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Abstract

Message transmission over a noisy channel is considered. Two linear networks

are to be designed: one to treat the message before transmission; the second to filter

the treated message plus channel noise at the receiving end. The mean-square error

between the actual transmission circuit output and the desired output is minimized for

a given allowable average signal power by proper network design. The results of a

numerical example are given and discussed.
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CODING WITH LINEAR SYSTEMS

I. Introduction

The importance of the statistical approach to filter design as originated by

Wiener (1, 2) and developed by Lee (3) has been discussed by this author in a forthcoming

report (4). Briefly, for a given message plus noise input as shown in Fig. 1, we desire

to find a filter characteristic which will give the best possible performance. By "best"

we mean that filter which minimizes the mean-square error between the actual output

fo(t) and the desired output fd(t). That is S, the mean-square error of filtering, will
be given by

T

C5= lim 2T f f1(t) fd(t)] 2 dt.
T-oo T -T

(1)

Such an error criterion is certainly a reasonable one from a physical point of view,

but contrary to a popular notion

fm, (t) !FILTER

fn (t )J NETWORK

Fig. 1

Conventional filter problem:

fm(t) = message function;

fn(t) = noise function;

fo(t) = actual filter output;

fd(t) = desired filter output.

the statistical parameters needed

it is by no means the only error measure amenable

to mathematical treatment (5).

The desired filter output is usually the message

function f(t). However, it may happen that an out-

put other than the message may be required. For

example, one might ask for a network design which

would filter the message from the noise, predict

the message by a seconds, and differentiate the

result. Thus, we could require prediction, filtering,

and differentiation in one operation (3). In this sense

a network may be considered as an operator rather

than simply a filter (1).

If linear systems only are to be considered,

for design are known as the correlation functions.

The crosscorrelation function +1 2 (T) between random functions

by

T

12(T) = lim 2T -fl(t)f2(t+T)dt.
-T

f l (t) and f 2 (t) is defined

(2)

The autocorrelation function 1 1 (T) of the random function fl(t) is defined by

T

,,(T) = lim 2T1 ffl(t)fl(t+T)dt.
T -. 00

-T

The Fourier transform pair g(t), G(w) are related by
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00too

G(o) = 2 f g(t) E dt (4)

-00

and
00

g(t) = G(+o)e tdw. (5)
-00

By the Laplace transform we shall mean relations Eqs. 4 and 5 except that is

replaced by X where

X = + jo-. (6)

An important theorem due to Wiener (3, 6) states that the power-density spectrum of

a random function fl(t) is given by the Fourier transform of the autocorrelation function

of fl(t). That is,

00

,() f p ll(T)EJTdT. (7)

-c0

In a similar manner, we may define a cross-power spectrum 12( ) between random

functions f 1 (t) and f2 (t) as
00

l2(o) 2= rr f cl(CT) e d T. (8)
-00

Let us define the unit impulse u(t) by

u(t) = lim q_-a t
a - o

Then we may show using Eq. 4 that the transform U(c) of u(t) is given by

U () = r (9)

Now if h(t) is the response of a linear system to a unit impulse input, it may be shown(3)

that the output fo(t) of the linear system to an arbitrary input fi(t) will be given by

00

fo(t) = f h(or)fi(t-)dr. (10)
-0o

Let e(t) be the transient output of the linear system due to a transient input ei(t). If

a system function H(o) is defined for the linear system such that

E (c)
H(o) = E( ) (11)

1iO
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it may be shown that H(w) and h(t) are related by

00

H(o) = h(t)e Jtdt (12)

-00

and

h(t) = fJH(W) E+j tdu (13)

00

which correspond to Eqs. 4 and 5 except for the location of the 2r term.

II. The Transmission Problem

The filter design problem of Fig. 1 has been treated in great detail by both Wiener(l)

and Lee (3), with experimental verification available in the work of C. A. Stutt (8).

Therefore, in this report we shall consider the more general situation described by

Fig. 2. In most communication systems the opportunity exists to modify or "code" the

message to be transmitted before its introduction into the transmission channel. Net-

work H(w) must be designed so that the message is "pre-distorted" or "coded" in such

a way as to enable the "decoding" or filtering network G(w) to produce an output which

is a better mean-square approximation to the desired output than would be possible if

the untreated message were put into the transmission channel.

The mean-square error between f (t) and fd(t) of Fig. 2 will be

T 00 00

= lim 2T dt dg(cr)fn(t- ) jdg(o) + g() dvh(v)fm(t-C-v) - . (14)

- T -00 00- - 00O

When expanded Eq. 14 may be rewritten in terms of correlation functions as

-00 -00 -00 -00 -00

+ f f f f d/pdidcdvg(O)h(~)g(cr)h(v)4mm( /p+a-(c-v) - 2 f dcrg(cr)qnd(c)
_ 00 -00 - 00 - 00 - 00

00 00

- 2 f f ddvg(o)h(v)pmd(+v) + dd(). (15)
-00 -00

Impulse response functions g(t) and h(t) must be found which minimize of Eq. 15 and

which may be realized by physical networks. That is

g(t), h(t) = 0 for t < 0. (16)

3-
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fn (t)

Fig. 2

Transmission circuit.

An additional constraint must be imposed on the coding network H(w) with regard to

average transmitted signal power, but this need not be considered at this point.

As a first approach let us assume that H(w) is fixed and solve for an optimum G(c).

This may be done by letting g(t) of Eq. 15 take on an admissible variation E (t) where

(t) = 0 for t < 0 (17)

and is a parameter independent of and h. That is, we replace g(t) of Eq. 15 by

g(t) + vei(t) and replace & by + 6. Now if a certain g(t) gives minimum mean-square

error, then certainly this optimum g(t) must also satisfy

a(e + SE = =0. (18)

An expansion of Eq. 18 by using Eq. 15 results in

fdvg(v)nn(a-v) + f f dadvh(v)g()qnm (a-ca-v)

- o -oo -oo

+ f f didvh(vl nml v l
-00 -00

00
oo

~nd(0) - f dvh(v)( md(a+v)
-00

= q(o) (19)

where q(o() is a function defined by

q(o) = O for o > 0. (20)

Now taking the Laplace transform of Eq. 20 with respect to cr one obtains

G(X)F(X) - Pnd(X) - H(-X)md(k) = Q(X) (21)

-4-
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where F(X) is by definition

F(X) = H(X)H(-X) mm(X) + H(X)nm(X) + H(-X)mn (X) + nn(X). (22)

We shall assume that F(X) is factorable into

F(X) = F+(X) F-(X) (23)

where F (X) has all its poles and zeros in the upper half of the X plane, and F (X) has

all its poles and zeros in the lower half of the X plane. Equation 21 may then be written

with the aid of Eqs. 4, 5, and 6 as

G(X)F+ 1 Xt-jt f ~nd() + H(W)md(w) E+jwtG(X)F (X) - j dt (w) Edw

0 -00

0O oo

r e jrt dt f nd(w ) +H(w)md(W) +jwt dw
-00 -00

FQ() (24)

The first two terms on the left-hand side of Eq. 24 have all their poles, if any, in the

upper half of the X plane, while the third term on the left has all its poles in the lower

half of the X plane. Since the right-hand side of Eq. 24 has poles only in the lower-half

plane, the first two terms on the left, when taken together, must equal a constant. It

can be shown that this constant is zero, thus yielding

1 0 -jkt 00 nd(w) + H( w)md(w) jwt dw
G(X) = 2rF+(X) f E dt + H( w)mw dw (25)

0 -00

For a fixed H(X) network of Fig. 2, Eq. 25 gives the optimum transfer function for the

decoding network. The system function G(X) given by Eq. 25 is always realizable.

Two special cases of Eq. 25 are of interest. First choosing H(X) = 1, we have

F(k) = M (k) + nm(k) + ) + nn(X)

(26)
-- ii( ).

Thus, F(X) becomes the Fourier transform of the autocorrelation function of the G net-

work input. We then have for G(X)

G(X) = 1 r jdt (w) +wdw (27)i (w )

0 -00

where bid() represents the cross-power spectrum between the filter input and the

desired output. Equation 27 is the optimum filter formula of Wiener and Lee and is

-5-
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the solution to the problem of Fig. 1.

The second special case of interest occurs when the noise function of Fig. 2 is made

zero. Then Eq. 25 becomes

G(x) E -j=t dt f H(-w)md(w) E+jWtdw (28)
m mm 00HWmmo -o

where

H+(X)H-(X) = H(X)H(-X) (28a)

which is the so-called "optimum compensator formula. " Equation 28, though previously

unpublished, was first derived by Y. W. Lee.

If the network G(w) of Fig. 2 is considered fixed, then by exactly the same methods

used above, we will find that the optimum H(X) will be given by

00 00G-w)

H(X) = 2EwG+(k)+ dt G+(W)mn (w ) E+jwt dw (29)
/Tktdt / G -(W~) -md(W) 4 m(W)

2r mm 0() X -0L mm mm ]
where

G +(X)G-(X) = G(X)G(-X). (29a)

If the channel noise is zero or if the crosscorrelation between the message and noise

is zero, Eq. 29 reduces to an optimum compensator formula.

Equation 25 gives the optimum G(X) for a fixed H(X) while Eq. 29 gives the optimum

H(X) for fixed G(k). If a simultaneous solution of Eqs. 25 and 29 is performed, one would

obtain the optimum coding-decoding pair of networks for the transmission circuit of

Fig. 2. However, before such a solution is attempted, it will be convenient to solve

for the mean-square error resulting from fixing H(k) and optimizing G(X). Substitution

of Eq. 19 into Eq. 15 yields

o00 00 o

min xed)= dd() - f drg(r-)n d C)- fdodvg(-)h(v)d(+ v). (30)
-00 -oo -

This equation may be rewritten in terms of Fourier transforms as

00

(H Fixed) fd {dd(C) -- nd(w)G(-w) - G(-w)H(-w) mdo(31)

It must be remembered that g(o-) and G(o) of Eqs. 30 and 31 are not arbitrary but are

solutions of Eq. 19.

III. Long-Delay Solution

In solving for the optimum pair of networks of Fig. 2, we shall assume that the

crosscorrelation between the message and the channel noise is zero. We shall further

-6-
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accept a long-delay solution; that is, the desired output shall be the message delayed.

Thus

fd(t) = fm(t-a), a-oo (32)

and

md(O) = mm(c) E -j, a-o. (33)

Under these conditions, Eq. 25 may be rewritten as

H(-w) (X) jaW
G(w) a mm , a- o. (34)

H() mm nn

Since best possible filtering results when long delays are permitted (3), substitution of

Eq. 34 into Eq. 31 will result in the lowest possible error, the so-called irremovable

error. Thus, we have finally

00

,(H Fixed) = i mm( nn
irr f I H(w) 12~p (W) + (I dw. (35)

00 H()I 2 mm() nn

Note that the irremovable error is dependent only upon the magnitude of the transfer

function of H(w), not upon the phase. Equation 34 shows that any phase contribution due

to a fixed H(w) will be removed by the optimum decoding network G(w).

For a given H(w), Eq. 35 will give the resulting transmission error provided network

G(w) is designed according to Eq. 34. Thus, we must find an H(w) which makes the error

of Eq. 35 a minimum and at the same time keeps the average transmitted signal power

constant. That is, we must require that

00

f I H() 2 mm()d) = c1 (36)
-00

since H(w) | 2mm(w) represents the power-density spectrum of the output of the coding

network. If we let

y'() 2 H() mm(W) (37)

Eqs. 35 and 36 may be rewritten as

irr = mm nn do (38)

0 [y()] 2 + nn(w)

and

o00

f y()] 2 dw = 1/2. (39)

0

-7-
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We now seek that real-valued function y(w) which minimizes Eq. 38 and in addition satis-

fies Eq. 39. This is the so-called isoperimetric condition of the calculus of variations.

By applying the usual techniques (9), one obtains

IH() 12 mm(O) = nn( ) + mm() nn() (40 a)

and

IH()I 2 mm (W) = 0 (40b)

where y is a constant which must be adjusted to satisfy Eq. 39. Equation 40a is used

where the right-hand side is positive, otherwise Eq. 40b must be used. Physically this

means that H(w) may contain stop bands; however, the existence of such stopbands is in

no sense a violation of the Paley-Wiener theorem (1, 10, 11) as an infinite delay time

through H(w) and G(o) is assumed.

IV. Discussion of Results

As a check on the results of section III, a noise spectrum

2
nn(O) = a (41)

and a message spectrum

mm() 2 2T z (42)
+

were assumed. When 2a2 was chosen equal to 1/5 r1 and c was made unity, Eq. 38

gave a mean-square error of 0. 285. Without coding and using the same average signal

power, the mean-square error was found to be 0. 302. (This was computed from Eq. 35

by setting H(c) 2 equal to unity.) Thus, the optimum coding network gave some trans-

mission improvement but not a considerable amount. For the particular case cited, no

transmission is allowed by H(c) beyond w = 8. 45 P, and when the noise level was raised

by a factor of five, this upper cut-off frequency moved down to = 3. 25 P.

It can be shown that a communication circuit using amplitude modulation can be

represented by Fig. 2 (ref. 4). The use of frequency modulation complicates matters

but it has been suggested that noise spectra of the form

Mnn(c) = a o (43)

might be meaningful. Using the message spectrum of Eq. 42 and the noise spectrum of

Eq. 43, it was found that only a moderate improvement resulted using optimum coding

or "pre-emphasis" networks.

The moderate improvement in mean-square error shown above is due in part to the

particular spectra assumed. Therefore, in certain instances a considerable improve-

ment might be realized by using proper coding networks.
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