
LINEAR ALGEBRA AND VECTOR ANALYSIS

MATH 22A

Unit 21: Island mathematics

Seminar

21.1. With an “island” we mean a region in the plane R2 which is bound by a simple
closed curve C which is continuous everywhere and differentiable everywhere except
at a finite set of points. So, simple polygons are allowed. What island does have the
maximal area if the length of the boundary is fixed? This is called the isoperimetric
problem. If we look at the problem restricted to polygons with a fixed number n of
vertices, then we have a nice finite dimensional Lagrange problem.

21.2. Let us look at a triangular island T (x, y) with vertices (−1, 0), (1, 0), (x, y).

Problem A: Assume the circumference g(x, y) of the triangle is 3. What
is the maximal area f(x, y) = y/2 we can get? Set up the Lagrange
equations and solve them.

21.3. Here is a side problem from good old Euclidean geometry. If you should not
know, look up “string method pins”.

Problem B: What points (x, y) in the plane satisfy g(x, y) = 3.

21.4. Solving the problem to find the n-gon with maximal area is a messy Lagrange
problem. It can be done by a computer but there is a more elegant way:

Problem C: Use the computation in problem A to show that for a
maximal polygon containing vertices ..., P,Q,R, ... in a row, the distance
between P and Q is the same as the distance between Q and R.

Problem D: Conclude that a polygon with n vertices and maximal area
must be a regular polygon.
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21.5. You are on your treasure island G and have two locations A,B in G. The
problem to find the shortest connection between A and B can be quite complex in
general. An example is when G is bound by a Gosper curve. For the following let
us assume that the boundary of G is a convex curve: this means that for any two
points A,B in G, the line segment through A,B is contained in G. A triangle A,B,C
for which all three points A,B,C are on the boundary is called a “shore triangle”.

Problem E: Verify that for a shore triangle, the billiard law of reflec-
tion at the boundary holds.

21.6. Hint: to see that the incoming angle is the same as the outgoing angle, take a
minimal triangle A,B,C, where B is on the island shore, then replace the curve with
the tangent curve L at B. Now reflect C at L to get a point C ′. Verify that the shortest
billiard path ABC has the same length than the straight line connecting A with C ′.

Figure 1. What polygon with fixed circumference has maximal area?

21.7. The next time you are cast away on an island, count the number m of mountain
peaks, the number s of sinks and the number p of mountain passes. Make some
experiments. You notice the following rule which is known as a special case of the
Poincaré-Hopf theorem:

Theorem: maxima + minima− saddles = 1.

Problem F: Find an example where this equality holds, in which we
have maxima = 3, minima = 1 and saddles = 3.

21.8. If you want to challenge yourself, see whether you can prove the island theorem
by deformation. (This is probably too hard. Just enjoy the struggle!)

21.9. Assume now that our island is an atoll, a ring shaped reef.

Problem G: By looking at examples, what is the island number
maxima + minima− saddles on an atoll?



Figure 2. First an island with 2 mountain peaks and with 1 mountain
pass. Then an island with 3 mountain peaks and 2 mountain passes. We
see maxima + minima− saddles = 1.

Figure 3. The Atafu atoll. Picture by NASA Johnson Space Center, 2009.

Figure 4. If we place a surface S : g = c in space and look at the
restriction of a function f(x, y, z) on S, we solve a Lagrange problem. In
a Morse situation, the numbers maxima + minima− saddles add up to
a number which only depends on the number of holes.

21.10. Let us look at the one-dimensional case, where we prove things easier. Assume
the island is the interval [a, b]. Let f be a smooth function on [a, b] which has the
property that f is zero for x ≥ b and for x ≤ a. We look at critical points of f in the
interior (a, b) which are Morse, (meaning f ′′(x) 6= 0 at critical points), so that we only
have only local maxima and minima as critical points. Let m be the number of maxima
and s the number of minima (sinks). In order to prevent the island to be flooded, we
also assume that the function f is positive for x > a, close to a and x < b close to b.

Theorem: maxima−minima = 1.

Problem H: Verify that there is an odd number of critical points for a
Morse function f which has as a support a finite interval [a, b].
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Figure 5. One-dimensional islands.

Problem I: Use a deformation argument to show that if there are 2k +
1 critical points, we can reduce them to 2k − 1 by merging a pair of
neighboring maxima and minima

Homework

21.1 A spherical triangle A,B,C on the unit sphere has angles α, β, γ in
[0, π]. What is the largest area that such a triangle can have? You can
use the fact that α + β + γ − π is the area. The result might look a bit
strange for a triangle.

21.2 Find an example of a non-Morse function f(x, y, z) with a maximum.
Similarly find an example with a minimum and an example of a non-Morse
function where the critical point is neither a maximum, nor a minimum.

21.3 If we look at maxima, minima and saddle points for a function
f(x, y) defined on a doughnut. By looking at examples, find the island
number maxima + minima− saddles there.

21.4 If we look at maxima, minima and saddle points for a function
f(x, y) defined on a sphere. By looking at examples, what is the island
number maxima + minima− saddles there.

21.5 Assume f : R → R is a single variable Morse function which is
2π periodic. What is the relation between the number m of maxima on
[0, 2π) and the number of minima on [0, 2π)? Prove this.
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