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Abstract The Kelvin—Helmbholtz instability (KHI) is a ubiquitous phenomenon across the
Universe, observed from 500 m deep in the oceans on Earth to the Orion molecular cloud.
Over the past two decades, several space missions have enabled a leap forward in our un-
derstanding of this phenomenon at the Earth’s magnetopause. Key results obtained by these
missions are first presented, with a special emphasis on Cluster and THEMIS. In particu-
lar, as an ideal instability, the KHI was not expected to produce mass transport. Simula-
tions, later confirmed by spacecraft observations, indicate that plasma transport in Kelvin—
Helmholtz (KH) vortices can arise during non-linear stage of its development via secondary
process. In addition to plasma transport, spacecraft observations have revealed that KHI
can also lead to significant ion heating due to enhanced ion-scale wave activity driven by
the KHI. Finally, we describe what are the upcoming observational opportunities in 2018—
2020, thanks to a unique constellation of multi-spacecraft missions including: MMS, Clus-
ter, THEMIS, Van Allen Probes and Swarm.

Keywords Kelvin Helmholtz instability - Earth’s magnetopause - Cold dense plasma
sheet - Cluster - THEMIS - MMS

1 Introduction

A fundamental question in space physics is the penetration of solar wind plasma, momen-
tum and energy into the Earth’s magnetosphere, depending on solar activity. Fundamental
works by Dungey (1961, 1963) and data collected by early space missions have led to the
following textbook vision. Southward oriented interplanetary magnetic field (IMF) favours
the occurrence of magnetic reconnection at the subsolar magnetopause ultimately leading
to storage of magnetic energy and reconnection in the magnetotail. During Northward ori-
ented IMF, magnetic reconnection at this location is much less favoured, occurring mostly
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tailward of the cusps, while solar wind plasma penetration is observed at the Low Latitude
Boundary Layer or LLBL (e.g., Eastman et al. 1976) and in the central plasma sheet (e.g.,
Baumjohann et al. 1989). Hence, other physical phenomena have been proposed including
high-latitude reconnection (e.g., Song and Russell 1992), and the Kelvin—-Helmbholtz Insta-
bility (KHI) (Axford and Hines 1961). These two phenomena can operate at the same time
(e.g., Taylor et al. 2008).

In Sects. 3 and 4, we will present recent results on the KHI that challenge certain aspects
of this textbook vision. The vast majority of these results are based on data collected by
the multi-spacecraft ESA Cluster mission (Escoubet et al. 2001) and the NASA THEMIS
mission (Angelopoulos 2008). A quick reminder on the KHI phenomenon itself and the
open questions prior to the launch of these missions are presented in the next section. Sec-
tion 5 presents the first observational evidence of cross-scale energy transport within a KH
vortex, and its implications. Unique observational opportunities in 2018—-2020 timeframe of
this phenomenon with MMS, Cluster, THEMIS, Van Allen Probes and Swarm are finally
presented in Sect. 6.

2 KHI Before the Cluster and THEMIS Era

The Kelvin—Helmbholtz instability can develop at the interface of two fluids in the pres-
ence of a velocity shear. This phenomenon was first described more than a century ago by
Helmbholtz (1868) and Kelvin (1871). For non-viscous fluids, there is no instability threshold
and a velocity shear is always unstable (e.g., Chandrasekhar 1961). However, in a magne-
tized plasma, the plasma compressibility and the magnetic tension force can have a stabi-
lizing effect (Miura and Pritchett 1982). Hence, a minimum value of the velocity shear is
required for the instability to occur, which depends on the initial conditions of the flow. An
analytical expression of this instability threshold can be obtained for an ideal MHD plasma
in an incompressible media (e.g. Smets et al. 2002). It can also be demonstrated that, in
the incompressible media approximation, the component of the instability wave vector per-
pendicular to the interface is purely imaginary. Hence, the perturbation is a surface wave at
the interface. In a more realistic approach, the KH eigen modes decay away from the shear
boundary, confining it as a surface wave on the interface. Non-linear evolution of the KHI
can result in vortices.

In fluids, KHI vortices are observed in many environments including: oceans (e.g., Smyth
and Moum 2012), at the edge of clouds (e.g., Houze 2014), or in the atmosphere of giant
planets (e.g. Saturn, Jupiter). In collisionless space plasmas, KHI occurs in various regions
of the solar system, for instance: at the magnetopause of various planets like Mercury, possi-
bly Venus, Jupiter and Saturn (e.g., Johnson et al. 2014), the edge of coronal mass ejections
(Foullon et al. 2011; Nykyri and Foullon 2013) and more generally in the solar atmosphere
and the solar wind (e.g., Mishin and Tomozov 2016). KHI is also considered to play an
important role in various astrophysical objects such as the Orion nebula (Berné et al. 2010),
the pulsar wind (Bucciantini et al. 2005) or around quasar (e.g., Lobanov and Zensus 2001).

At Earth, KHI is observed at the magnetopause where a velocity shear exists due to the
magnetosheath plasma flowing along the magnetopause. This plasma is indeed faster but
also denser and colder than the magnetospheric plasma (e.g., Belmont and Chanteur 1989).
The Earth’s magnetopause offers a unique testbed where all scales of this phenomenon can
nowadays be investigated: fluid, ion and electron scales. Furthermore, ground-based instru-
mentation and various magnetospheric missions enable to capture the impact of this phe-
nomenon in terms of plasma entry in the plasma sheet, the generation of ULF waves and its
consequences in the ionosphere such as field aligned currents.
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Before the launch of the Cluster mission in 2000 and THEMIS in 2007, many questions
remained open about this phenomenon including:

Does KHI lead to the development of rolled-up vortices along the magnetopause?

Are they rare or a common feature?

Is there a dawn—dusk asymmetry? if yes what causes it?

Does the Kelvin—Helmholtz instability only occurs during Northward IMF and near the

LLBL?

e What are the physical mechanisms within a KHI vortex allowing magnetosheath plasma
to enter or magnetospheric plasma to exit the magnetosphere?

e How does this phenomenon develop from birth to collapse along the magnetopause?

e How is magnetic reconnection initiated within KH rolled-up vortices?

e What is the contribution of the KHI vs. magnetic reconnection in terms of plasma entry?

As we will see in the following sections, most of these questions have been answered or
tackled thanks to Cluster and THEMIS data, complemented by other missions like Geotail
and Double Star.

3 Multi-spacecraft Vision

During a prolonged period of northward IMF, the Cluster spacecraft revealed that KH waves
can roll-up and evolve into 40,000-55,000 km wide vortices along the Earth’s magnetopause
(Hasegawa et al. 2004), see left panel of Fig. 1. This observation is key as according to
MHD simulations, plasma transport across the magnetopause can occur within or at the
edge of such fully developed vortices. Different scenarios of plasma transport have been pro-
posed over the years, including: magnetic reconnection (e.g. Nykyri and Otto 2001; Nykyri
et al. 20006), diffusive particle transport via turbulence (e.g. Matsumoto and Hoshino 2004;
Nakamura et al. 2004; Cowee et al. 2009, 2010; Stawarz et al. 2016) and anomalous trans-
port due the conversion of KH surface waves to kinetic Alfvén waves (Chaston et al. 2007);
see also Sect. 5.

But before discriminating between these different candidates, more data had to be anal-
ysed to know if these rolled-up vortices were a common feature during Northward IMF
or not. Cluster, with its nominal polar orbit, is not optimal to capture a large number of
events at the LLBL. However, a 3-D MHD simulation by Takagi et al. (2006) suggested that
rolled-up vortices could be detected by a single spacecraft crossing the magnetopause. This
simulation indeed demonstrates that at a certain radial distance from the centre of a rolled-up
vortex, tenuous plasma must rotate faster than a denser plasma for the force balance in the
radial direction to be maintained. This result confirmed previous predictions based on 2-D
MHD simulations (Nakamura et al. 2004). Hence, the tailward speed of at least a fraction of
the low-density magnetospheric plasma must exceed the speed of the dense magnetosheath
plasma. As this feature is characteristic of a fully developed K-H vortex and potentially
detectable by a single spacecraft, Takagi et al. (2006) suggested to use it as a tracer of the
presence of such vortices.

Hasegawa et al. (2006) not only confirmed the presence of this signature in the Cluster
data analysed in Hasegawa et al. (2004) but also presented a survey of the Geotail data
collected from 1995 to 2003. This survey reveals that these vortices are not rare under
northward IMF conditions. For each vortex detected, magnetosheath ions are systematically
present on the magnetospheric side of the boundary. Hence, the KHI may play a significant
role in the formation of the LLBL flank under Northward IMF. More precisely, this study
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Fig. 1 Left panel: sketch of the magnetosphere with Kelvin—Helmholtz vortices generated on the dusk flank
during a prolonged period of northward IMF. Right panel: sketch of Kelvin Helmholtz vortices developing
at high-latitudes near the northern cusp during strongly westward IMF. Please note that this is an artistic
illustration of the Kelvin—Helmholtz waves observed at the high-latitude magnetopause by Hwang et al.
(2012). These waves were observed at the interface between the magnetosheath and high-latitude closed field
line region and not at the interface between the sheath and the lobe open field lines as this sketch may suggest.
(credit: ESA)

lists 19 events when rolled-up vortices were found under northward IMF with a vast ma-
jority during a prolonged period of strong Northward IMF, while no dawn—dusk asymmetry
was found. According to Hasegawa et al. (2006), this number shall be considered as a lower
bound of the magnetopause rolled-up vortices occurring during that time frame, for two
main reasons. First, the high-speed/low-density signature mentioned above is not always
present during a rolled-up vortex (Takagi et al. 2006). Second, the time resolution of the
plasma instruments on Geotail is only 12 s.

Based on the same methodology, similar surveys have been conducted with data collected
by the Double Star TC-1 spacecraft (Taylor et al. 2012) and the THEMIS probes B and C
(Lin et al. 2014)." These surveys confirmed the conclusions of Hasegawa et al. (2006):
KHI rolled-up vortices are not rare under northward IMF conditions and may contribute
significantly to the entry of magnetosheath plasma in the magnetosphere. However, based
on 34 events collected by TC-1 and Geotail, Taylor et al. (2012) noted a possible dawn—dusk
asymmetry, with a preferential growth on the dusk side in 62% of the cases analysed (70%
for TC1 events only). No particular dawn—dusk asymmetry is reported by Lin et al. (2014). It
has to be noted that a revisit of THEMIS case studies events led to the following conclusion:
the lower density and faster than sheath marker for KHI rolled up vortices proposed by
Takagi et al. (2006) shall be used with great caution for plasma observations at the dayside
magnetopause, especially sunward of the terminator (Plaschke et al. 2014). In other words,
a few of the events listed in the above-mentioned studies may not be genuine crossing of
KHI rolled up vortices.

Furthermore, none of these studies took into account if the horizontal component of the
IMF was in a Parker spiral (PS) or ortho-Parker spiral (OPS) orientation. MHD simulations

Lin et al. (2014) made use of the events reported by Hasegawa et al. (2006), Taylor et al. (2012) plus extra
Geotail and Cluster events reported by Hasegawa et al. (2004), Nishino et al. (2011) and Moore (2012).
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under PS and OPS orientations and under various solar wind plasma conditions suggest
that KHI favours the dawn-flank during PS orientation when source region is the dawn—
dusk terminator. For the PS orientation, the magnetic field tension is indeed smaller at dawn
when compared to dusk sector (Nykyri 2013). One of the conclusions of this study is that
statistically, the KHI formation may favour the dawnside flank, due to the fact that the IMF
is mostly in the Parker spiral orientation.

A revisit of a statistical survey of 7 years of THEMIS data (Kavosi and Raeder 2015),
taking this aspect into account, tends to confirm this prediction observationally (Henry et al.
2017). The normalized occurrence rates showed clear dawn flank preference during PS IMF,
and dusk flank preference during northward IMF (Henry et al. 2017). This study also found
that the KHI was observed at dusk-sector for higher solar wind speeds when compared to
the dawn, which was attributed to the increased magnetic tension at the dusk flank. To be
able to overcome increased magnetic tension, the higher velocities are indeed required. This
dawn—dusk asymmetry of the KHI formation towards dawn may also be linked to the plasma
sheet asymmetry of cold-component ions, which are heated more on the dawnside plasma
sheet (Wing et al. 2005). Upcoming conjunctions of MMS, Cluster and THEMIS may help
providing ground truth of this important aspect as it will allow simultaneous monitoring of
both flanks during the same solar and IMF conditions (see Sect. 6.2).

4 KHI Under Different IMF Conditions

Crossing of a KHI by Cluster at the magnetopause is detailed by Nykyri et al. (2006). Two
remarkable features are presented in this case study. For the first time, signatures of magnetic
reconnection within KH vortices are observed. The second noticeable feature is the IMF B, :
it is only slightly northward and the IMF is mostly in Parker-spiral orientation. In other
words, plasma transport by KHI from the magnetosheath to the magnetosphere may happen
not only during strongly northward IMF conditions. Any configuration that satisfies the KH
onset condition could lead to the instability. For the ideal MHD case in an incompressible
media, the instability criterion is (e.g., Smets et al. 2002)

k7. AV)* > (1/ pusir + 1/ ousp) (owase Ky Vamsi)* + (owse Kz Vause)®)

where Av is the shear velocity. MSH and MSP stand for magnetosheath and magnetosphere
respectively; kr is the wave vector component tangential to the interface, vausy is the Alfvén
velocity in the magnetosheath and v4ysp in the magnetosphere.

In a more realistic case, the KH k-vector will assume a direction to maximize the onset
criteria. For example, the best comparison with data and simulation in Nykyri, 2006-event
was obtained when k-vector was tilted by 35 degrees from the initial shear flow plane. This
result was later confirmed with 3-D simulations of the same event by Adamson et al. (2016).
Furthermore, the onset criteria is derived assuming infinitely thin boundary, and the real
magnetopause has a finite thickness. Therefore, there is a typical minimum wavelength for
KH wave growth (Miura and Pritchett 1982).

Further analysis of the Cluster and THEMIS magnetopause crossings near the flanks
of the LLBL, led to the detection of KH vortices even during southward IMF conditions
(Hwang et al. 2011; Yan et al. 2014), confirming previous observations (Mozer et al. 1994;
Kawano et al. 1994) and 3-D MHD simulations (e.g., Claudepierre et al. 2008). In the case
study of Hwang et al. (2011), Kelvin—Helmholtz waves were found to be much less stable,
due to the fluctuations induced by magnetic reconnection in the sub-solar region and flux
ropes drifting along the magnetopause.
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The same authors then investigated the possible presence of KHI during strongly dawn-
ward IMF conditions (Hwang et al. 2012). For the first time, they reported the in-situ ob-
servations of Kelvin—-Helmholtz waves along the magnetopause at high latitudes, near the
northern duskward cusp (see right panel of Fig. 1). Recently, Ma et al. (2016) also found KH
waves at high-latitudes using Cluster data. These observations confirm predictions made by
past MHD simulations (e.g. Farrugia et al. 1998).

Another IMF magnetic configuration was investigated with multiple THEMIS space-
craft while the IMF was moving from radial to southward pointing (Grygorov et al. 2016).
A well-developed rolled up KH vortex was observed very close to the subsolar point
(Yosm ~ 4.5 Rg), at the inner edge of the LLBL. It was attributed to the intermittent na-
ture of reconnection which leaves the time for a creation of the LLBL and the development
of KH vortices at its inner edge.

All these results change our apprehension of this phenomenon. Indeed, early studies of
the KHI had been investigated almost exclusively near the LLBL, i.e. equatorial flanks of
the magnetopause, and during northward IMF. The motivations were twofold: investigate
its possible role in the formation and the thickening of the LLBL (Mitchell et al. 1987) and
the formation of the Cold Dense Plasma Sheet or CDPS (e.g. Fujimoto et al. 1997), during
northward IMF.

If one only considers the IMF orientation in the KHI onset condition, the purely north-
ward and southward IMF should give the same KH growth rate. However, the main dif-
ference for the northward IMF vs. southward IMF driven KH dynamics comes from 3-D
aspects: a system which is unstable to both KH modes and tearing modes (linear stage of
magnetic reconnection) in the same scale requires that velocity shear and magnetic shear are
not aligned, otherwise either the KH mode or the tearing mode would be stabilized (Chen
et al. 1997). This situation can happen for example during southward IMF at the magne-
topause in presence of an adequate shear-flow in agreement with the KHI onset condition.
The results of this interaction between the KHI and the tearing mode depend strongly on
the initial and boundary conditions, namely, conditions where (1) KH modes represent the
initial or primary process (Ma et al. 2014a) or (2) magnetic reconnection is the primary pro-
cess (Ma et al. 2014b). Both of these will modify the other mechanism, which can lead to
less regular periodic signatures of the plasma and field properties, making it more difficult
to identify the KHI. On the other hand, the formation of the LLBL under northward IMF in-
creases the density on the magnetospheric side and thus reduces the magnetospheric Alfvén
speed (Sect. 4.3 in Hasegawa 2012). The presence of the LLBL may reduce the velocity
jump across the magnetopause (by a factor of ~2), but since it can increase the magneto-
spheric density by an order of magnitude, resulting in reduced density asymmetry, the KHI
onset condition can be satisfied more often for northward than for southward IMF condi-
tions. This can be the other reason why KH waves are more often observed for northward
IMF.

A survey of seven years of magnetopause crossings by the THEMIS spacecraft constel-
lation confirm this aspect, statistically (Kavosi and Raeder 2015). During these seven years,
these satellites crossed the magnetopause during around 960 hours, almost half of the time
during northward IMF (~500 h) and half of the time during southward IMF (~460 h).
Kelvin Helmholtz waves were found at the magnetopause around 35% of the time for north-
ward IMF and (unexpectedly) 10% of the time during southward IMF. The overall occur-
rence rate is 19% for any solar wind and IMF conditions. This rate not surprisingly increases
with solar wind speed (which increases the velocity shear), Alfvén Mach number and den-
sity. However, KHI was found to be mostly independent of IMF magnitude.

It is worth reminding that the orbit of these satellites lies roughly in the equatorial plane
and cannot capture KHI developing at high latitudes such as the observations reported by
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Hwang et al., Ma et al. (2012, 2016) under strongly dawnward IMF. In other words, 19%
is most probably a lower limit of the presence of this phenomenon, regardless of the IMF
orientation.

5 First Observations of Cross-Scale Energy Transport Within a KH
Vortex

One of the pending problems in collisionless plasmas is to understand the plasma heating
and transport across three fundamental scales: fluid, ion and electron. Moore et al. (2016)
used Cluster observations with 80 km separation, and quantified the “cross-scale” energy
transport from a fluid scale (wavelength of 36,000 km) KH wave into an ion-scale fast
magnetosonic wave packet (consisting of wavelengths of 200-2000 km). The existence of
the fluid-scale Kelvin—-Helmholtz instability was established by simulation-data compari-
son, and the ion-scale magnetosonic wave packet was identified by constructing the wave
frequencies as a function of wave number in a plasma frame which was only possible be-
cause both C1 and C4 (which were only ~80 km apart) observed the same wave packet
with a time lag. The constructed experimental dispersion relation agreed with the disper-
sion of the theoretical MHD fast mode wave and at higher k-values agreed better with
the kinetic magnetosonic mode solution obtained by the WHAMP (Rénmark 1982) dis-
persion solver assuming a 71 degrees’ propagation angle between the wave k-vector and
background magnetic field in the source region of the wave. The shell-like ion velocity
distribution functions were determined to be the source of free energy for the kinetic mag-
netosonic waves, however the detailed mechanism generating these distribution functions
is currently under investigation. It may have to do with particle motion in 3-D KH wave
structure.

The energy budget of the cross-scale energy transport was calculated in the following
way: the free kinetic energy per unit area, K;, contained in the velocity shear between
shocked solar wind and magnetospheric plasma was estimated using K;, = 1/2pAv%, Ax,
where p is the average ion mass density and Awy is the difference between the tail-
ward velocities on the magnetosheath and magnetospheric side of the magnetopause. The
AX = Uppase At where At is the duration of the fast mode wave packet while vpjqq. is the
phase velocity of the KH wave determined by simulation-data comparison. The twisting
of the magnetic field and compression of the magnetized plasma was calculated using
Ko = (A szw /2110 + A Pryi) Ax, where A By, is the typical difference between the tailward
and earthward magnetic field components created by the KHI. A P, is the difference be-
tween the total pressures (Pinemar + Pragneric) 0N the magnetosheath and the magnetospheric
side of the KH vortex. Please note that under steady solar wind conditions there should be
total pressure balance at the magnetopause, but because KHI is a compressional instability
it can produce total pressure variations. Hence, the energy budget estimates how much of
the free energy, available in the velocity shear, is used by compression of the magnetic field
and plasma as well as a look at the twisting of the tangential component of the magnetic
field.

K, was estimated to be 840 GeV/cm? and K,,, = 820 GeV/cm? leaving a surplus of
about 20 GeV/cm?. The integrated Poynting flux during the magnetosonic wave packet was
about 22 percent of the available energy surplus. It is well possible that other similar wave
packages were excited in other regions not directly observed in-situ by the spacecraft so this
is likely a conservative estimate of the cross-scale energy transport. Assuming the fast mag-
netosonic mode was completely damped, its wave energy was sufficient to cause ~2 keV
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increase in the ion energy when using the observed integrated kinetic energy flux magnitude
during the wave observation. This cross-scale coupling mechanism could be applicable to
broad range of systems that experience velocity shear and where KHI can form. For ex-
ample, similar cross-scale mechanisms may contribute to the heating of the solar corona,
where KH waves have been observed (Foullon et al. 2011; Ofman and Thompson 2011;
Nykyri and Foullon 2013).

In addition to the mechanism described above, the ultra-low frequency waves (be-
low 0.5 Hz) are associated with mode conversion (Lee et al. 1994; Belmont et al. 1995;
De Keyser et al. 1999). Johnson et al. (2001) showed that perpendicular wave power en-
hancement can be explained by mode conversion of compressional magnetohydrodynamic
(MHD) waves, found in the magnetosheath, into Kinetic Alfvén Waves (KAWs) at the mag-
netopause. These KAWSs have been expected to be important for plasma heating and mixing
in the LLBL (Johnson and Cheng 1997, 2001). Chaston et al. (2007) have shown observa-
tions consistent with mode conversion from surface to KAWs and transport of both electro-
magnetic energy and plasma at the Alfvén resonance, at the dusk flank magnetopause, under
northward IMF (see Fig. 2). However, please note that the mode conversion from surface
waves to KAWs, as reported by Chaston et al. (2007), was originally proposed by Hasegawa
(JGR, 1976). This mechanism would work even without ultra-low frequency waves in the
magnetosheath or in the solar wind.

In addition to the magnetosonic mode, Moore et al. (2016) found waves close to Alfvén
resonance that were consistent with the kinetic Alfvén waves (see Fig. 3). A recent statistical
study by Moore et al. (2017) demonstrates that during KH events there exist more oblique
ion scale waves with larger Poynting flux, when compared to boundary crossings without
Kelvin—Helmholtz activity. Statistics of the plasma parameters during wave observations in-
dicated that during KHI the ion scale wave intervals were associated with more plasma heat-
ing when compared to ion scale wave intervals without KH activity. These results strongly
suggest that KHI is linked with enhanced growth of the KAWs and magnetosonic waves
which in turn can heat ions effectively.

Finally, the Kelvin—Helmholtz Instability can generate thin current sheets where mag-
netic reconnection can occur (Nykyri and Otto 2001, 2004; Nykyri et al. 2006; Hasegawa
et al. 2009; Eriksson et al. 2016; Li et al. 2016). Nykyri et al. (2006) observed ion beams
during intervals where reconnection criteria were satisfied. While magnetic reconnection can
also directly heat plasma particles, in particular when magnetosheath beta is low (Ma et al.
2014a, 2014b), it is possible that these ion beams associated with magnetic reconnection
could also generate electromagnetic waves which in turn could heat the ions.

Above, we have described possible cross-scale energy transport mechanism associated
with the KHI. These can be summarized as follows:

Mechanism 1: Velocity shear -> macroscopic KHI -> boundary layer with strong gradi-
ents and thin current sheets -> shell-like ion distributions -> fast magnetosonic waves -> ion
heating.

Mechanism 2: Velocity shear -> macroscopic KHI -> mode conversion -> kinetic Alfvén
waves -> ion heating.

Mechanism 3: Velocity shear -> macroscopic KHI -> boundary layer with strong gradi-
ents and thin current sheets -> magnetic reconnection -> ion heating, ion beams -> electro-
magnetic ion-scale waves -> more ion heating.
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Alfvén Resonance
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Fig. 3 A 6-minute time interval of the Moore et al. (2016) event in the same format as RHS of Fig.
showing enhanced Poynting flux into the magnetosphere at Alfvén resonance from C3

6 Upcoming observation campaigns with MMS, cluster and THEMIS
6.1 Constellation of Spacecraft Constellations

By June 2019, the orbits of the Cluster, MMS and THEMIS will have largely evolved (see
Fig. 4). Pending the extension of Cluster operations in 2019, this mission will then make
multi-scale observations along the magnetopause, while MMS will observe at electron scales
more than 12 R downstream. Hence, both missions may capture some of the changes occur-
ring in K—H waves over distances of more than 12 Ry along the magnetopause. This kind of
observations will enable, for the first time, to capture the evolution of the KH waves at sep-
arated points along the magnetopause. Cluster could observe the waves beginning to roll-up
into vortices and the vortices as they develop and collapse, while MMS could study mag-
netic reconnection taking place in their twisted magnetic fields. Data from the ARTEMIS
spacecraft at lunar orbit may also potentially be useful to capture the evolution of the KH
waves (Sibeck et al. 2011). Meanwhile, the THEMIS constellation of three spacecraft will
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be located within the near Earth magnetotail. Consequently, it will be able to monitor the
state of the magnetotail plasma sheet, and detect if CDPS events occur. Such events are
characterized in particular by the electron density to be a factor 10 higher than usual.

In other words, these new and unique observations will enable to tackle the following
open questions

What is the evolution of a Kelvin—Helmholtz vortex from birth to collapse?
How is magnetic reconnection initiated within K—H rolled-up vortices?

Do they enable solar wind plasma to enter into magnetospheres?

What is their role in the formation and existence of the cold dense plasma sheet?

Furthermore, the ESA Swarm mission, with three spacecraft orbiting at around 400—
500 km altitude, will seek the signature of K—H waves in the high-latitude ionosphere, such
as Field-Aligned Currents (FAC) associated with the relaxation of newly reconnected mag-
netic flux. K—H waves can also be observed on the ground in the form of ULF type pulsations
in ground-based magnetometers (e.g. Pc3, Pc4, Pc5 or Ps6). The spacecraft observations will
therefore be complemented with ground based observatories such as SuperMag but also
THEMIS All Sky Imagers (ASI) network (e.g. detection of omega bands) and SuperDarn
coherent radars network to scan the F-region (e.g. FAC maps).

6.2 Dawn-Dusk Asymmetry

The cold ions of magnetosheath origin are denser and hotter by 3040 percent at the dawn-
side plasma sheet compared to those measured on the duskside (Hasegawa et al. 2003;
Wing et al. 2005). A recent statistical study of magnetosheath temperatures using 7 years of
THEMIS data indicates that ion magnetosheath temperatures downstream of quasi-parallel
bow shock (dawn-flank for Parker-Spiral IMF) are only 10-15 percent higher than down-
stream of the quasi-perpendicular shock (Dimmock et al. 2015).

This magnetosheath temperature asymmetry (likely related to foreshock processes or in-
situ magnetosheath physics) is therefore inadequate to cause the observed level of the plasma
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sheet temperature asymmetry. Hence, additional physical mechanisms at the magnetopause
must be at work to explain this asymmetric heating.

When studying the possible dawn—dusk asymmetries associated with the KHI and the
physical mechanisms producing this, extreme care must be taken. This includes: location
of the observed waves, possible orbital bias with respect to statistically most prevailing up-
stream shock geometry at dawn and dusk flanks, dipole tilt angle, presence of plasmaspheric
plume (Walsh et al. 2015), magnetosheath seed fluctuations (Nykyri et al. 2017). For exam-
ple, Taylor et al. (2012) observed more KH events at the dusk flank, but for many of these
events, the IMF was in Ortho-parker Spiral orientation, making the magnetic field tension
smaller on the dusk-sector.

Left panel of Fig. 5 presents the spatial distribution of the normalized occurrence rate
of these KH waves observed between 2007-2013. It favours the dawn flank magnetopause
under Parker-Spiral IMF orientation (Henry et al. 2017). MHD simulations demonstrate that
for a variety of solar wind plasma conditions and under Parker-Spiral IMF orientation, the
KHI growth at dawn—dusk terminator shows a slight preference for dawn flank due to the
smaller magnetic field tension (see right panel of Fig. 5), when compared to the dusk flank
(Nykyri 2013). Furthermore, a recent statistical study using 6 years of THEMIS data illus-
trates that the fluctuations in the ULF Pc4-Pc5 range, which characterizes the fluctuations
generated by the KHI (but also other mechanisms such as FTE’s and pressure pulses), is
more enhanced in the dawn flank (Nykyri and Dimmock 2016). The spectral energy den-
sities of the ion-scale electromagnetic waves are also more enhanced at the dawn-sector
magnetopause (Yao et al. 2011). Recently, a statistical study using Cluster data has demon-
strated that KH activity is associated with more energetic ion scale waves and enhanced ion
heating when compared to boundary crossing without KHI (Moore et al. 2017). This sug-
gests a positive correlation between KH waves and ion scale electromagnetic waves. The
dawn-favoured asymmetry of the KH waves and ion scale waves may therefore explain the
origin of the observed plasma sheet temperature and density asymmetry. In addition, the
velocity and magnetic field seed fluctuations are more enhanced in the dawn magnetosheath
(Dimmock et al. 2014, 2016) which may drive KHI more effectively in dawn-flank magne-
topause (Nykyri et al. 2017). Data collected by MMS, THEMIS and the Van Allen Probes
from May to August in 2018 may help to better understand this dawn—dusk asymmetry (see
Fig. 6).

6.3 KHI Turbulence

Based on early MMS observations (September 2015), turbulence is present in the KHI, in
the region between current sheets associated with the large-scale KHI (Stawarz et al. 2016).
However, the presence of distinct periodic current sheets described in this paper may indicate
that the turbulence is not fully developed. Once the apogee of the MMS spacecraft is raised,
MMS will have the opportunity to cross the magnetopause farther down the tail with smaller
spacecraft separation than in these early data (~200 km inter-spacecraft separation). This
will likely enable to probe turbulence in a much more developed state.

6.4 Cross-Scale Energy Transport Within a KH Vortex
The future studies with MMS spacecraft and future missions with cross-scale constellation
spanning simultaneously the fluid, ion and electron scales can shed light on, which of the

cross-scale coupling mechanisms described in Sect. 5 is the dominant one. Alternatively,
there may be a dependence on upstream solar wind conditions and resulting magnetosheath
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Fig. 6 Orbit configuration of
MMS, THEMIS (THM) and the
Van Allen Probes (VAP) in
May—August 2018 timeframe

plasma parameters determining the efficiency of the particular cross-scale energy transport
mechanism. A clue may be given by a relative constancy of the electron to ion temperature
ratios (Lavraud et al. 2009). The dominant mechanism must be able to explain how the elec-
trons “know” when ions have been heated. At higher k-values the ion-scale magnetosonic
wave (which was shown to be able to energize the ions) is the whistler wave, so if there is
sufficient wave energy left at higher k-value, this magnetosonic-whistler wave may be able
to explain both the heating of ions and electrons during the KH events. The 10 km MMS
spacecraft separations are ideal for studying the waves between ion and electron scales. With
a bit of luck, an event may be found where the experimental dispersion relation, similar to
the one found by Moore et al. (2016) may be extended to higher k-values and energy budget
and transport can be quantitatively evaluated.

7 Conclusion

Since 2000, the Cluster and THEMIS missions have enabled a leap forward in our under-
standing of the Kelvin—Helmholtz instability thanks to unique multiple measurements at the
magnetopause. For the first time, it was found that KHI can lead to the development of
rolled-up vortices along the magnetopause. Statistical studies based on the data collected by
these missions, but also Geotail and Double Star, have clearly shown that KHI is a common
phenomenon. While more favoured under Northward IMF conditions, KHI was found to
develop under any IMF conditions. Three main physical mechanisms have been identified
to explain the cross-scale energy transport within a KHI vortex. Future coordinated observa-
tions in 2018-2020 by a unique set of multi-spacecraft missions (MMS, Cluster, THEMIS,
Van Allen Probes, Swarm) may shed light on which one of these mechanisms is the dom-
inant one. Other questions might hopefully be tackled by these upcoming measurements:
how does this phenomenon develop from birth to collapse along the magnetopause? what is
the role of turbulence if found in a fully developed state? Eventually these new observations
will provide a more quantitative picture on a long-standing question: what is the contribu-
tion of the KHI vs. magnetic reconnection in terms of plasma entry depending on solar wind
conditions.
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