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Machine learning was used to classify executable files as either malicious or benign.
Multiple models were trained on feature sets derived from several sample character-
istics: PE headers, bytes n-grams, control flow graphs and API call graphs.A dataset
of 32 967 benign and 74 924 malign samples was compiled and will be made available
to the community where safely possible. An ensemble classifier was trained using the
prediction outputs of the individual models as input features. All individual mod-
els performed well, and the ensemble markedly improved on these scores for a final
classification accuracy of 98.9%. This demonstrates that multi-modal late fusion is a
potent tool for malware detection. Classification of samples into malware families was
also conducted using the call graph classifier. This displayed strong discriminative
power for certain classes.
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1 Introduction

1.1 Static Malware Analysis

Efficient identification of malware is vitally important in an age when approximately 230 000 new
malware samples are produced each day [1]. Ransomware attacks alone cost businesses millions
in lost revenue per year and can disrupt crucial public services as demonstrated in the 2017 NHS
WannaCry attack [2]. This threat will only grow with the rise of consumer cloud Infrastructure
as a Service and Internet of Things networking.

The two main approaches to malware detection are static and dynamic analysis. Dynamic
analysis involves executing samples in a secure sandbox for observation by a malware researcher.
Suspicious behaviour might include unexpected changes to the file system or unusual network
requests. Though effective this method is resource intensive and can be evaded by malicious
programs which detect their run-time environment.

By contrast static analysis attempts to classify a sample without the need for execution. Sig-
nature based static analyses use hashing techniques. Programs are scanned for an identifying
sequence of bytes and referenced against a database of known malign samples for classification.
However this approach is vulnerable to previously unseen files and code obfuscation. Further
static analysis extracts characteristics directly from a sample such as API calls, metadata strings
and libraries to determine program behaviour. This analysis is capable of detecting zero-day
attacks but requires intelligent interpretation of considerable amounts of data. Machine learning
offers an opportunity to partially automate this process and enhance the ability of researchers
to detect malware on massive scales.

1.2 Portable Executable Format

The majority of malware targets the Windows operating system (OS). The Portable Executable
(PE) file format is the standard format used by executables, dynamic-linked libraries and others
on 32-bit and 64-bit Windows systems. Consequently a significant proportion of malware samples
are PE files. For instance 47% of all files submitted to VirusTotal, a free virus-scanning service,
used the PE format [3, 4]. In addition to containing the binary code itself, a PE file contains
structural information, describes how an OS should map a program into memory and which
external functions are called via the import address table (IAT). From this header metadata
and section information, characteristics can be extracted in the form of byte n-grams, opcode
n-grams, converted strings and PE header field values. Examination of these features indicates
program run-time behaviour and enables discrimination between malicious and benign Windows
binaries.
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2 Dataset Construction

2.1 Creating a Dataset

An important factor to the success of this project is the curation of a dataset that closely
resembles the kind of benign and malicious binaries currently in circulation. Having such a
dataset is essential in building machine learning models that can successfully generalise.

We obtain an initial dataset of benign samples from the binaries found on our Windows PCs.
These contain some third-party software but are predominantly Windows 10 system files. These
are supplemented with binaries taken from Windows Server 2000 and 2012, Windows XP, and
Windows 7 installations. To add variety to the benign samples, an additional set of binaries
are obtained by installing the 300 most popular packages from a Windows package manager.
After combining the benign samples and removing duplicates using the Linux utility fdupes for
checking MD5 hashes, we are left with 32 967 unique binaries.

Malicious samples are sourced from the malware repository VirusShare [5]. Samples uploaded
to the site within the last two years are downloaded in bulk. The Windows binaries are then
identified and queried for their VirusTotal report which gives the result of scans by 60–70 of
the leading anti-virus (AV) software. We apply a threshold of 30 scans identifying the binary as
malicious to reach a final set of 74 924 unique malware samples.

We understand that the compilation and curation of such a dataset is time consuming. To
facilitate future research and encourage research reproducibility we are pursuing opportunities
to safely share this data.

2.2 Data Exploration

We perform a limited exploration of the dataset using the metadata available. The timestamps
of the binaries are extracted from the PE header and shown in Figure 1. The distributions
are a reasonable reflection of the binaries typically found on Windows machines and of the
malware that threatens them. The bimodal benign distribution is characteristic of the longer
lifespan Windows system files and the frequently updated third-party software that makes up
our dataset.

We are interested to know the types of malware in our dataset. To do this we take the AV scans
from the VirusTotal report and have them vote on the malware family. Much of the malware
is classified as generic and some of the families have very few malware samples associated with
them. The malware families that can be identified are shown in Figure 2. The labelling is crude
but sufficient to establish the diversity of our malware. There are examples of spyware (Zusy,
Tepfer, Ursnif), ransomware (MSIL, Strictor, Lamer) and adware (Graftor, Razy, Adware).
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Figure 1: Density histogram of dataset compilation years. Note that binaries with a null timestamp default
to 1970 and that a pre-2007 Delphi compiler bug gives binaries a 1992 timestamp.

Figure 2: Malware families of malign dataset with more then 500 instances.
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Figure 3: A hexdump from a sample binary. Memory addresses are in the left column, raw hexadecimal
code in the middle and converted ASCII strings on the right. PE headers are highlighted.

3 Feature Selection

As previously discussed, PE executables present several features of interest to malware detection.
Broadly we can consider a program either as a series of bytes, opcodes, function calls or described
by a collection of metadata. Each requires a different approach to feature extraction, selection
and pre-processing.

3.1 PE Headers

At the highest level of abstraction, we can exploit our knowledge of the PE format to extract
metadata from the binary. A PE file consists of headers describing how the file should be executed
and sections containing the body of the code. Headers are of particular use to malware research as
many of their features are intrinsic to program structure and are difficult to manipulate without
affecting functionality. In addition to describing the number and size of sections in a program, PE
header fields contain characteristic metadata such as file type, subsystem version and preferred
address when loaded into memory.

These values can be extracted as strings by a parser that employs an understanding of the PE
format as demonstrated in Figure 3. In this work pefile, an open source python module, was
used to gather PE header information and section names [6]. This produced a mixture of nu-
merical and categorical values that were converted into machine learning interpretable features
with one-hot encoding and scaled. For the largest samples this generated over 2000 features per
file. Encoding multiplied this further to roughly 30 000 features. Dimensionality reduction via
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feature selection was then necessary to reduce computational processing and improve classifica-
tion performance. This costly step can potentially be avoided using an alternative regime such
as Similarity Encoding [7]. Future work could explore this option.

(a) Effect of selection method on accuracy. (b) Effect of feature number on accuracy.

Figure 4: A decision tree (DT) classifier was trained on feature sets of varying sizes selected via truncated
singular value decomposition, Gini impurity calculated by another DT model, chi-squared and mutual
information scoring.

Several feature selection methods and feature number maxima were compared for their effect
on classification accuracy, these results are presented in Figures 4a and 4b. It was found that
selecting the 300 features with the highest mutual information score produced the best accuracy
for a reasonable training time. This is in line with the literature where information gain is popular
for selecting features with optimal classification performance [8]. Further feature reduction to 113
features occurred during the training of the XGBoost model using feature importance scoring.
More sophisticated feature selection or combinations of multiple methods were not explored and
could provide further performance gains.

Features were extracted from 32 712 benign and 28 815 malware samples. The slight class imbal-
ance is due to the parser better interpreting benign binaries as they are less likely to use unusual
characters in section names. During the course of this work this limitation was removed so future
research could expand the size of the dataset. The features were used to train a variety of models
for binary classification implemented in sklearn using an 80:20 train-test split. Hyperparameter
tuning was conducted using the hyperopt package to search the large parameter space. Models
were optimised for recall over precision or accuracy to reduce the number of false negatives (ma-
licious files classed as benign) as much as possible. These model configurations were validated
on the training data using 5-fold cross-validation to avoid overfitting.

3.2 Bytes n-grams

Another set of features that we use to identify malware are sequences of bytes. Firstly, a hexa-
decimal representation of each executable file is generated using the xxd utility, where each byte
is represented by a two-digit hexadecimal number. The n-grams in the file are then found by a

7



sliding window of n bytes. For example, the 2-grams in the sequence f37d339f would be f37d,
7d33 and 339f.

We use probably the simplest way to construct features for the machine learning model: we first
create a list of distinct n-grams from the entire training dataset, and for each of those n-grams,
check if it is present in each executable in the dataset. This was the method used by Kolter and
Maloof [9]. The presence of an n-gram in a file was denoted by a value of 1, and absence with
0.

The number of distinct n-grams is very large, so they cannot all be used to train models. For
example, the number of distinct 2-grams present in our training dataset was 65 536, which means
all possible 2-grams were present in at least one executable.

A method is therefore needed to select the most useful n-grams. The method we use is to
calculate the information gain for each n-gram, as also performed by Kolter and Maloof [9]:

Ii =
∑

vi∈{0,1}

∑
C∈{Cj}

P (vi, C) log
P (vi, C)

P (vi)P (C)

where C is the class (malware or benign), vi is the presence value for the ith n-gram, P (vj , C) is
the fraction of samples in class C that have the value vj for the ith n-gram, P (vj) is the fraction
of all samples that have the value vj for the ith n-gram, and P (C) is the fraction of samples that
are in class C.

We use 2-grams in our models, but in the future other values of n should be tried and the best
one selected. Five hundred 2-grams with the highest information gain are selected, and four
different models trained using these features: a decision tree, a boosted decision tree, a random
forest, and a neural network. The models are trained on a dataset containing 17 338 benign and
50 704 malware samples.

3.3 Graphs

A natural representation of any program’s execution is a directed graph. In this representation
vertices are short blocks of execution that perform an isolated task whilst edges describe the
relations between these blocks. For a control flow graph (CFG) the vertices are blocks of assembly
instructions and the edges are control flow. For a call graph (CG) vertices are functions and the
edges represent calling relationships between the functions. The potential of these graphs for
static malware analysis has been recognised in the literature as a promising approach since it offers
a unique level of generality in its representation. The use of PE header data to classify binaries
can achieve excellent discriminative power on a dataset but may struggle to generalise to data
of different formats or to attempts at obfuscation by malware authors. Conversely, n-gram byte
sequences offer a representation that is highly generic but unlikely to match the discriminative
power of the PE header data. Graph representations may provide a middle ground between
generality and discriminative power. All binary formats have an associated graph structure and
malicious behaviour is likely to produce similar patterns. A careful choice of feature vector for
the graph’s vertices can then help push for high classification accuracies.
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There are many examples of graph-based representations being used for static malware classific-
ation. Often the graph structure is encoded into a fixed size representation in a pre-processing
step [10, 11]. Other approaches have attempted to make use of graph matching networks [12].
The work using graph representations in this study most closely follows [13] where opcodes are
used to create attributed CFGs that are passed through a classifier that uses graph convolu-
tional layers. This is an appealing approach since the classifier learns to use the graph structure
alongside the features.

In this work we consider CFGs with feature vectors derived from opcodes, as used in [13], and
CGs with feature vectors derived from API calls. The use of API attributed CGs with the type
of classifier we employ appears to be a new approach to static malware classification.

The angr binary analysis toolkit [14] is used to recover the CFG and CG of a binary. Using angr’s
Python framework, binaries are loaded into memory and a recursive disassembly is performed.
Any graphs with vertices fewer than five or greater than 10 000 are discarded. The latter is
done with GPU memory during the classifier training in mind and applies to a small fraction
of the binaries. This is found to be unnecessarily cautious; a better approach would be to
remove the limit and restrict the maximum total number of vertices in the mini-batches. We also
apply the constraint that any disassembly taking longer than five minutes is aborted. This is
required for processing a large dataset of binaries that can occasionally hang indefinitely during
the disassembly. Successfully recovered graphs can then be examined with the tools provided by
angr to construct a feature matrix. The resulting edge list and feature matrix is then saved in
the numpy compressed array format.

3.3.1 Opcode Attributed Control Flow Graphs

To produce graphs that can be classified using machine learning algorithms we need to assign a
feature vector to every vertex. For the CFG each vertex is a block of assembly instructions that
contains no control flow until the final instruction where it exits. A small example CFG is shown
in Figure 5.

To construct feature vectors we use the frequency of each opcode from the assembly instructions
blocks. These define the operation being performed at each instruction, in Figure 5 they are
listed in the second column of the block. Owing to the PE format’s support of many different
instruction sets, the number of possible opcodes is large. To reduce the number of entries in the
feature vector only the most frequent 302 of the training set are used. This is the most basic
method of feature selection and employing more advanced methods such as graph autoencoders
or selection by information gain would almost certainly lead to a better representation of the
data. Time constraints prevent us from making use of these techniques in this study. The feature
space is then extended by an additional dimension to include the size in bytes of the block. This
choice of a 303-dimensional feature space is made to match the CG feature space described in
§ 3.3.2.

A total of 40 269 malicious and 22 565 benign samples have their CFGs recovered. The average
number of vertices is 1 857 and the average graph density is 0.0555.
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0x1001f8b: pop edi

0x1001f8c: pop esi

0x1001f8d: xor eax, eax

0x1001f8f: pop ebx

0x1001f90: mov ecx, dword ptr [ebp - 4]

0x1001f93: xor ecx, ebp

0x1001f85: call 0x100195f

Figure 5: Example of the control flow graph recovered from a binary. The assembly instructions block
contains memory addresses (first column), opcodes (second column), and operands (third column).

3.3.2 API Call Attributed Call Graphs

To construct feature vectors for a CG we use the Windows API calls made by the binaries. Once
a CG is recovered, vertices that represent API calls are separated from vertices that represent
internally defined subroutines. Due to the large number of possible unique API calls, the calls
are categorised according to Microsoft documentations. The Microsoft Windows Software Devel-
opment Kit1 and Windows Driver Kit Device Driver Interface2 documentations are scraped to
find the header each API call is defined in and then the technologies that require the header for
development. These technologies then define the categories, an example of this categorisation can
be seen in Figure 6. The Microsoft C runtime library3 is also scraped and the headers themselves
are used for the categories. With these documentations we categorise a total of 73 698 unique
API calls into 303 categories.

Figure 6 shows an example of a small CG. At an API call execution leaves the binary resulting in
vertices of API calls having a null outdegree. A simple feature vector that marks the presence of
API call categories would give all subroutine vertices zero vectors. For many graphs this would
mean that a lot of the structure associated with long sequences of subroutines that lead to an
API call would not be used in the classification. To prevent this an alternate feature vector is
used. The length of the shortest path to each API call vertex is used to define the value of the
feature vector in the feature space direction associated with each API call. If there is no path,

1 https://github.com/MicrosoftDocs/sdk-api
2 https://github.com/MicrosoftDocs/windows-driver-docs-ddi
3 https://github.com/MicrosoftDocs/cpp-docs
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a value of zero is assigned. This gives the feature space a notion of depth with respect to API
calls.

A total of 38 703 malicious and 18 835 benign samples have their CGs recovered. The average
number of vertices is 1 481 and the average graph density is 0.00949. The CGs of the malware
with an associated malware family are also recovered for a total of 18 385 samples with 12 malware
family labels, an average number of vertices of 1 760, and an average graph density of 0.00475.

GetCurrentProcess ∈ processthreadsapi.h ∈ System Services, Security and Identity

Figure 6: Example of the call graph recovered from a binary. An example of how the API calls are
categorised is given in the red box. Unidentified API calls are due to calls not being categorised or being
unresolvable.

3.3.3 Deep Graph Convolutional Neural Network Classifier

To classify both types of graph we implement in PyTorch a classifier that uses the Deep Graph
Convolutional Neural Network (DGCNN) architecture introduced in [15]. This architecture is
chosen since it has been proven in [13] to work in the domain of malware classification. An
overview of the network can be seen in Figure 7 and a detailed description of its parts and
motivation can be found in the original paper. The key components of the DGCNN are the
graph convolution layers and the SortPooling layer. The former propagates vertex information
according to the connectivity structure of the graph whilst the latter provides a consistent way to
sort vertex features and unifies the sizes of the tensors going to the 1-dimensional convolutions.

The graph datasets are split into train : valid : test in the ratio 70 : 10 : 20. The validation sets
are used to perform hyperparameter tuning by hand and to implement early stopping. A grid
search is not performed due to the long training time. The tuning of model parameters such as
the number of channels, activation functions, and dropout rates has limited effect. The most gain
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in performance is obtained by tuning the optimiser used for training as ensuring stable training
is the main challenge with the DGCNN. It is found that RMSprop with an initial learning rate
of 0.00001 and a small learning rate decay every 2 epochs leads to the best performance. It
seems unusual that an adaptive learning rate optimiser (where the learning rate parameter acts
as the maximum learning rate) should require learning rate decay but it is found to be crucial
in reaching higher performance on the validation set.

A DGCNN for binary malware classification is trained on both the CG and CFG datasets. For
the CG dataset a DGCNN is also trained for multiclass classification of the malware family.

Figure 7: Architecture of the Deep Graph Convolutional Neural Network. Taken from [15].

4 Multimodal Ensemble

Finally we create a meta-ensemble which combines individual model predictions for ultimate
classification. This approach is known as late fusion and refers to a process where one model
is trained per feature type or modality and their decision values are fused via a mechanism
such as averaging, voting or another learned model [16]. This is in contrast to early fusion
which concatenates features extracted from each modality and then trains a single model on that
joint representation. The benefit of late fusion is that multiple model types are permitted per
modality, allowing for flexibility. Additionally as predictions are made separately it is easier to
handle missing modalities. For instance, samples for which a CFG cannot be extracted can still
be analysed by complementary alternative approaches. Due to this, the late fusion classifier is
more robust and better able to predict on unseen samples. This approach is fairly novel and we
are only aware of one other work using late fusion in this domain [17]. Even then that study used
a different approach to feature modalities and focused on classification into malware families over
malware detection.

The models combined for the ensemble are the XGBoost PE header model, the neural network
bytes n-grams model, and the DGCNN trained on the CG dataset. Each of these models outputs
the probability that an executable is malware. The ensemble model takes these predictions as
input features and uses them to train a neural network as a meta-classifier. The predictions
used to train the meta-model are obtained from a dataset separate to those used to train the
individual models so as to ensure no information leakage. This dataset has 3 438 benign samples
and 7 630 malware samples, and is used with an 80:20 train-test split.
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5 Results and Discussion

5.1 PE Headers

The binary classification results of models trained on the PE header feature set are presented in
Figure 9 and Table 1. The classification accuracy metric is slightly misleading in the case of an
imbalanced dataset, so the additional values of precision, recall and area under ROC curves are
also given. The PE-based classifiers display good discriminative power. When compared to other
solely PE-metadata models in the literature the XGBoost classifier performs well and achieves a
score of 0.978 accuracy compared to 0.976 found in Shalaginov et al [8]. This is most likely due to
[8] using older, less performant models. All the classifiers favour recall over precision due to the
dataset class imbalance and earlier choice to optimise for recall during hyperparameter tuning.
If needed the precision-recall threshold of the models can be increased from 0.5 to completely
remove the possibility of false negatives. When comparing like-for-like models in the literature,
our random forest has an accuracy of 0.971, on par with Kumar et al.[3] who achieve 0.974 using
a random forest on a raw feature set. Kumar et al.[3] then derive an integrated feature set using
domain knowledge to improve accuracy to 0.988. This indicates that derived feature sets are
worthy of exploration in the effort to improve performance.

The individual models were combined into ensembles using hard-voting and stacking. Logistic re-
gression and a neural network were the stacking meta-classifiers tested. None of these approaches
outperformed XGBoost, implying that the classifiers were negatively impacting each other. This
is surprising as it was assumed that a collection of classifiers would balance out individual biases
and produce better results.

A secondary benefit of XGBoost is that as a tree-based ensemble it offers good interpretabiltiy.
This is important for a classifier that might act as a filter to flag suspicious samples for further
inspection. The model can output features it considers important for making classifications, in-
dicating which values a malware researcher may want to investigate further. XGBoost calculates
feature importances by enumerating over the possible data splits proposed by each feature and
selecting the highest. These values were extracted and are presented in Figure 8. It can be
seen that aside from being suspicious of non-default section names, the classifier relies heavily on
ImageBase and VirtualAddress for making classifications. This is promising as these variables
refer to the preferred address of the program when loaded into memory. Non-standard values
are often a good indication that a malware writer has tried to use an offset to avoid detection by
AV [18]. From this we conclude that PE headers with XGBoost or other tree based ensembles
and robust feature curation provide an excellent method for filtering malware. As a result, this
was the model used to predict the decision values passed on to the final ensemble. A limitation
to bear in mind for PE metadata models in general is that they rely on valid PE headers being
available for each sample which is not always the case. With this limitation in mind we examine
models based on other feature characteristics.
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Figure 8: Feature weightings calculated by the XGBoost algorithm. Name features refer to PE section
titles and ordering.

Table 1: Performance of individual classifiers and ensembles trained on the PE metadata. Recall and
precision is with respect to the malware class.

Classifier Accuracy Precision Recall

k-Nearest Neighbours 0.953 0.936 0.959
Stochastic Gradient SVM 0.913 0.891 0.917
Decision Tree 0.918 0.895 0.926
Random Forest 0.971 0.960 0.973
XGBoost 0.978 0.970 0.980
Neural network 0.958 0.945 0.960
AdaBoost 0.921 0.900 0.931
Hard Voting 0.967 0.957 0.968
Stacking Logistic Regression 0.975 0.966 0.978
Stacking Neural Network 0.975 0.965 0.977
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Figure 9: ROC and area under curve scores for PE header models. Positive label: 1.0 = Malware.

5.2 Bytes n-grams

The binary classification results for the models trained on the bytes 2-grams feature set are shown
in Table 2, and the ROC curves are shown in Figure 10. These results are obtained for a test
dataset of 2 567 benign samples and 6 797 malware samples.

The neural network has the best score for all considered metrics: accuracy, precision, recall, and
the area under the ROC curve. This model was therefore chosen for the ensemble.

Table 2: Performance of the classifiers trained on the bytes 2-grams feature set, for a discrimination
threshold of 0.5. Recall and precision is with respect to the malware class.

Classifier Accuracy Precision Recall

Decision tree 0.902 0.915 0.953
Boosted decision tree 0.914 0.917 0.970
Random forest 0.944 0.943 0.983
Neural network 0.961 0.962 0.984
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Figure 10: ROC curves and areas under ROC curves for the models trained on the bytes 2-grams feature
set. The positive label corresponds to malware.

5.3 Graphs

5.3.1 Binary Classification

The binary classification results for the CG and CFG classifiers can be seen in Table 3. Both
classifiers display strong discriminative power and favour recall over precision, likely because
of there being more malware samples than benign in the training set. There are no direct
comparisons of these results in the literature but the CG performance is inline with other works
on static malware classification whilst the CFG slightly falls behind. It is hard to say in general
if the CG’s better performance here makes it a superior representation of the binaries than the
CFGs. There is a lot of scope to improve the feature selection for the CFGs so more work is needed
to compare the two types of graph. The overall performance demonstrates that there is potential
in representing binaries as graphs for malware classification and that graph neural networks are
capable of combining structural and feature information to learn malicious behaviour.
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Table 3: Performance of the classifier trained on the call graphs and on the control flow graphs for a
discrimination threshold of 0.5. Recall and precision is with respect to the malware class.

Classifier Accuracy Precision Recall

Call Graph 0.954 0.958 0.975
Control Flow Graph 0.921 0.917 0.964

Table 4: Percentage of all API calls made up by some of the categories for the benign test set call graphs
separated into correct and incorrect classifications.

Category Correct Classification Incorrect Classification

System Services 15.3 13.4
Security and Identity 6.40 6.67
Internationalisation for Win Apps 4.46 5.61

...
...

...
wchar header 2.01 0.31
Display Devices 1.85 3.23
Graphics Device Interface 1.84 3.23
Win Runtime C++ Reference 1.76 0.76
Kernel-Mode Driver 1.71 0.49
string header 1.61 0.26

...
...

...

A helpful property of the DGCNN classifier is that it outputs a probability which is thresholded
to make a classification. The value of the probability can be used to inform on the classifier’s
confidence in its classification. Figure 11 shows the probabilities for correct and incorrect clas-
sifications for the CGs. The difference in confidence for the correct and incorrect classifications
allows for considerable flexibility between precision and recall when choosing the discrimination
threshold.

Interpreting deep learning models is a challenging task. One way to glean some understanding
is to look at how different features of the test samples affect the classifier’s performance. Table
4 shows some of the API calls of the benign CG test set samples for both correct and incorrect
classifications. We see that wchar header, Win Runtime C++ Reference, and string header are
all most prevalent in correct classifications. The API calls under these categories all facilitate
the use of the C and C++ runtime libraries in the binaries. This seems to be indicative of benign
behaviour and it looks like the classifier has learnt to leverage this. Also of note are Graphics
Device Interface and Display Devices which are both most prevalent in incorrect classifications.
These categories contain API calls associated with displaying pop-ups and opening windows on
the user’s display. It appears that the classifier has associated these API calls as potentially being
malicious. From Figure 2 we know that the dataset contains examples of ransomware and it is also
common for other malware families to be adapted for use as ransomware. Therefore, it is possible
that the classifier has seen certain sequences of API calls in these categories that draw ransom
notes and has learnt this as malicious behaviour. The data from Table 4 provides only some
speculative ideas as to what is being leveraged by the CG classifier and ignores the importance
of structural information from the graph. A more thorough examination with carefully selected
test samples may produce some interesting insights.
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Figure 11: Density histogram of the call graph classifier’s output probability that a test sample is malware
for incorrect and correct classifications.

5.3.2 Malware Family Classification

The confusion matrix in Figure 12 summarises the performance of the CG classifier on the
problem of malware family classification. This corresponds to a macro averaged F-score of
0.688. We see that the classifier achieves perfect recall and near perfect precision on the CRCF,
DownloadGuide, and Lamer families. Performance on the other families spans from good to poor,
notably the classifier fails to learn any discriminating characteristics of the Ulise family. Some
of the incorrect predictions may be expected due to similarities in the families, Zusy and Ursnif
are both banking trojans for example. The origins of other behaviours such as the tendency to
label Ulise as Razy are mysterious. Excluding the poorly performing Ulise and Zusy families, the
results are similar to what is found in [13] where CFGs are used to classify 13 malware families.

Overall, for a 12 class classification the performance is strong. The near perfect classification
of some of the families demonstrate the high discriminative power that can be achieved by
representing binaries with graphs. It should also be noted that the method of labelling the
malware families is fairly crude compared to the hand labelled datasets sometimes used in the
literature. This may be of some detriment to the classifier’s performance.
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Figure 12: Confusion matrix of call graph malware family classifier. Percentages are row-wise whilst the
heat map is global.

5.4 Ensemble

The binary classification results for the final ensemble model and the individual models used to
create it are shown in Table 5, and the ROC curves are shown in Figure 13. The results for the
individual models differ from the ones in Tables 1, 2 and 3 because they were evaluated for a
different, smaller dataset, the same one used to evaluate the ensemble, so that the performance
can be compared.

The PE header model performs better than the n-grams and CG models in terms of accuracy
and precision though not recall. This may be due to the differences in dataset balances and sizes
or the smaller preprocessing overhead which allowed for more in depth hyper-parameter optim-
isation. Alternatively PE headers may simply provide a slightly richer source of features with
discriminative power. The ensemble displays further improvement with better accuracy, recall
and area under the ROC curve scores. This indicates that the different modes are complementary
and reduce each other’s weaknesses and biases to produce a more powerful overall classifier.
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Table 5: Performance of the ensemble model and the models used to obtained the predictions for the
ensemble model, for a discrimination threshold of 0.5. Recall and precision is with respect to the malware
class.

Classifier Accuracy Precision Recall

2-grams 0.964 0.964 0.987
call graphs 0.955 0.961 0.977
PE header 0.972 0.992 0.970
Ensemble neural network 0.989 0.991 0.995

Figure 13: ROC curves for the ensemble model and the individual models used for the ensemble. The
positive label corresponds to malware.

6 Conclusion

We trained several machine learning models to identify malicious executables using different
features: PE headers, bytes n-grams, control-flow graphs and API call graphs. All models
demonstrate very good classification performance, with the PE header model marginally outper-
forming the others. We created an ensemble model which uses the decision value predictions of
the best of these models as input features. The ensemble displays an improved performance over
individual models with a classification accuracy of 98.9%. This suggests that multi-modal late
fusion is a valid tactic for combining classifiers for effective malware detection at scale.
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