

SIDE DISPLAY Silver Crystals

Visitors observe a stoppered flask containing a blue solution and a piece of copper wire covered with silver crystals. Visitors read the copy explaining the chemical reaction that produced the crystals.

OBJECTIVES:

Visitors learn that metals can form crystals, and that a solid can form from atoms present in a solution (though invisible to the naked eye). They learn that one kind of atom can replace another in a chemical reaction. They also learn that the kind of atom in a solution can affect the color of the solution.

SCIENCE TOPICS	Process Skills	Vocabulary
Properties of Metals	Observing	Chemical Reaction
Chemical Reactions	Inferring	Compound
Properties of Solutions	Comparing/Contrasting	Solid
Properties of Crystals		Solution
Properties of Ions		

Silver Crystals

To do and notice:

- 1. Look in the bottom of the flask with liquid What do you see?
- 2. Look at the liquid in this flask. What color is it?
- 3. Compare the metal strips in each flask.

What is going on?

What are the crystals?

The shiny crystals on the bottom of flask A are pure silver.

Where did the crystals come from?

The crystals form when copper metal (Cu) is added to a solution of silver nitrate (AgNO₃). The copper replaces the silver in the solution, and solid silver crystals (Ag) form on the surface of the copper. Look in flask B to see what the copper looked like before silver crystals looked like before silver crystals formed on it.

Why is the solution blue?

Copper is orange/brown as a solid, but the copper that replaced the silver in solution is blue.

MATERIALS

See Materials Prep for more details

(with amounts to have on hand)

- Two 250-ml flasks
- Two rubber stoppers for flasks
- 3.4 g AgNO₃ (silver nitrate) (keep 100 g on hand)
- dH₂O (deionized water)
- two pieces of clean copper strips, each about 6 in. long by ¼ in. wide

Setup/Takedown Procedures

ORIGINAL SETUP

- ☐ Take one of the flasks and arrange one piece of the copper strip so that it hangs down to the bottom of the flask.
- ☐ Wear protective eyewear, chemical safety gloves, and an apron or a lab jacket.
- □ Pour 200 ml of the AgNO₃ (silver nitrate) solution (see Materials Prep) into the flask and stopper it securely.
- ☐ In the second flask, add the other piece of copper and stopper it securely.
- ☐ Tape both stoppers closed with electrical tape. Crystals will immediately begin to grow in the first flask.

WEEKLY SETUP

☐ Set the display (the two flasks) behind a Plexiglas barrier so that visitors can observe, but not shake, the flasks. Put the public copy beside the display in a Plexiglas stand.

DAILY SETUP

- ☐ Check to make sure the flasks have not been tampered with.
- ☐ Redo original setup as needed.

WEEKLY TAKEDOWN

☐ This setup can be saved and set out indefinitely.

Relate to the Unit 1 "Trading Places" experiment.

You can try this with other combinations of metals and nitrates (e.g., $CU(NO_3)_2$ (copper nitrate) with zinc metal would give copper crystals).

Refer to a metal activity table, found in most chemistry textbooks, to see what other combinations might work.

SAFETY & DISPOSAL

AgNO₃ (silver nitrate) is a hazardous substance; follow handling and disposal instructions in Original Setup and Materials Prep.

Consult Material Safety Data Sheets (MSDS) for additional information.

To dispose of flask contents, run a water faucet and pour the solution into the sink. Empty the crystals and copper strips into the trash.

MATERIALS PREP

To prepare 200 ml 0.1M AgNO₃ (silver nitrate) solution:

- ☐ Wear protective gloves, protective eyewear, and lab coat.
- ☐ Measure 3.4 g of AgNO₃.
- ☐ Add to 200 ml of dH₂O (deionized water).
- ☐ Stir until dissolved.