Its first homology sheaf H1(Lg) is a vector bundle
of rank k on the underlying space X, by Corollary 7.6. Write Ng = H1(Lg)∨) to denote
its dual. By the paracompactness of M , there exists an open neighborhood U ⊂ M of
g(X), a vector bundle E → U , and an isomorphism g∗E ∼= Ng .

We can cover U by Euclidean charts Uα
∼= Rn over which the induced bundle

Eα
∼= Rk is trivial and Xα is cut out by k real-valued functions on Uα (see Definition

2.3). This gives a section sα : Uα → Eα for which the diagram

Xα

�

gα

��

gα

��

Uα

z

��
Uα

sα

�� Eα

is a pullback.
Acting on sα by a linear change of coordinates does not change the fact that

the above square is a pullback, by Proposition 7.9. Thus we can patch these sections
together to get a global section of E → U which cuts out X. We have proved the
existence of a normal bundle and defining section. �

THEOREM 9.6
The simplicial category dMan (see Definition 6.15) is good for doing intersection
theory on manifolds, in the sense of Definition 2.1. Therefore, dMan has the general
cup product in cobordism in the sense of Definition 1.7.

Proof
The first assertion follows from Propositions 9.1, 9.2, 9.3, 9.4, and 9.5. The second
assertion follows from Corollary 3.13. �

10. Relationship to similar articles
In this section, we discuss other research which is in some way related to this article.
Most relevant is Section 10.1, in which we discuss the relationship to Lurie’s work on
derived algebraic geometry, and in particular to structured spaces. The other sections
discuss manifolds with singularities, Chen spaces and diffeological spaces, synthetic
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differential geometry, and a catch-all section to concisely state how one might orient
our article within the canon.

10.1. Lurie’s structured spaces
There is a version of the above work on derived manifolds, presented in the author’s
Ph.D. dissertation (see [27]), which very closely follows Jacob Lurie’s theory of
structured spaces, as presented in [21]. Similar in spirit is Toen and Vezzosi’s articles
[29], [30] on homotopical algebraic geometry. In this section, we attempt to orient the
reader to Lurie’s theory of structured spaces.

In order to define structured spaces, Lurie begins with the definition of a geometry.
A geometry is an ∞-category, equipped with a given choice of admissible morphisms
that generate a Grothendieck topology, and satisfying certain conditions. For example,
there is a geometry whose underlying category is the category of affine schemes
Spec R, with admissible morphisms given by principal open sets Spec R[a−1] →
Spec R, and with the usual Grothendieck topology of open coverings.

Given a geometry G and a topological space X, a G-structure on X is roughly a
functor OX : G → Shv(X) which preserves finite limits and sends covering sieves on
G to effective epimorphisms in Shv(X).

One should visualize the objects of G as spaces and visualize the admissible
morphisms in G as open inclusions. In this visualization, a G-structure on X provides,
for each “space” g ∈ G, a sheaf OX(g), whose sections are seen as maps from X to
g. Since a map from X to a limit of g’s is a limit of maps, one sees immediately why
we require OX to be left exact. Given a covering sieve in G, we want to be able to say
that to give a map from X to the union of the cover is accomplished by giving local
maps to the pieces of the cover, such that these maps agree on overlaps. This is the
covering sieve condition in the definition of G-structure.

Our approach follows Lurie’s in spirit, but not in practice. The issue is in his
definition (see [21, Definition 1.2.1]) of admissibility structure, which we recall here.

Definition 10.1
Let G be an ∞-category. An admissibility structure on G consists of the following
data:
(1) A subcategory G ad ⊂ G , containing every object of G . Morphisms of G

which belong to G ad are called admissible morphisms in G .
(2) A Grothendieck topology on G ad.
These data are required to satisfy the following conditions:
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(i) Let f : U → X be an admissible morphism in G , and let g : X′ → X be any
morphism. Then there exists a pullback diagram

U ′ ��

f ′

��

U

f

��
X′

g

�� X

where f ′ is admissible.
(ii) Suppose that given a commutative triangle

Y
g

��	
		

		
		

X
h

��

f
���������

Z

in G , where g and h are admissible. Then f is admissible.
(iii) Every retract of an admissible morphism of G is admissible.

In our case, the role of G is played by E, the category of Euclidean spaces, and the
role of G ad is played by open inclusions Rn ↪→ Rn (see Sections 5 and 6). But, as
such, G ad is not an admissibility structure on G because it does not satisfy condition
(i): the pullback of a Euclidean open subset is not necessarily Euclidean.

However such a pullback is locally Euclidean. This should be enough to define
something like a preadmissibility structure, which does the same job as an admissibility
structure. In private correspondence, Lurie told me that such a notion would be use-
ful—perhaps this issue can be resolved in a later version of [21].

In the author’s dissertation, however, we did not use C∞-rings as our basic
algebraic objects. Instead, we used something called smooth rings. A smooth ring
is a functor Man → sSets which preserves pullbacks along submersions (see [27,
Definition 2.1.3]). In this case, the role of G is played by Man, and the role of G ad

is played by submersions. This is an admissibility structure in Lurie’s sense, and it
should not be hard to prove that the category of structured spaces one obtains in this
case is equivalent to our category of local C∞-ringed spaces.

10.2. Manifolds with singularities
A common misconception about derived manifolds is that every singular homology
class a ∈ H∗(M, Z) of a manifold M should be representable by an oriented de-
rived manifold. The misconception seems to arise from the idea that manifolds with
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singularities, objects obtained by coning off a submanifold of M , should be examples
of derived manifolds. This is not the case.

By the phrase coning off a submanifold A ⊂ M , one means taking the colimit of
a diagram {∗} ← A → M . Derived manifolds are not closed under taking arbitrary
colimits (e.g., quotients). In particular, one cannot naturally obtain a derived manifold
structure on a manifold with singularities. Instead, one obtains derived manifolds
from taking the zero set of a section of a smooth vector bundle (see Example 2.7).
The collection of derived manifolds is quite large, but it does not include manifolds
with singularities in a natural way. In order to obtain arbitrary colimits, perhaps one
should consider stacks on derived manifolds, but we have not worked out this idea.

10.3. Chen spaces, diffeological spaces
Another common generalization of the category of manifolds was invented by Kuo
Tsai Chen in [8]. Let Conv denote the category whose objects are convex subsets
of R∞, and whose morphisms are smooth maps. With the Grothendieck topology
in which coverings are given by open covers in the usual sense, we can define the
topos Shv(Conv). The category of Chen spaces is roughly this topos, the difference
being that points are given more importance in Chen spaces than in Shv(Conv), in a
sense known as concreteness (see [3] for a precise account). Diffeological spaces are
similar—they are defined roughly as sheaves on the category of open subsets of
Euclidean spaces.

The difference between these approaches and our own is that Chen spaces are
based on “maps in” to the object in question (the Chen space) whereas our objects
carry information about “maps out” of the object in question (the derived manifold).
In other words, the simplest question one can ask about a Chen space X is, what are
the maps from Rn to X? Since X is a sheaf on a site in which Rn is an object, the
answer is simply X(Rn). In the case of derived manifolds, the simplest question one
can ask is, what are the maps from X to Rn? By the structure theorem, Theorem 8.11,
information about maps from X to Euclidean spaces is carried by the structure sheaf
OX—the answer to the question is OX(X)n.

If one is interested in generalizing manifolds to better study maps in to them,
one should probably use Chen spaces or diffeological spaces. In our case, we were
interested in cohomological properties (intersection theory and cup product); since
elements of cohomology on X are determined by maps out of X, we constructed
our generalized manifolds to be well behaved with respect to maps out. It may be
possible to generalize further and talk about “derived Chen spaces,” but we have not
yet pursued this idea.
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10.4. Synthetic differential geometry
In [22], Moerdijk and Reyes discuss yet another generalization of manifolds, called
smooth functors. These are functors from the category of (discrete) C∞-rings to
sets that satisfy a descent condition (see [22, Lemma 3.1.1]). A smooth functor
can be considered as a patching of local neighborhoods, each of which is a formal
C∞-variety.

Neither our setup nor theirs is more general than the other. While both are based
on C∞-rings, our approach uses homotopical ideas, whereas theirs does not; their
approach gives a topos, whereas ours does not. It certainly may be possible to combine
these ideas into “derived smooth functors,” but we have not pursued this idea either.
The non-homotopical approach does not seem adequate for a general cup product
formula in the sense of Definition 1.7.

10.5. Other similar articles
There has been far too much written about the intersection theory of manifolds for us
to list here. In our article, we achieve an intersection pairing at the level of spaces:
the intersection of two submanifolds is still a geometric object (i.e., an object in
a geometric category in the sense of Definition 1.3), and this geometric object has
an appropriate fundamental class in cohomology (see Definition 1.7). No “general
position” requirements are necessary. We hope that this is enough to distinguish our
results from previous ones.
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[29] B. TOËN and G. VEZZOSI, Homotopical algebraic geometry, I: Topos theory, Adv.
Math. 193 (2005), 257–372. MR 2137288 123

[30] ———, Homotopical algebraic geometry, II: Geometric stacks and applications,
Mem. Amer. Math. Soc. 193 (2008), no. 902. MR 2394633 123

[31] C. A. WEIBEL, An Introduction to Homological Algebra, Cambridge Stud. Adv. Math.
38, Cambridge Univ. Press, Cambridge, 1994. MR 1269324 109

Department of Mathematics, University of Oregon, Eugene, Oregon 97403, USA;
dspivak@uoregon.edu

http://www.arXiv.org/abs/0905.0459v1
http://www.ams.org/mathscinet-getitem?mr=1083355
http://www.ams.org/mathscinet-getitem?mr=0257068
http://www.ams.org/mathscinet-getitem?mr=1881711
http://www.ams.org/mathscinet-getitem?mr=1466099
http://www.ams.org/mathscinet-getitem?mr=1997322
http://www.ams.org/mathscinet-getitem?mr=0248858
http://www.ams.org/mathscinet-getitem?mr=2137288
http://www.ams.org/mathscinet-getitem?mr=2394633
http://www.ams.org/mathscinet-getitem?mr=1269324
file:dspivak@uoregon.edu

	Introduction
	The axioms
	Main results
	Layout for the construction of dMan
	C-rings
	Local C-ringed spaces and derived manifolds
	Cotangent complexes
	Proofs of technical results
	Derived manifolds are good for doing intersection theory
	Relationship to similar articles
	References

