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INTRODUCTION 
 

 

 

 

“It’s a dangerous business, Frodo, going out of the door.  

You step into the Road, and if you don’t keep your feet,  

there is no knowing where you might be swept off to.  

Do you realize that this is the very path that goes through  

Mirkwood, and that if you let it, it might take you to  

the Lonely Mountain or even further and to worse places?” 

The Lord of The Rings 

The Fellowship of the Ring 

J.R.R. Tolkien 
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1 GENOMIC VARIATION 
Earth is the only known planet that holds life. This life is extremely diverse and 

occupies a wide range of different ecological niches. However, despite all their diversity, all 

living organisms today share a common ancestor, named LUCA.  LUCA, which stands for Last 

Unique Common Ancestor, lived between three and four billion years ago (Ridley. 2000). The 

force beyond the origin of the multiplicity of living forms present today from LUCA is evolution, 

which acts over the genomes creating variability. 

The main forces driving evolution are mutation, selection, migration, and genetic drift. 

Mutation creates new variability, adding changes to the genome; while selection, migration 

and drift act over the present variation increasing or reducing it. Although the effect of those 

forces takes place on populations of a given species, in the end it may result in the split of one 

single species into two different ones.  

Mutation occurs through different mechanisms involved in DNA duplication and repair. 

Consequently, it can create different types of polymorphism (see Figure 1), which take place at 

different rates. One of those are single nucleotide polymorphisms (SNPs), which consist in the 

substitution of one base for another in a single position. Nucleotide mutations occur at a rate 

between 10-8 and 10-10 per site and generation, depending on the genome context: for 

instance, they are more frequent in CpG islands. Another example are microsatellites or short 

tandem repeats (STRs), sequences of one to six bases in length that are repeated in tandem. In 

STRs, variation is found in the number of repeats between individuals, and the mutation rate is 

about 10-3-10-4 per generation. 

 

As the genome is shaped by the evolutionary forces mentioned above, the study of its 

patterns of variation provides information on the processes that have acted over it, both 

globally (demographic factors) or locally (selective forces). In fact, a large number of papers are 

devoted to inferring the processes underlying population history from variation (Spurdle and 

Jenkins. 1992; Comas et al. 1998; Garrigan et al. 2007; Goebel et al. 2008; Friedlaender et al. 

2008). 

  

Figure 1: fragment of DNA in six individuals. Red 
indicates a SNP, blue an STR. 
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1.1 Demography 
Population size, changes in population size, and population movements have the 

potential to shape variation simultaneously along the whole genome. Some of those factors, 

such as migration or bottlenecks, reduce variation; while others, like population splits or 

expansions, increase it.  

However, the mechanisms through which they act are different. For instance, 

migration reduces variability due to the gene flow between two separated populations, while 

bottlenecks reduce it by a sudden decrease of the population size, in which a number of its 

individuals and the variation they carry get lost. The same happens with population subdivision 

and expansions. The former increases variability through the split of one population in two, 

which will accumulate different changes over time. Expansions, on the other hand, increase it 

through a rapid increase of population size, which leads to the rapid creation of new variation. 

This is more extensively explained in section 3. 

Particular demographic histories have been extensively studied through the analysis of 

variation patterns and how they change over populations. In humans, this has been typically 

achieved genotyping SNPs and STRs in the Y chromosome, and resampling mitochondrial DNA 

(Spurdle and Jenkins. 1992; Stoneking. 1994; Castro et al. 1998; Cavalli-Sforza. 1998; Comas et 

al. 1998; Stumpf and Goldstein. 2001; Underhill. 2003; McElreavey and Quintana-Murci. 2005; 

Torroni et al. 2006; Goebel et al. 2008), although more recently some studies have been 

performed using polymorphism in the X chromosome (Schaffner. 2004; Garrigan and Hammer. 

2006; Garrigan et al. 2007) or even the autosomes (Comas et al. 2000; Garrigan and Hammer. 

2006; Friedlaender et al. 2008).  

 

Y chromosome and mitochondrial DNA (mtDNA) have been the favourite tools for 

population geneticists for nearly three decades (see Figure 2). This is mainly due to their 

particular characteristics, as they are haploid and uniparentally inherited. Being haploid means 

that a) their haplotypes are directly accessible and, thus, their phase does not need to be 

estimated, and b) their effective population size (Ne) is one quarter that of the autosomes, so 

Figure 2: map of human expansion according to mitochondrial DNA. 
(http://www.familytreedna.com/) 
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they are more sensitive to genetic drift. The uniparental inheritance has the advantage than 

we can draw independent demographic maps for each sex and infer whether males and 

females have undergone the same processes.  

Too often Y chromosome and mtDNA studies realised over the same or very similar 

populations have been independently published, leading to confusing explanations about the 

demographic history of the peopling of a given area. As a consequence, several works aimed to 

reconcile both the male and female perspective have been written. This is the case of the work 

by Wood et al. (2005), in which they intended to establish the association between genetic 

markers for both sexes and linguistic and geographic variation in Africa. With this objective, 

they genotyped 50 SNPs in the Y chromosome in 40 African populations and compared their 

results with those of several previous mtDNA publications (Salas et al. 2002; Knight et al. 2003; 

Destro-Bisol et al. 2004; Coia et al. 2005). Their results suggested that the patterns of 

migration inside Africa have been different for males and females. In fact, genetic variation 

strongly correlates with linguistic differences in males but not in females, which points to sex-

biased effects of the replacement of hunter-gatherer populations by Bantu farmers. 

The X chromosome is a useful tool to disentangle human demography as it has several 

characteristics close to those of the Y chromosome and the mitochondrial DNA: a) it has low 

recombination rates, b) in the case of males its haplotypes can be directly obtained and c) as 

males have only one copy, its Ne is smaller than in autosomes. Moreover, as it is present in 

both males and females, it can yield a more general picture of the demographic factors 

affecting populations. 

Demography was inferred from variation at the X chromosome by Laan et al. (2005). 

Their goal was to ascertain how the demographic history of populations affects linkage 

disequilibrium (LD) patterns and to which extent cross-over activity dilutes its effects. They 

focused in two different regions of the X chromosome, one with low cross-over activity (Xq13) 

and the other with high cross-over activity (Xp22). They genotyped eight microsatellites on 

Xq13 and six on Xp22 in 14 Eurasian populations, and calculated patterns of LD among them. 

Their results showed that Xq13, having low cross-over rates, maintained higher levels of LD, 

which are consistent with the demographic history of the populations involved in the study. 

Furthermore, demographic factors were shown to influence the haplotype distribution of the 

markers at Xq13 across populations. On the other hand, the haplotype and LD structure found 

gave insights of the demographic history of the populations included and of the gene flow 

among them.  

  



6 

1.2 Selection 
Selection consists in the differential reproductive success of the distinct variants in the 

population. These forces can reduce variability, in the case of directional and stabilizing 

selection, or increase it in the case of disruptive selection, as shown in Figure 3.  

 

Directional selection reduces variability by favouring (positive selection) or hindering 

(negative selection) a variant, and shifts the distribution of a given trait in the population. 

Stabilizing selection does so by favouring intermediate phenotypes, and thus reduces the 

variability of the trait. On the contrary, disruptive selection increases the variance of a 

population by favouring extreme phenotypes, producing bimodal distributions of the trait 

involved.  

As discussed in the previous paragraph, selection affects the genome locally because it 

acts over a single phenotypic trait, which translates to a gene or genomic region. Thus, the 

selective inferences made when analysing variation in a gene are limited to this gene and the 

adjacent area. This area of influence decreases as the recombination rates in the region 

increase, as recombination shuffles the variation present in the population. 

One of the tools available to detect selective events is to compare the frequency of a 

genetic variant between populations. In fact, population-specific selection pressures can 

increase differences between them while strong, homogeneous selective pressure can lead to 

less diversity than expected. 

  

Figure 3: kinds of selection which can act over phenotypes. 
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FST is a measure of the proportion of the genetic variance explained by the differences 

among populations that counts the excess of heterozygotes found by pooling different 

populations. If many loci are studied simultaneously, the differences that will arise among 

populations will be due to demographic effects. However, if a single locus is compared to the 

rest of the genome, FST can be used to detect differential patterns of selection among 

populations.  

Based on that property of FST, Akey 

et al. (2002) provided an empirical genome-

wide distribution of FST values (see Figure 4). 

This distribution was created by comparing 

the frequency of 26,530 SNPs distributed 

along the whole genome in three 

populations. The idea behind the description 

of such a distribution is that the differences 

that will be observed among populations will 

be due to demographic events. Thus, it will 

provide a neutral distribution (see section 2) 

against which other SNPs could be compared. If the FST value of the SNPs of interest is extreme 

compared to the genome-wide distribution, we may infer that the difference between 

populations is not due to demography but to selective events. 

In fact, Akey et al. (2002) compared the FST values obtained for 8,862 SNPs located in 

gene-associated regions and identified 174 regions which extreme FST. Among these regions, 

they found 17 genes associated with Mendelian and complex diseases such as cystic fibrosis or 

type 2 diabetes, respectively. 

 

2 THE NEUTRAL MODEL 
As stated in the previous section, the detection of demographic or selective events in a 

population requires comparing the results obtained in this population against a model where 

these factors were absent. This is the neutral model, and it is based on the neutral theory of 

molecular evolution, which rests on the work developed by R.A. Fisher, J.B.S. Haldane and S. 

Wright in the early thirties. 

2.1 The neutral theory of molecular evolution 
Since Darwin’s publication of The Origin of Species by Means of Natural Selection in 

1859 and until the late nineteen sixties, it was widely believed that evolution was exclusively 

driven by positive selection. However, the next shock to the scientific community came in 

1968, when Kimura published a paper entitled Genetic variability maintained in a finite 

population due to mutational production of neutral and nearly neutral isoalleles (Kimura. 

1968). In it, he proposed that most evolutionary change was not due to variants that affected 

the fitness of an individual but to neutral mutations. Five years later he published the book The 

neutral theory of molecular evolution (Kimura. 1984), that he started with the sentence: “This 

book represents my attempt to convince the scientific world that the main cause of 

evolutionary change at the molecular level […] is random fixation of selectively neutral or 

Figure 4: Akey’s FST distribution. (Akey et al. 2002)  
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nearly neutral mutants rather than positive 

Darwinian selection.” In the introduction, he 

stated that “I am convinced that no other 

existing theory can give a better and more 

consistent explanation of these facts [data from 

the new molecular revolution]”, a sentence that 

still holds nowadays. 

The neutral theory of molecular 

evolution states that the vast majority of 

mutations are neutral, that is, they are neither 

favourable nor unfavourable for the individual 

bearing them, and only a fraction will be exposed 

to natural selection. Under this scenario, the new 

variants arising in the genome increase and 

decrease in frequency at random due to the 

effect of genetic drift, as shown on Figure 5. 

Moreover, Kimura proposed that all mutations 

will eventually, given enough time, be fixed or 

disappear (see Figure 6). Thus, under this light, polymorphism is only an intermediate state 

between the appearance of a variant and its fixation or elimination. This theory, then, 

provided the necessary framework against which to compare the hypothesis of selection over 

genomic regions.  

 

2.2 The Wright-Fisher’s neutral model 
The most widely used model to generate neutral genealogies is the Wright-Fisher 

model (Fisher. 1930; Wright. 1931; Hein et al. 2005). This model describes how an idealised 

population transmits its genes from one generation to the following and, thus, how it evolves 

forwards in time. 

Note, however, that the Wright-Fisher model is not based on a real population but implies 

a number of simplifications. The model, then, follows six assumptions: 

1. Constant size, that is, the number of individuals in the population does not change 

over generations. 

Figure 6: behaviour of new alleles arising in the population. ν corresponds 
to the mutation rate. (Kimura. 1984). 

Figure 5: evolution of the frequency of 20 
unlinked alleles with an initial frequency of 
0.5 due to genetic drift on populations of 10 
(above) and 100 (below) individuals 
(http://en.wikipedia.org/wiki/Evolution).  
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2. Infinite sites. The Wright-Fisher model assumes that mutation may occur in an infinite 

number of sites. This implies that recurrent mutation is not allowed in this model, as 

the probability that two mutations occurs at the same site is zero. 

3. Panmixia, which means that all individuals have the same probability to mate with any 

other individual of the opposite sex, without any internal subdivision. 

4. Non-overlapping generations. All individuals in the population belonging to one 

generation reproduce and die at the same time, and they all mate only with members 

of their own generation. 

5. No recombination: the genes involved in the model cannot recombine. This implies 

that the model as is can only be used on non-recombinant pieces of DNA, such as the 

non-recombining segment of the Y chromosome (NRY) or mitochondrial DNA.  

6. Selection is absent: all individuals have the same probability of surviving and producing 

offspring, irrespectively of their genotypes. 

Thus, if the population of interest does not match the Wright-Fisher model, it might mean 

that it is violating one or more of its assumptions. Finding which one can give clues of which 

processes underlie the history of the population. 

The Wright-Fisher model can be used both to simulate haploid data (such as NRY 

chromosome and mitochondrial DNA) and diploid data, although there are some differences in 

the creation of a haploid or a diploid genealogy.  

Assume a population of size 2N and two generations t and t+1. In the haploid model 

(Figure 7, above) each individual in generation t+1 is modelled taking randomly a gene from 

generation t, so every gene at generation t+1 will have an ancestor in generation t chosen at 

random with probability 
���. The choice of one gene is independent of all other genes. As a 

consequence, an individual at generation t may have more than one descendant, and not all 

individuals at generation t will leave offspring in generation t+1.  

 

Figure 7: the Wright-Fisher model. The haploid model is shown above, and the 
diploid, below. 
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In the diploid model (Figure 7, below) there is an added difficulty, as each individual is 

formed by two genes, one coming from the father and the other from the mother. In this case, 

the population is subdivided into two subpopulations, males and females, with size Nm and Nf 

respectively. Together, they sum the 2N genes assumed in the haploid model. Now, each 

individual at generation t+1 has two ancestors at generation t, which are chosen among the 

males and the females with a probability of 
�.��� in each case. Note that, in the diploid model, 

some restrictions apply: the choice of a gene in generation t to form an individual in 

generation t+1 is no longer independent, as the second gene chosen cannot belong to the 

same parent as the first one. However, if the time scales are corrected, for large values of N, 

Nf, and Nm, the two models are 

probabilistically similar. 

The Wright-Fisher model can, then, 

simulate the genealogy of a given sample of 

size n over time. However, from this genealogy 

created forwards in time we can make 

inferences backwards in time. For instance, as 

not all individuals of a generation leave 

descendants in the next one, going backwards 

in time from the present generation to the 

past it will be seen that all genes existing in 

the present came from a single ancestor that 

lived a certain number of generations in the 

past (see Figure 8). This ancestor receives the 

name of most recent common ancestor 

(MRCA). This point will be later developed in 

more detail in section 3. For examples of 

applications of simulations based in the 

Wright-Fisher model, see Rendine et al. (1986) 

and Calafell and Bertranpetit (1993).  

2.3 Moran’s neutral model 
One of the most problematic 

assumptions of the Wright-Fisher’s model is 

that it does not allow overlapping generations. 

This was solved by Moran in the late fifties 

(Moran. 1958a; Moran. 1958b; Gale. 1990; 

Hein et al. 2005), when he proposed a new 

model with overlapping generations. 

In Moran’s model, assuming the same 

population of size 2N that in the Wright-

Fisher’s model, at each point of time, an 

individual is randomly chosen to die and is 

replaced by a newborn, who is a copy of one 

random, pre-existing individual, as shown in Figure 9. Depending on the formulation of the 

Figure 8: Wright-Fisher genealogy for a 
sample of 10 individuals. The present 
sample, their ancestors and their MRCA are 
shown in blue. (Genealogy built using 
http://www.coalescent.dk/).  

Figure 9: Moran’s model. Colours indicate 
the same individual through time, and its 
descendant in case it reproduces (see blue 
and yellow). (Modified from Hein et al.
2005).  
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model, the individual who reproduces and the individual who dies can or cannot be the same. 

As the Wright-Fisher model, Moran’s model also can be formulated for a diploid population.  

Despite the differences between both models, they are equivalent if the time scale is 

corrected and N is large enough. 

 

3 COALESCENT THEORY 
Years after the publication of the Wright-Fisher model and based on it, J.F.C. Kingman 

developed what has been known since as the coalescent theory (Kingman. 1982a; Kingman. 

1982b). Later on, in 2000, he published an amusing paper (Kingman. 2000) in which he 

describes the process from which such a theory came to light. 

The main point of coalescent theory, which meant a breakthrough in the line of 

thinking that predominated at that moment, was that it was aimed to generate genealogies 

backwards in time. That meant that, on the contrary of what was being done with models such 

as Wright-Fisher’s or Moran’s, the genealogy was build starting on a population in the present 

whose genealogic relationships were modelled backwards until the MRCA was reached. This 

implies that, now, we would not know all the individuals existing in the previous generations 

but only those that had left descendants living in the present (see Figure 10).  

 

This theory, further developed by Hudson (1990), Donelly and Tavaré (1995), and Fu 

and Li (1999), provided a powerful framework to develop neutrality tests and further their 

study (see section 4), since it is computationally much more efficient than forward simulations. 

Figure 10: comparison between a Wright-Fisher (left) and a coalescent (right) tree. On the 
contrary than on the Wright-Fisher tree, in the coalescent tree, the only chromosomes known are 
those that are ancestors of the present sample. (Both genealogies are built using 
http://www.coalescent.dk/).  
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3.1 Building the coalescent 
The coalescent process includes two different parts: the topology of the tree and the 

mutation. Those parts cannot be simulated together. This is so because the topology of the 

tree is influenced by factors such as the sample size or its geographic structure. However, tree 

shape is not affected by neutral mutation since, by definition, neutral mutations do not alter 

the fitness of the individuals bearing them. Consequently, the coalescent must be build in two 

steps: the first step is to generate the topology of the tree and the second step to throw 

mutations over it. 

Note that all the information that will be developed concerning the coalescent theory 

refers to the coalescent of a sample of n genes, what is known as the n-coalescent. Thus, this is 

not applicable to the coalescent process for an infinite or very large sample. 

The topology of the tree is build upon the probability that two individuals share a 

common ancestor in the previous generation. This probability, on a population size of 2N 

individuals, is 
���. This can be intuitively seen as that one individual has one chance over 2N 

possibilities to have as ancestor the same parent than another given individual of the 

population. Thus, given the probability that two individuals share an ancestor in the previous 

generation, it becomes obvious than the probability that they do not share it is 1 � ���. 

As the Wright-Fisher’s model, the coalescent is Markovian, that is, its probability only 

depends on the present state of the process. This means that the probability that two 

individuals share a common ancestor t generations before present is the probability that they 

do not share it in the first t-1 generation multiplied by that probability that they share it in the 

t generation. Numerically, this probability is expressed as 

   	1 � ���
��� ���.        

Furthermore, assuming that the lineages coalesce independently, that on each 

generation only one coalescent event is allowed and that the number of generations since the 

MRCA is large enough to be modelled as continuous time, the probability that k different 

sequences coalesce is 

�
����� . This happens because, as said 

above, the probability of any pair of lineages coalescing is ���, and there are 

�
����  possible pairs of sequences. 

Based on these probabilities, it is possible to go 

from the present backwards in time establishing a 

probabilistic genealogic relationship between the 

individuals composing the sample. As stated before, on 

each stage of the tree the coalescent probability will only 

depend on the actual stage. However, each step backwards 

in time will contain one individual less than the previous 

one, as two individuals will have coalesced on a single 

ancestor (see Figure 11).  

Figure 11: coalescent tree. 
Times are indicated as Ti, where 
i is the number of individuals in 
the sample at time T. At each 
point in time, there is an 
individual less than in the 
previous. (Hein et al. 2005). 
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Once the shape of the tree has been defined, mutation can be added on top of it (see 

Figure 12). Based on the standard neutral mutation model (Watterson. 1975; Kimura. 1984), 

the mutation process occurs 

independently in each individual and 

generation. Furthermore, the 

mutation rate µ is assumed to be 

constant and, thus, independent of 

the population size or the time. 

Under the scenario 

described, mutation is thrown over 

the tree following a Poisson 

distribution with mean 2µt, where t 

is the number of generations that 

two homologous sequences need to 

reach the MRCA. The consequence 

of this process is that the longest 

branches will accumulate a larger 

number of mutations than the 

shorter ones.  

3.2 Properties of the coalescent 
Based on the probabilities stated in the previous point, some basic properties of the 

coalescent can be derived: 

1. The number of coalescent events is directly proportional to sample size. As seen in 

equations above, if the number of lineages (k) increases, so does the number of 

possible pairs of sequences and, thus, the number of coalescent events until the 

MRCA.  

2. The number of coalescent events is inversely proportional to population size, since in a 

larger population the probability that two individuals share a common ancestor is 

reduced (see equations above). 

3. The expected time until the MRCA of a sample is �������� � 4�∑ ����������� � . 

As the sample size grows, this time rapidly approaches 4N. That is, the MRCA for a 

sample rapidly approaches that for the whole population. 

4. As stated above, in a neutral scenario the topology of the tree is independent of the 

mutational process. 

5. The expected number of mutations between a pair of sequences is  2 " �������� " # � 4�#. 

3.3 The coalescent with demography 
The coalescent theory as stated above is strictly based on the Wright-Fisher model and 

follows all of its assumptions. However, the coalescent can be extended to more realistic 

models that include demographic events, selection, and even recombination. All these events 

can change the shape of the coalescent tree. 

Figure 12: the 
coalescent with 
mutation.  
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Among the demographic events, some of the most relevant for their effect on the tree 

topology are population expansions, bottlenecks, population subdivision, and migration. 

3.3.1 Population expansions 

In population expansions, each generation has a larger number of individuals than the 

preceding generation. For example, this is what could happen in a Neolithic population after 

several years of good harvests that allow the birth and survival of a larger amount of children. 

Despite this simple description 

of what a population expansion is, in 

coalescence it can be modelled in 

different ways. The simplest one is a 

size jump or sudden population 

expansion (Figure 13, left), in which 

the population changes its size in only 

one generation (Rogers and 

Harpending. 1992). In this model, an 

ancestral population in equilibrium of 

size N0 experienced a sudden growth 

and reached maximum size Nmax Te 

generations before present. The 

strength of the expansions, that is, 

how much the population size increases, is defined by the degree of expansion $% � �&'(�) .  

Another model of population increase is exponential growth (Slatkin and Hudson. 

1991; Figure 13, middle). Exponential growth assumes a population in the present of size N0 

that has been growing at an exponential rate r. Then, its size t generations before present can 

be found by ��*� � ��+�,�. 
Finally, expansions can also be modelled as a logistic growth in population size (Fu. 

1997; Figure 13, right). In this case a population has been growing at a logistic rate r from its 

initial size to its current size N0. Now, the population size at time t is 
-�-� � . 	1 � /�
. 

As explained before, the probability that two individuals share a common ancestor in 

the generation before is 
��� under neutrality. However, if the population size changes along 

time, this probability also changes with time because, as stated before, the probability of 

coalescence is smaller as N increases. Then, the new probability that two individuals coalesce 

in the previous generation will be a function of t: 0�*� � ������. 
The simplest way to model a population expansion, then, is to create a neutral 

genealogy and, afterwards, compress or stretch the time before a coalescence occur according 

to the new N. That is, in those parts of the genealogy where N is smaller, the time to 

coalescence between two lineages will need to be shortened while, where N is larger, time will 

need to be extended. 

Figure 13: models of population expansion. From left to 
right are shown the sudden, the exponential, and the 
logistic model. 
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Population expansions leave a particular footprint over genealogies. In fact, 

genealogies with underlying population growth are characterised by extremely long external 

branches and shortened internal ones, as shown in Figure 14. This happens because the most 

external branches represent the most recent times, where population size is large and, thus, 

the individuals in the sample need a long time to find a common ancestor in the populations. 

On the contrary, the branches near the MRCA represent generations with smaller N, where the 

probability of coalescence is larger.  

 

This effect on the genealogy will be more evident with larger increases in the number 

of individuals in the population, but it will also depend on sample size. For very large 

expansions the tree can even became star-like shaped, especially if the sample size is small. 

This change in the topology of the tree will also affect the mutation pattern as 

mutation is placed on the tree following a Poisson distribution (see point 3.1). In this case, as 

the external branches will be much longer than the internal ones, mutations will tend to fall on 

them. This will result in an excess of singletons and mutations at low frequency compared with 

neutral genealogies. 

3.3.2 Bottlenecks 

Bottlenecks consist in a sudden decrease of a population size followed by a recovery or 

even an increase of the original population in a few generations. A typical example of a 

bottleneck is a plague such as the Black Death, which struck Asia and Europe in the fourteenth 

century. However, a founder effect in which a small subpopulation leaves its former habitat to 

establish a new one can also be considered a bottleneck. For instance, this is what happened 

when the first humans left Africa in what is known as the Out-of-Africa bottleneck (Reich et al. 

2001). 

  

Figure 14: comparison between neutral genealogies (above, in blue) and genealogies with 
population expansions (below, in black). (Composed from Rosenberg. 2002 and Hein et al. 2005) 
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The bottleneck can be modelled assuming a population of size NA in equilibrium which, 

Tstart generations ago, has been suddenly reduced by a factor 0<b<1 to a second size bNA. b is 

the bottleneck severity. The population maintains this second size bNA for Tdur generations and, 

immediately afterwards, recovers instantaneously its original size NA (Voight et al. 2005). 

As in population growth, bottlenecks are a demographic event that changes population 

size. Thus, the same strategy used in expansions can be used to build demographies with 

underlying bottlenecks. 

The effect of a bottleneck over the shape of the tree depends on Tstart and b, that is, on 

the time since it started and on its severity. Using these two factors we can classify bottlenecks 

in severe and moderate, the former being older and causing a larger decrease in population 

size that the latter. 

If the population is sampled just before the bottleneck, that is, before Tstart, its 

genealogy follows neutrality. However, if it is sampled after the bottleneck, the topology of the 

tree will be different depending on the strength of the bottleneck and on the time since it 

finished, as shown in Figure 15.  

 

It is expected that most lineages will die in a severe bottleneck. This implies that, just 

after the end of the bottleneck, the remaining individuals will presumably coalesce in the few 

surviving lineages and, thus, during the bottleneck. The result is a shortened genealogy whose 

individuals reach the MRCA much sooner than under neutrality. This genealogy, however, will 

change with time. A while after the end of the bottleneck, the time to the MRCA will increase, 

but all its lineages are expected to coalesce approximately at the time of the end of the 

bottleneck. At this moment, the genealogy is similar to that produced by a population 

expansion, with longer external branches compared to the internal ones. As in expansions, 

then, mutations will tend to accumulate in the external branches and will produce and excess 

of low-frequency variants. 

Figure 15: effect of a bottleneck on genealogies. (Hein et al. 2005) 
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On the other hand, in a moderate bottleneck it is expected that a number of lineages 

survives the bottleneck. This will result in longer internal branches, as the surviving lineages 

will tend to coalesce either just after the end of the bottleneck or before its beginning. At this 

time, mutations will tend to fall in the longest internal branches and will produce an excess of 

intermediate-frequency variants. After a while, the external branches will start to be longer, 

although most lineages will still coalesce at the start of the bottleneck. In this situation, 

mutations will be in excess both in the external branches and in those closer to the MRCA, 

what will produce an excess of singletons together with an excess of intermediate frequency 

variants. 

3.3.3 Population subdivision and migration 

The basic coalescent model assumes that two individuals of the population have the 

same probability to mate between them than with any other member of this population. 

However, this is not the case in most populations. Population subdivision can occur, for 

instance, due to geographic distance, such as in the case of individuals living in different 

continents. Nevertheless, it can also be found among individuals living in the same place but 

separated by social, linguistic or economical factors, as happens in India between the castes. 

Barriers to mating, though, may not be absolute, with a number of migrants crossing 

between subpopulations each generation. 

Population subdivision can be modelled in different ways, all of them including the 

possibility of migrants from one subpopulation to another. 

One of those models is the finite island model (Li. 1976; Hudson. 1990; Hein et al. 

2005), which assumes that the population is divided in d islands or demes of size 2N each 

which, together, sum 2Nd individuals. This model also assumes a given number of migrants m 

who can move to any other deme with equal probability. This implies that the parent of one 

individual will belong to his own deme with a probability of 1-m and to another deme with 

probability m. 

Another group of models are the 

stepping-stone models (see Figure 16). The 

main difference between this and the finite 

island model is that in stepping stone 

models the demes are organized on a (one-

dimensional or bidimensional) grid. This 

causes that the probability for migrants to 

move to one deme or another is no longer 

independent, as the individuals are allowed 

to move only to an adjacent deme. 

Moreover, the different demes can also 

have different probabilities to accept 

migrants. Another difference with the finite 

size model is that in this model the different demes do not need to have the same sample size. 

Figure 16: bidimensional stepping-stone model 
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Other models of population subdivision which have been formulated include 

continuous space models, in which individuals move through a continuous space, and non-

equilibrium models, in which the demes have not reached a dynamic equilibrium and, thus, 

the number of total individuals they contain fluctuate through time. 

The effect of population subdivision on the topology of the trees (Figure 17) is very 

similar to what happens just after a moderate bottleneck. As in moderate bottlenecks, the 

external branches will be short with respect to the internal ones. This happens because all the 

individuals in a deme coalesce very soon with respect to the coalescence time with members 

of another deme. With a smaller number of migrants this effect will be larger, and the time to 

the MRCA will also be longer. This scenario will produce an excess of mutations at 

intermediate frequencies. 

 

3.4 The coalescent with selection 
Selection is another deviation of neutrality that affects the topology of the tree. In this 

section, it is described how balancing and positive selection modify the tree shape in 

coalescent theory. 

3.4.1 Balancing selection 

Balancing selection favours the presence of two or more alleles in the population, 

maintaining variation on it. One of the best known examples of this kind of selection is the 

case of sickle-cell anaemia and malaria. In populations where malaria is endemic, sickle-cell 

anaemia is more frequent than in other populations. This happens because the individuals with 

one sickle-cell anaemia allele are more resistant to malaria and, then, this allele, which is 

deleterious in homozygosity, is maintained in the population. 

Figure 17: the coalescent with migration. Red and yellow represent the two populations, green are 
coalescent events and blue represent migration events. On the left it can be seen how the genealogy 
is produced, and on the right the same tree ordered to make it more readable. It can be seen that 
internal branches are long in respect to external ones. (Built using http://www.coalescent.dk/).  
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Balancing selection can be modelled considering biallelic or multiallelic models. The 

modelling and the consequences over the topology of the tree on each case are different, but I 

will focus on the first one. 

In a biallelic situation (Kaplan et al. 1988; Hudson. 1990; Hein et al. 2005), in which two 

different alleles are maintained in the population, balancing selection can be modelled in a 

way analogous to the one used for population substructure, as shown on Figure 18. Consider 

two alleles, namely A and B, with a frequency of p and q respectively and a probability θ=4Nµ 

to mutate from one to the other. These two alleles, then, can be regarded as two independent 

demes of size 2Np and 2Nq, and θ can be assumed to be the migration rate between them.  

 

Under this scheme, it is assumed that two alleles will only be able to coalesce if they 

are of the same type. This means that two lineages with different alleles will only be allowed to 

coalesce after a mutation event transforming one allele into the other. Taking a sample of size 

nA of the allele A and of size nB of allele B, the probability of coalescence inside each type is 

   1�� � �2��2����3   

and 

   1�4 � �5��5����6 , 

and the probability of mutation is 

   1�4 � 7� 68�3  

and 

   14� � 74 38�6. 

Following these four probabilities it is possible to determine the kind of event –coalescence or 

mutation- that takes place at each point in time, and draw the genealogy accordingly. 

  

Figure 18: the coalescent with balancing selection can be modelled as the coalescent with migration. 

k1 and k2 are the two subpopulations, with alleles p and q respectively, and ν is the mutation rate 
from p to q. (Hein et al. 2005) 
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As stated above, balancing selection can be modelled similar to population 

substructure, and thus will have the same effect on the genealogies. That is, the length of the 

tree will be larger than what is expected under neutrality and its internal branches will be 

longer. This will result in an excess of high-frequency variants.  

The main difference between balancing selection and population substructure is that 

balancing selection will change the distribution of mutation in only one gene, while population 

substructure affects the whole genome. 

3.4.2 Positive selection 

Positive selection is a type of directional selection in which the selected allele is 

favoured, that is, the individuals carrying it will have more offspring. This would be the case of 

genes such as that coding for lactase, the enzyme that breaks lactose, the main sugar in milk. 

The ancestral lactase gene is active in babies to allow them to feed from their mother’s milk, 

but it becomes inactivated in childhood. However, in these populations that relied in 

shepherding, the individuals that did not inactivate the lactase gene had an advantage as they 

could also feed from the milk of their cattle. In this population, then, positive selection acted 

favouring a gene that was active for all the lifespan of the individual. 

When positive selection acts over a rare allele, it produces a rapid increase in 

frequency and, eventually, the fixation of this allele. However, this effect does not only take 

place on the selected variant but also on all mutations that are close to it in the genome. This 

way, a number of neutral alleles will also increase their frequency in the population. This is 

known as selective sweep or hitchhiking effect (Smith and Haigh. 1974). 

Under a hitchhiking model (Kaplan et al. 1989; Braverman et al. 1995) two alleles are 

considered, namely b and B, where B has a selective advantage s. In continuous time, assuming 

a directional selection of strength α=2Ns, for a large α the frequency of the allele will decrease 

backwards according to 

   9�*� � ��::����:�%;<�=;∆=�  
where ? � 5/B (Kaplan et al. 1989). The process starts at 1 � ? and finishes at ?. If we call nB 

the number of alleles in the sample linked to the favoured variant and nb the number of alleles 

not linked to it, the probability of coalescence between two neutral alleles will be 

   1� � 	��
C���∆*, 
and the probability that they do not coalesce is 

   1� � 	D�
��C���∆*. 
The selective phase of the genealogy can be obtained following these probabilities. This phase 

will end if the genealogy reaches the MRCA or if x(t) becomes smaller than ? and it only 

remains one or any neutral allele in the sample not linked to the favoured allele. Once the 

selective phase is finished, the genealogy will keep building following the neutral coalescent.  

 

After the end of a selective sweep in which the favoured allele has been fixed, all the 

individuals of the genealogy will coalesce soon before the beginning of the sweep. This will 
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produce shortened trees with external branches longer than the internal ones. As in the case 

of population growth, this will result in the accumulation of mutation in those branches and, 

thus, an excess of singletons and low-frequency variants.  

However, as shown in Figure 

19, the effect of hitchhiking along the 

chromosome will not be 

homogeneous. If the sample is taken 

on the selected allele and the adjacent 

region, the tree will have a topology as 

the one described above. However, as 

we sample at longer distances from 

this point, the shape of the tree will 

change. At intermediate distances, 

trees will have very long internal 

branches, because most alleles will 

have as a common ancestor the 

selected allele but there will be a few 

that will be linked to the non-selected 

one. Both lineages, then, will need a 

long time to coalesce to the MRCA. At 

larger distances, the tree will become neutral.  

3.5 The coalescent with recombination 
Another assumption of the Wright-Fisher model that is highly unrealistic in most living 

organisms is the absence of recombination. In humans, for instance, all the genetic material 

recombines, with the only exception of the NRY chromosome and mitochondrial DNA.  

 

Recombination is a process that shuffles nucleotide variation among DNA sequences, 

thus creating new combinations. This implies that when recombination acts over a sample, a 

given sequence has not a single ancestor but two (or more) of them. If this is viewed forwards 

in time, as in the Wright-Fisher model, it will appear that each bit of the sequence will choose 

a different parent (Figure 20). To represent this situation, then, instead of using a genealogical 

tree, a group of local trees will be needed, one for each position in the sequence.  

Figure 20: the haploid Wright-Fisher model with recombination 
(coloured from Hein et al. 2005)).  

Figure 19: selective sweep. The selected position is 
denoted by *. Below is shown the variability along the 
chromosome, and above the coalescent trees for each 
part of the sequence.  
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In the coalescent, looking backwards in 

time, a sequence is formed by the combination 

of two ancestral sequences from which only 

the part that has left descendants is known 

(see Figure 21). In this situation it is assumed 

that coalescent and recombination events 

cannot happen at the same time. This is so 

because the probability that the two events 

occur together in the same sequence is 
�E�F G, 

that is, the probability of coalescence (
��� ) 

multiplied by the probability of recombination 

(
��� G, where ρ is the recombination rate). In large populations, this probability is negligible. 

Again, this situation will produce different trees along the sequence.  

The most widely used algorithm to construct the coalescent with recombination is the 

ancestral recombination graph (ARG, see Figure 22). This algorithm starts with a sample of n 

sequences and its first step is to determine the time to the next event. Once this time is set, 

the algorithm decides whether it is a coalescent event (with probability 
�������H ) or a 

recombination event. If it is a recombination event, a sequence is chosen at random to be split 

at a random point into two ancestral sequences and the sample size n is increased by one. 

Otherwise, if the event is a coalescence it merges two randomly chosen ancestral sequences 

into a new sequence made of material from both of them. In this case, n is decreased by one. 

Once the new n has been obtained, the algorithm starts from the beginning until there is only 

one sequence left (the MRCA).  

 

 

  

Figure 22: on the left, the ARG. On the right, the same ARG 
deconstructed, showing the particular genealogy of each 
fragment of the secuence. 

Figure 21: recombinant sequence and its 
ancestors. The fragment of the sequence 
found in the present sample and, thus, 
known, is shown in blue. The rest of the 
sequence, in grey, is not known. 
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4 NEUTRALITY TESTS 
As discussed above, deviations from neutrality change the shape of the genealogies 

and, thus, their mutation pattern. This has led to the development of a number of statistical 

tests –the neutrality tests- aimed to explore different aspects of how, from the genetic 

diversity, it is possible to infer deviations from what is expected under a neutral model.  

Coalescent theory has revealed itself to be a powerful tool in the development, study 

and use of neutrality tests. In fact, coalescent theory allows not only to know whether a 

sequence of DNA is neutral or non-neutral but also to obtain the direction of the deviation and 

the statistical significance of this deviation. This can be achieved through computer 

simulations, which make it possible to generate neutral distributions for a given neutrality test 

against which to compare the value obtained with the same test in an empirical sequence. 

Examples of this kind of work can be found in the following section. 

The possibility to generate non-neutral genealogies has also allowed seeing how the 

different neutrality tests behave in the presence of deviations of neutrality. For instance, it is 

well known that the distribution of one of this statistics, Tajima’s D, is centred on 0 under 

neutrality. However, under positive selection or population expansion, Tajima’s D becomes 

negative, while under balancing selection or a substructured population it becomes positive. 

The causes of this effect will be explained in detail below, in section 4.1.1. 

Although all neutrality statistics are based on genomic variation, not all of them rely on 

the same kind of information. This led Ramos-Onsins et al. (2002) to classify them into three 

classes, named Class I, II, and III, according to the information used. Class I tests are based on 

the frequency spectrum of mutations, Class II on the haplotype distribution, and Class III on 

the distribution of pairwise differences. 

4.1 Class I tests 
Class I statistics use information on the frequency of mutations in the sample. Most of 

them are based on the differences between two estimators of the population mutation rate 

θ=4Nµ. From this class, the most relevant tests are Tajima’s D (Tajima. 1989); Fu and Li’s D, F, 

D* and F* (Fu and Li. 1993); Fay and Wu’s H (Fay and Wu. 2000), and R2 (Ramos-Onsins and 

Rozas. 2002). 

4.1.1 Tajima’s D 

Tajima’s D (Tajima. 1989) is the oldest neutrality test and one of the most widely used. 

This statistic is based on the standardized difference between the average pairwise difference, 

π, which takes into account the number of differences between two sequences; and the 

Watterson’s estimator of θ, θW (Watterson. 1975), based on the number of segregating sites. 

Its equation, then, is 

   $ � 8I�8JKLM, �8I�8J�, 
where 

   OP ∑ CQCRPQRQR   

and 
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   OS T∑ UQV;UQWU
, 

being n the number of chromosomes in the sample and S the number of segregating sites. 

Under neutrality, the two estimators of θ are equivalent, and both predict the true 

value of θ=4Nµ. This is the reason why, under neutrality, the distribution of values of Tajima’s 

D is located around 0. Moreover, as it is normalized, its variance is 1, although it does not 

follow a normal but a beta distribution.  

In case of positive selection or of population expansion, however, an excess of 

singletons and low frequency variants is found. If this happens, the number of segregating sites 

S will be too large compared to π and, thus, θW will be larger than θπ. Therefore, the obtained 

values of Tajima’s D will now be negative, and more negative as the larger is the deviation 

from neutrality. On the contrary, in case of balancing selection or population substructure an 

excess of intermediate frequency variants will be found and S will be too small compared to π, 

leading to positive Tajima’s D values. 

4.1.2 Fu and Li’s tests  

Fu and Li’s tests (Fu and Li. 1993) are a group of tests based on the comparison 

between an estimator of θ and the number of derived unique mutations in external branches 

of the genealogy. Those tests are D, F, D* and F*, and the main difference between them is 

that the first two need an outgroup, while the latter two do not. 

Fu and Li’s D (or DF) is computed from the normalised difference between θW and the 

expected number of derived mutations, that is, 

   $X � Y�MVZ[KLM,�Y�MVZ[�, 
where 

   \� � ∑ ������ �   

and ]% is the number of derived singletons in the sample (that is, excluding singletons in the 

outgroup). The F statistic is very similar to D but, instead of θW, it uses π: 

   ^ � 8I�Z[KLM,�8I�Z[�. 
In both cases, the statistic is based on the idea that, under neutrality, the expected number of 

external mutations ��]%� � OS � OP � 4�#. 

However, it is not always possible to have an outgroup and, thus, to know whether a 

singleton is derived or ancestral. Taking all singletons as derived obviously overestimates the 

number of derived singletons. To solve that, Fu and Li provided two more statistics, D* and F*, 

which correct this overestimation: 

   $_ � VV;UY�MVZ`aLM,	 VV;UY�MVZ`
  
and 

   ^_ � VV;UZ`�8IaLM,	 VV;UZ`�8I
, 
where ]b is the total number of singletons in the sample.  
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4.1.3 Fay and Wu’s H  

Fay and Wu’s H (Fay and Wu. 2000) is a neutrality test based on the standardised 

comparison between π and θH that is defined as 

   c � 8I�8dKLM, �8I�8d�. 
θH is a new unbiased estimator of θ developed by themselves in the same paper, that gives 

more weight to high-frequency derived variants. This estimator is a particular case of a more 

general class of estimators derived by Fu (Fu. 1995), based on the expected number of 

mutations with a derived frequency i in the sample. θH, then, was defined as 

   Oe � �������∑ f�g����� � , 

where Si is is the number of derived variants found i times in the sample. 

As in Tajima’s D and Fu and Li’s tests, under neutrality those two estimators of θ are 

expected to be 4Nµ. Furthermore, Fay and Wu’s H is specially indicated to detect selective 

sweeps, as they increase the frequency of derived variants.  

4.1.4 R2 

 The R2 statistic (Ramos-Onsins and Rozas. 2002) behaves differently than other Class I 

tests, as it is not based on the difference between two different estimators of θ and, besides, it 

is not normalised, so its mean and variance are not 0 and 1 respectively.  

R2 is a test thought to be efficient to detect population expansions that is based on the 

difference between the number of singletons per sequence and the average number of 

nucleotide differences. It is computed as 

   h� � i∑ 	jQ;kF
FVQWU V l
U Fm

Y , 

where Ui is the number of singletons in sequence i and k is the average number of nucleotide 

differences between two sequences. After a population expansion R2 is expected to decrease. 

Furthermore, the authors developed another statistic R2E which takes into account the 

derived variants and, thus, requires an outgroup; together with other statistics R3, R4, R3E and 

R4E which are equivalent to R2 and R2E but with exponents 
�n and 

�� respectively. 

4.2 Class II tests 
Class II includes statistics based on the haplotype distribution of the sample. Within 

this class the most relevant statistics are Fu’s FS (Fu. 1997), Dh (Nei. 1987; equation 8.4 

replacing 2n by n), Wall’s B and Q (Wall. 1999), Kelly’s ZnS (Kelly. 1997), Rozas’ ZA and ZZ (Rozas 

et al. 2001) and extended haplotype homozygosity EHH (Sabeti et al. 2002). 

4.2.1 Fu’s FS 

Fu’s FS (Fu. 1997) is a neutrality test based on the Ewens’ sampling distribution (Ewens. 

1972) which takes into account the number of different haplotypes in the sample. 

FS is defined as 

   b̂ � ln 	 Yq��Yq
, 
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where S’ is the complementary of the Strobeck’s statistic S (Strobeck. 1987) and corresponds 

to the probability of having the same or a higher number of mutations than expected under 

neutrality. S’ is then computed as 

   gq � ∑ |Yk|8IkYV8I
s
) , 

where k is the number of alleles in the sample, k0 is the number of alleles expected under 

neutrality and g�OP and g
 are defined according to the Ewens’ sampling distribution. 

FS, then, in expected to be negative if low frequency mutations (and, thus, haplotypes) 

are in excess in the sample. This also implies that it is a one sided test, which is expected to be 

efficient to detect positive selection and population expansions. 

4.2.2 Dh 

Haplotype diversity (Dh) or gene diversity (Nei. 1987, equation 8.4 replacing 2n by n) is 

a measure of the heterogeneity present in the sample. In fact, Dh is an unbiased estimate of 

the heterozigosity, and is defined as 

   $t � �u��∑CQFv���� , 

where xi is the frequency of the allele i in the sample.  

The expectation of Dh is not known beforehand, and its distribution must be simulated 

under neutrality before it can be used as a neutrality test. 

4.2.3 Wall’s tests 

Wall’s tests (Wall. 1999), named B and Q, were developed to detect events that 

produce trees with relatively longer external branches, such as under balancing selection or 

population substructure.  

Both B and Q are based on what is called congruent sites, that is, pairs of adjacent 

segregating sites which, if taken as a subset, form only two possible haplotypes (see Figure 23). 

B, which has been scaled between 0 and 1, is defined as 

   w � 4q�Y���, 
where B’ is the number of congruent pairs of adjacent segregating sites. 

 

Figure 23: table showing ten SNPs in five sequences. This 
produce nine pairs of sites, from which three are congruent: 2-
3, 3-4 and 7-8. The first two pairs induce the same partition, as 
they have the same combination of haplotypes. Instead, the 
pair 7-8 induces a diferent partition. (Wall. 1999) 
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The Q statistic adds a level of complexity including also the number of different 

partitions defined by congruent pairs. A partition is a subset of congruent SNP pairs, in which 

the two haplotypes defined by those SNPs are carried by exactly the same chromosomes (see 

Figure 23). The SNP pairs that define a partition need not be adjacent to each other. 

Considering A the total number of different partitions, Q is defined by 

   x � 4�|�|Y . 

4.2.4 ZnS, ZA and ZZ 

ZnS (Kelly. 1997), ZA, and ZZ (Rozas et al. 2001) are a group of statistics developed by 

two different authors that are based on the linkage disequilibrium (LD) measure r2.  

ZnS uses information of the r2 values between all pairs of polymorphic sites, and thus is 

defined as 

   y�Y � �Y�Y���∑ ∑ .�D�YD ���Y��� � , 

where r2 among a pair of loci, namely i and j, is computed as 

   .�D� � zQRF3Q���3Q�3Ru��3Rv. 
pi and pj correspond to the frequencies of the mutant alleles i and j and Dij is the mesure of LD 

between both loci, which is 

   $�D � 0�D � 0�0D . 
 ZA is very similar to ZnS, but only takes into account r2 values between adjacent pairs. Is 

defined as 

   y� � �Y��∑ .�D�Y��� � . 

Finally, ZZ is defined as 

   yy � y� � y�Y, 

and thus is the difference between ZA and ZnS. Therefore, ZZ provides information about 

intragenic recombination, and is expected to become increasingly positive as recombination 

increases. 

4.2.5 EHH and EHH-based tests 

Unlike the other statistics explained, the extended haplotype homozigosity (EHH) test 

(Sabeti et al. 2002) is a heuristic test. Thus, its significance cannot be stated by means of 

computer simulations but by using as neutral model large amounts of empirical data. 

However, due to the relevance it has acquired to detect recent positive selection since it was 

first described, it will be included in this section. 

EHH (see Figure 24) is built upon the realisation that, under neutrality, young 

mutations are found at low frequency and in areas with a long-range LD, while old mutations 

can be found at low or high frequency but surrounded by short-range LD. This happens 

because in young alleles, recombination has not had time to break LD, but it has had in old 

alleles. On the contrary, if a selective sweep has taken place, the selected variant will be found 

at high frequency and in a region with long-range LD. 
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EHH is found by selecting a small region called “core haplotype” where to genotype a 

high density of SNPs, and adding other SNPs at lower densities and longer distances. This 

protocol, then, allows studying how LD decays along the region. The decay of the haplotype 

along distance goes from 1 (at the core) to 0. Under positive selection it is expected that the 

identity of the haplotype is maintained at a longer distance than under neutrality. 

More recently, Voight et al. (2006) developed a normalised point estimator based on 

EHH, the iHS, defined as 

   fcg � {�|Qdd2Qdd}~����{�|Qdd2Qdd}~�Yz��{�|Qdd2Qdd}~� , 

where Ep and SDp are the expectation and standard deviation of �7 	�ee2�ee}
 conditioned to the 

frequency of the derived allele; and iHH is the area under curve of the decay of EHH until it 

reaches 0.5, that is, the integral of this curve. iHHA corresponds to the integrated curve for the 

ancestral allele and iHHD to the integrated curve for the derived allele. 

4.3 Class III tests 
Class III tests are those based on the distribution of pairwise differences or mismatch 

distribution. The most relevant among them are the raggedness (rg) statistic (Harpending et al. 

1993; Harpending. 1994) and the mean absolute error (MAE) between the observed and the 

theoretical mismatch distribution (Rogers et al. 1996).  

4.3.1 Raggedness statistic 

The raggedness (rg) statistic (Harpending et al. 1993; Harpending. 1994) is a test 

developed to detect populations expansions that is based upon the realisation than, under 

neutrality, the mismatch distribution of a sample has ragged peaks. However, after population 

increase the distribution will be much smoother. The rg statistic, then, quantifies the 

smoothness of the mismatch distribution, and is defined as 

   .� � ∑ �9��� � 9���-��� � , 

where d is the maximum number of differences between haplotypes and x is the observed 

relative frequencies of the mismatch classes.  

Figure 24: left, haplotype bifurcation diagram. Right, EHH values at different 
distances from the core region (at position 0). (Modified from Sabeti et al. 2002) 
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4.3.2 Mean abolute error 

The mean absolute error (MAE) between the observed and the theoretical mismatch 

distribution (Rogers et al. 1996) is a mismatch-distribution based test aimed to minimize the 

dependence that previously developed Class III tests had on the infinite-sites mutation model. 

This test is based on the MAE function, which is described as 

   ��� � ��∑ |*� � ��|�� � , 

where ti is the value of the theoretical mismatch distribution and oi is the value of the 

observed mismatch distribution, each at i pairwise differences. 

  

5 EXAMPLES OF THE NEUTRALITY TESTS APPLICATIONS 
Neutrality tests, together with the coalescent theory, have become the most useful 

tool available to detect departures from neutrality. Obtaining the value of a wide range of 

statistics from the empirical data and comparing them with their neutral distribution, build by 

means of the coalescent theory, provides a straightforward rationale to recover information of 

demographic and selective events. Furthermore, the possibility to do that in a simple and 

automated way using publicly available software such as DnaSP (Rozas et al. 2003) has made 

neutrality tests the tool of election in a large number of papers focused to disentangle the 

evolutionary history of populations (Canino and Bentzen. 2004; Nakajima et al. 2004; Verrelli 

and Tishkoff. 2004; Schmid et al. 2005; Civetta et al. 2006; Patin et al. 2006; Soejima et al. 

2006; De Mita et al. 2007; Pinto et al. 2007; Sanchez-Gracia and Rozas. 2007; Derome et al. 

2008; Wright et al. 2008; Alonso et al. 2008;). Below, I summarize a few of these applications. 

5. 1 Unusual pattern of nucleotide sequence variation at the OS-E and OS-F genomic 
regions of Drosophila simulans 

The sense of smell plays an important role in the interaction of most animals with their 

environment, and the genes coding for olfactory system proteins have been shown to be 

under positive selection in a number of organisms such as humans, rodents or insects. 

As olfaction is crucial for invertebrates, Sánchez-Gracia and Rozas (2007) studied the 

evolution of two members of the odorant-binding protein (OBP) gene family, OS-E and OS-F, in 

Drosophila simulans. OBPs are in charge of transporting odor molecules to the odorant 

receptors. The results for D. simulans are further compared with the results of D. 

melanogaster found in a previous study. 

In this work, the authors sequenced 11 European lines and 11 African lines of D. 

simulans, the latter from Rozas et al. (2001). Moreover, they used 14 lines of D. melanogaster 

and several lines of D. mauritiana and D. erecta from a previous work. They used Class I and 

Clas II statistics to detect departures from neutrality. From the former they used Tajima’s D, Fu 

and Li’s D and F and Fay and Wu’s H, and from the latter Fu’s FS, Dh, Wall’s Q and ZZ. Tests 

designed to detect departures from neutrality based on interespecific differences were also 

used.  

In European samples, Tajima’s D, Fu and Li’s tests and Fay and Wu’s H were non-

significant. ZZ was significantly positive, suggesting that intragenic recombination has played 
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an important role shaping variation in this region. FS and Dh were also significant, reflecting a 

reduction in the number of haplotypes respect to the neutral model. Wall’s Q was used to test 

whether the data was compatible with a bottleneck model. In the absence of recombination, Q 

was compatible with recent bottlenecks. However, when higher recombination rates were 

applied, the number of bottlenecks compatible with data was reduced to only the most recent 

ones. No test of neutrality was significant for African samples. 

5.2 Multiple origins of knockdown resistance mutations in the Afrotropical 
mosquito vector Anopheles gambiae 

Antibiotics and insecticides are useful to battle against plagues and pests. However, it 

is well known that populations subjected to these kinds of treatments quickly develop 

resistance to them, becoming immune. Besides the problems than this phenomena poses to 

the plague control, it also represents a great opportunity to study evolution at work, 

particularly directional selection. 

Pinto et al. (2007) studied the emergence of the resistance to DDT and pyrethoid 

insecticides in Anopheles gambiae sensu stricto, the main vector of malaria in Africa. In this 

mosquito, resistance to insecticides can be reached through two point mutations, both of 

which inactivate a voltage-gated sodium channel. To unravel the history of these two 

mutations conferring resistance to insecticides they genotyped the kdr locus and the 

downstream region of intron 2, and sequenced intron-1 in 288 individuals from Western 

Africa, West-Central Africa and East Asia. With this information they (a) analyzed the 

frequency, distribution and genealogic relationship of the knock-down resistance (kdr) 

haplotypes and (b) used neutrality tests to detect traces of selection, especially of recent 

selective sweeps, in the sample. 

The analysis of haplotypes suggested that the kdr alleles have four independent 

origins, two for each one of the two mutations causing resistance. To detect departures from 

neutrality they used Tajima’s D, Fu and Li’s D* and F*, and FS statistics, and tested them 

separately in the three geographical groups of mosquitoes. Only FS and Fu and Li’s F* showed 

any significance, the former in West and West-Central Africa and the latter in West Africa. The 

authors explain the lack of significance in other tests, together with the low genetic variation 

found, through a process of hitchhiking. Moreover, they found a higher significance of FS in 

West Africa that they attribute to an intensive use of insecticide in the area in the last 20 years 

accompanying the increase of cotton production. 

5.3 Deciphering the ancient and complex evolutionary history of human arylamine 
N-acetyltransferase genes 

The human arylamine N-acetiltransferase genes are a genic family formed by the two 

genes NAT1 and NAT2, and by the NATP pseudogene. Those genes code for two phase-II 

enzymes (NATs) involved in the metabolism of various drugs and carcinogens through their 

acetilation. Thus, variation in these genes is related to cancer susceptibility. However, some of 

the variants of the NAT2 gene that have been shown to confer a higher risk for bladder cancer 

by coding for a “slow-acetilator” phenotype are at high frequencies in populations worldwide. 
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As those genes are involved in interaction with environmental factors and, thus, can 

easily be targets for selection, Patin et al. (2006) decided to unravel the demographic and 

selective history of NAT genes. They studied a sample of 80 humans on eight worldwide 

populations and resequenced and genotyped several fragments of the NAT loci, including the 

entire coding exon of NAT1 and NAT2. 

The analysis of the haplotypes in NAT1 showed two clusters of haplotypes that share 

their MRCA 2.01±0.29 million years ago, an extreme estimated date compared to the rest of 

the genome, which significantly departs from neutrality. According to the authors, the most 

likely scenario to explain NAT1 genealogy is an ancient population substructure demographic 

event. NAT2 and NATP haplotypes genealogy coalesce at times that are in agreement with 

neutral expectations. 

To find traces of selection over NAT genes they used three Class I neutrality tests: 

Tajima’s D, Fu and Li’s F*, and Fay and Wu’s H, as well as several interespecific tests. They 

performed independent tests for NAT1 and NAT2 as they are not in LD. Those tests were 

significantly negative in most of the populations showing variation for the exonic region of 

NAT1. However, when the flanking regions were included only two populations remained 

significant. The authors suggest that these values could be due to purifying selection acting 

over the NAT1 gene. On the contrary, NAT2 exonic region was significantly positive in three 

populations, but none remained if the flanking regions were included. These results point to 

the role of selection acting locally on NAT2 locus, although interespecific tests do not depart 

significantly from neutrality. NATP was not significant in any population or test. 

The authors also used the long range haplotype test (LRH), based on EHH, on 

genotyping data to detect traces of recent positive selection. One NAT1 and one NAT2 

haplotype were found to depart from neutrality in Eurasian populations. This NAT2 haplotype 

leads to the “slow-acetilator” phenotype and, in western and central Eurasians, was associated 

with the NAT1 haplotypes in approximately 80% of cases. This suggests that both haplotypes 

could have been selected in a single selection event. Furthermore, the evidence of positive 

selection favouring an allele causing cancer nowadays points to the changes to the 

environmental carcinogens at which humans have been exposed along their evolution. These 

changes could be mainly due to the Neolithic and the Industrial revolutions, the two main 

events affecting human lifestyle. 

In this work, then, neutrality tests have been used both to describe demographic 

events (in the NAT1 gene) and to detect selection (NAT2 gene). 

5.4 A multilocus sequence survey in Arabidopsis thaliana reveals a genome-wide 
departure from a neutral model of DNA sequence polymorphism 

It is often difficult to distinguish between demographic and selective events when 

deviations from neutrality are found in a sample. This happens because some of them leave 

the same traces over the genome. However, their range of action is radically different, as 

demography affects the whole genome while selection acts locally. Thus, if similar deviations 

from neutrality are found in a number of different loci, this suggests that they fit in a model of 

demographic change. 
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Schmid et al. (2005) used this rationale to unravel the demographic history of 

Arabidopsis thaliana, a model organism of genetic variation in plants. With this goal, they 

sequenced 595 short genomic regions (STS) selected at random in 12 accessions. The STS were 

located both in coding and non-coding regions. They also used data from other species of 

Arabidopsis as outgroup. 

The authors calculated Tajima’s D, Fu and Li’s D, D*, F and F* and Fay and Wu’s H tests 

over the STS and compared the obtained distribution to different demographic scenarios, in 

order to detect the demographic events underlying A. thaliana history. When tested against 

neutrality, all statistics were significantly negative with the exception of Fay and Wu’s H, which 

fitted the neutral model. This indicated that derived alleles are not in excess in the sample, 

which could have been interpreted as a signal of selection. However, neutrality statistics do 

not fit in logistic population growth, glacial refugia or bottleneck models. Thus, a more 

complex model should be built to explain A. thaliana demographic history. 

Furthermore, they found 28 STS loci which were outliers in respect to the empirical 

distribution of the neutrality statistics, and thus they are candidates to have evolved under 

positive selection. When these loci were excluded from the analysis, the empirical distribution 

fitted the logistic growth model. 

 

6 LIMITATIONS OF NEUTRALITY TESTS 
Despite their advantages as a tool to detect departures from neutrality, neutrality tests 

have also several limitations that should be taken into account when using them. These 

limitations can be classified into two groups according to whether they relate to the neutral 

distribution or to the protocols designed to obtain information about the segregating sites in 

the sample.  

6.1 The neutral distribution 
As explained above, the rationale for using neutrality tests requires comparing them 

against a neutral distribution. However, as stated in section 2, the Wright-Fisher model and the 

basic coalescent make several assumptions that are unrealistic in most populations. Thus, 

comparing the value of a statistic against a purely neutral distribution will lead to erroneous 

conclusions. This implies that the neutral distribution to be used for assessing the significance 

of a neutrality statistic should not be neutral in the strict sense of the word, but it should take 

into account the demographic and recombinatory history of the sample under analysis. 

Nevertheless, building this more realistic neutral distribution is not trivial, as it requires an 

accurate knowledge of the forces shaping the genetic variation of the species of interest. 

However, this information is known, in the best of cases, only partially. 

The demographic events that have taken place in the past of the population of interest 

are often a source of conflict when looking for selection. As seen above, demographic and 

selective events tend to leave very similar traces over sequences. This makes it difficult to 

interpret an extreme value of a neutrality statistic, as it often cannot be known whether it is 

due to demography or to selection. In the case of humans, for instance, it is well known that 

they have experienced several bottlenecks and expansions, among which the out-of-Africa 
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bottleneck and their further expansion through the world (Jobling et al. 2004). An out-of-Africa 

bottleneck leading to extant worldwide populations has also been described in Drosophila 

melanogaster (Andolfatto. 2001; Baudry et al. 2004). As a consequence of these changes in 

population size, negative values of Tajima’s D that are significant compared to a neutral 

distribution cannot be directly interpreted as the result of local selection. In the vast majority 

of cases, those significantly negative values will only reflect the demographic history of 

populations, and only the most extreme will point to positive selection.  

This effect can be clearly seen looking at empirical distributions of the neutrality 

statistics, such as those publicly available at SeattleSNPs (http://pga.mbt.washington.edu/; 

Crawford et al. 2005), a database containing the sequences of more than 300 human genes 

related to inflammation in 24 African-American and 23 European-Americans individuals. The 

average Tajima’s D over all genes in this database is -0.6, and not 0 as it would be expected 

under a neutral model. This was extensively studied by Stajich and Hahn in 2005 (2005) in the 

151 genes from SeattleSNPs available at that moment. In their work, they calculated several 

neutrality tests and summary statistics -among which π (Tajima. 1983), θ (Watterson. 1975), 

Tajima's D (Tajima. 1989), Fu and Li's D, D*, F, and F* statistics (Fu and Li. 1993) - for European-

Americans and African-Americans separately. They showed that the values of neutrality 

statistics for most European data can be explained by a population bottleneck, while African-

American results fit a model considering admixture between subpopulations with an 

underlying bottleneck. However, they could also identify two loci which were extreme even 

when compared to a neutral model with the described demographic history and, thus, which 

have been under selection: ABO and TRPV6. 

It becomes clear, then, that the solution for finding traces of selection acting over 

some genes is to take into account the demographic history of the populations. This can be 

done following two strategies: a) comparing the values of the statistical tests not against a 

coalescent build neutral model but against an empirical distribution, as done by Stajich and 

Hahn (2005), and b) simulating neutral models that incorporate all the information known 

about demography, with as much detail as possible. In humans, for instance, Schaffner et al. 

(2005) published a calibrated demography that, although it does not exactly fit the 

demographic processes shaping human evolution, it is consistent with a variety of statistics 

and measures as obtained from empirical data. 

The second main assumption of the neutral model that is known to affect the power of 

neutrality tests is the lack of recombination (Wall. 1999). In fact, recombination breaks the 

existent haplotypes and shuffles them creating new haplotypes and, thus, increasing their 

number and causing decay in LD. Furthermore, it smoothes the mismatch distribution. For this 

reasons, recombination is expected to affect mainly the power of Class II and Class III tests, 

while it is not expected to have much effect on Class I ones. 

As in the case of demographic events, the best solution to avoid errors when testing 

neutrality statistics against neutral distributions is to include accurate information about 

recombination rates in them. In experimental species this is not particularly difficult, as the 

possibility to perform directed crossings between individuals and to obtain large pedigrees has 

made possible that the recombination rates between classical mutants have long been known. 
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Thus, detailed recombination maps are available for organisms such as Drosophila 

melanogaster (Hoskins et al. 2001), Drosophila pseudooscura (Ortiz-Barrientos et al. 2006), 

Arabidopsis  (Singer et al. 2006) or zebra fish (Danio rerio; Singer et al. 2002). 

Although recombination rates cannot be estimated through directed crossings 

between individuals in humans, during the last years several recombination maps of the 

human genome have been produced. Kong et al. (2002) provided in 2002 the first high-

resolution recombination map, based on the information of 1,257 meioses. This map used 

intervals of approximately 350 kb. The International HapMap Consortium (2005; 2007) has also 

provided fine-resolution recombination maps; the last one, build upon HapMap Phase II, 

identifying 32,996 recombination hotspots. However, their map is not based on meiotic counts 

but on the coalescent-based method of McVean et al. (2004), operating on LD patterns.  

6.2 Ascertainment bias 
Neutrality tests, mainly those based on the frequency spectrum of mutations and with 

the mismatch distribution (that is, Class I and III respectively), rely on an accurate description 

of the frequency at which segregation sites are found in the sample. This can only be achieved 

through an accurate resequencing of all the chromosomes in the sample. However, most 

researchers prefer to use genotyping technologies, as they are simpler, cheaper and much 

faster. This technique implies selecting a priori which SNPs will be genotyped, which means 

that information will not be obtained for all segregating sites. The bias produced by the choice 

of SNPs is named ascertainment bias. 

Ascertainment bias can be produced by two mechanisms, although they are not 

mutually exclusive: (a) by not detecting all the possible SNPs in the sample or (b) by selecting 

only some of the SNPs present in the sample to genotype. A widely used strategy followed to 

produce genotyping data that produce the first kind of bias is to resequence only a small 

subsample, called the discovery sample, and afterwards genotype the SNPs found in a larger 

panel of similar ethnical composition (Picoult-Newberg et al. 1999; Altshuler et al. 2000). By 

using this procedure, it is more probable to detect alleles at intermediate or high frequencies, 

as the probability to identify a SNP is a function of its frequency, and thus common SNPs will 

be easier to detect than rare ones. Indeed, it has been shown that the frequency spectrum 

differs between the discovery panel and the genotyped sample (Nielsen and Signorovitch. 

2003; Nielsen et al. 2004).  

On the other hand, ascertainment bias can be caused by a selection of the SNPs to be 

genotyped from sources other than the actual sample. Usually these SNPs are selected from a 

public database such as HapMap (http://www.hapmap.org/; International HapMap 

Consortium. 2007) or Perlegen (http://www.perlegen.com/; Hinds et al. 2005), which in turn 

have incurred in an ascertainment bias of their own. A large fraction of SNPs provided by 

Perlegen, for instance, have been detected using a discovery panel. Protocols of SNP selection 

can vary in a number of ways, but usually all of them involve one or a combination of the 

following: (a) select SNPs by their minor allele frequency (MAF), e.g. only those with a 

frequency over 10%, (b) select by distance, one SNP every a given number of base pairs, (c) 

select by distance but not uniformly, e.g. genotyping a major density in genes, (d) selecting 

SNPs polymorphic in all the population of interest or (e) selecting SNPs that are polymorphic in 
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only one of the populations of interest (see, for example, Moreno-Estrada et al. 2008). The 

effect of the SNPs selection in the frequency spectrum of mutations depends on the criteria 

followed, but in any case it will largely differ from the expected one.  

As seen above, independently of how ascertainment bias is produced its final effect is 

always a distortion of the actual frequency spectrum of mutations. As a consequence, then, 

data provided by genotyping projects cannot be effectively analysed by means of neutrality 

tests. This problem has previously been reported by Kreitman and Di Rienzo (2004) and 

Soldevila et al.(2005), who showed that the putative effects of balancing selection detected in 

the PRPN by Mead et al. (2003) were due to ascertainment bias. In fact, they used a discovery 

panel plus genotyping, which led to the loss of the low-frequency variants that pointed to the 

presence of positive selection over the PRPN gene (Soldevila et al. 2005). 

Although no neutrality test can be properly used on ascertained data, much work has 

been done to develop tools to detect departures from neutrality in these cases. The main 

efforts to solve this problem have been devoted to: (a) find new methods based on haplotype 

structure, such as the EHH statistic (Sabeti et al. 2002), (b) obtain critical values and confidence 

intervals for neutrality tests from distributions build upon simulated data which directly takes 

into account the same ascertainment bias than the empirical data (such as the work of Voight 

et al. (2006)  or Carlson et al. (2004)), and (c) directly correct the statistical estimators and 

statistics for the ascertainment bias applied to the sample (e.g. Nielsen. 2000; Wakeley et al. 

2001; Nielsen and Signorovitch. 2003; Polanski and Kimmel. 2003; Nielsen et al. 2004).  

 

7 THIS THESIS 
In the present thesis I pretend to define more clearly the properties of the neutrality 

tests and address some of their limitations. In order to do that, the results presented are 

organised in four sections that correspond to the four papers written during its development. 

7.1 Statistical power analysis of neutrality tests under demographic expansions, 
contractions and bottlenecks with recombination (Ramirez-Soriano et al. 2008) 

Departures from neutrality such as demographic events or recombination leave 

particular traces over the genome that can be detected by means of neutrality tests. However, 

although the power of neutrality tests to detect demographic events has been assessed in a 

number of papers (Ramos-Onsins and Rozas. 2002; Depaulis et al. 2003; Sano and Tachida. 

2005), the effect of intragenic recombination on the power of the statistics has been much less 

explored, especially considered together with changes in population size. 

In this paper, we have studied the power of the neutrality tests to detect sudden 

population expansions, population contractions and bottlenecks with and without 

recombination, using a wide range of parameters of length, time and strength of the event. 

Furthermore, we have focused on how the distributions of these tests are affected by different 

degrees of recombination. In this sense we have assessed how the inaccuracy in the estimate 

of the recombination in a genomic area, and thus in the levels of recombination used to 

simulate neutral models, affects reliability of the neutrality statistics. 
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As a conclusion of this work, we provide guidelines on which neutrality tests should be 

used to detect each of the demographic events explored. These guidelines take into account 

not only the time since the beginning of the event or its strength but also the recombination 

rate underlying the genomic area of interest. 

7.2 Neutrality statistics in diploid sequences: estimating the loss of power due to 
statistical phasing (Ramirez-Soriano and Calafell. in preparation)  

The significance of the neutrality tests as calculated from empirical data is ascertained 

by comparing it to a neutral, simulated distribution of values of the same statistic. However, 

both sets of data are produced with very different methods, as simulations provide haplotyes 

while resequencing provides genotypes. In empirical data, thus, haplotypes must be inferred 

from genotypes. Moreover, resequencing produces a number of missing genotypes, which can 

also be reconstructed. 

In this work, we explore the amount of error produced by the algorithm implemented 

in fastPHASE, a program used to estimate haplotypes, and how it affects the power of 

neutrality statistics both in neutral models and under several demographic and selective 

scenarios. All models are tested assuming that the whole genotypes are known and including 

three different fractions of missing data. 

7.3 Correcting Estimators of θ and Tajima’s D for ascertainment biases caused by 
the SNP discovery process (Ramirez-Soriano and Nielsen. submitted)  

As seen above, neutrality tests are most efficient in detecting departures from 

neutrality when data comes from resequencing projects, in which every single nucleotide 

variant harboured by a sampled individual is typed, including low frequency variants. However, 

much human data is currently generated by means of large-scale SNP genotyping projects, 

which cause that some of these variants might be overlooked. This loss of information, known 

as ascertainment bias, makes neutrality tests highly unreliable to detect departures from 

neutrality when analysing genotyping data. 

Although a number of statistics and methods have been developed to deal with 

genotyping data (see above), there are currently no formal tests of neutrality that accurately 

take ascertainment biases into account. Our objective in this work was, therefore, to modify 

Tajima’s D test to take ascertainment bias into account and to use the corrected statistic over 

a large ongoing genotyping project.  

In this paper, then, we derived two corrected estimators of θ, θW and θπ, together with 

their variances and co-variances, and provide a corrected version of Tajima’s D statistic. We 

performed this correction assuming an ascertainment scheme in which a discovery subsample 

of size d has been resequenced and the SNPs found in it are afterwards genotyped in the 

whole sample. However, the equations given can be easily extended to other ascertainment 

schemes. Furthermore, we re-analyzed the Perlegen data set using the corrected Tajima’s D, 

finding substantial differences in the results obtained with or without ascertainment bias 

correction. 
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7.4 FABSIM: a software for generating FST distributions with various ascertainment 
biases (Ramirez-Soriano and Calafell. submitted)  

One of the methods to detect selection acting over populations besides from neutrality 

tests is, as seen in previous point 1.2, FST. FST measures the extent of genetic differentiation 

among populations and, thus, is a useful tool to detect local selective pressures acting on a 

single population, which would appear as more differentiated than with neutrally evolving 

genes. This is usually achieved by comparing the FST obtained from a single locus against an 

empirical distribution of FST values built upon a large number of SNPs, such as that provided by 

Akey et al. (2002). However, although widely used, this method has two main problems. One 

one hand, empirical distributions use a particular subset of SNPs, and so they have an 

underlying ascertainment bias that can modify the distribution. Moreover, this bias is usually 

different between the published empirical distributions and the genotyped gene of interest. 

On the other hand, a fraction of the SNPs included in the empirical distribution will indeed be 

under selection, thus producing broader confidence intervals. 

In this work, we suggest to use simulated distributions of FST in order to look for 

selection in a genomic region of interest. Until now, simulated distributions of FST incorporated 

even more uncertainty than empirical ones mainly due to (a) the inaccuracy of the 

demographic models describing the populations and (b) the ascertainment bias. In humans, 

the first issue can currently be solved using the calibrated demographic model proposed by 

Schaffner et al. (2005). 

This paper addresses the second problem by developing a software that generates FST 

distributions from simulations reconstructing the ascertainment bias of the sample. We have 

implemented seven biases classified into four categories which can be applied to the 

simulations independently or combined. Furthermore, we have explored the differences 

between simulated distributions and an empirical distribution built from the SNPs found by 

SeattleSNPs, and we provide several FST distributions for humans with different underlying 

biases. 
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“And somewhere or other, quite anonymous,  

there were the directing brains who co-ordinated  

the whole effort and laid down the lines of policy 

 which made it necessary that this fragment  

of the past should be preserved, that one falsified, 

 and the other rubbed out of existence.” 

1984 

George Orwell 
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1 GENERAL METHODOLOGY 
All the work presented in this thesis is based on computer simulations, and no 

empirical data has been produced.  

Simulations have been performed using several programs designed to simulate neutral 

genealogies based on the coalescent theory (see Introduction, section 3), and analysed using a 

wide range of small programs and scripts especially developed to this purpose. The only 

exception has been the use of fastPHASE (Scheet and Stephens. 2006), a program used to infer 

haplotypes from genotype data. 

Empirical data has been used in some cases to support, test or strengthen the 

conclusions reached using the coalescent-based methods. When empirical data has been 

needed it has been obtained from publicly available databases, especifically SeattleSNPs and 

Perlegen. SeattleSNPs (http://pga.gs.washington.edu/, Crawford et al. 2005) is a project 

devoted to resequencing genes belonging to pathways leading to inflammatory response in 

humans, which nowadays contains information for more than 300 genes. The vast majority of 

these genes are resequenced in 24 African-American and 23 European individuals. From 

SeattleSNPs we have used the genotypes of the 303 genes resequenced in African-American 

and European individuals, downloaded from 

http://pga.gs.washington.edu/data_download.html. 

Perlegen (http://www.perlegen.com/indexNew.html?science/science.html, Hinds et 

al. 2005) is a private company created to discover patterns of genetic variation that are 

rellevant to clinical purposes. Perlegen has also a database containing 1.6 milion SNPs 

genotyped in 24 European-American, 23 African-American and 24 Han Chinese samples. Those 

SNPs have been obtained following three different protocols. 69% of the SNPs (class A) have 

been obtained by means of array-based genomic resequencing, that is, they have resequenced 

20 to 50 chromosomes and have genotyped the polymorphic positions found on these 

individuals. Note that the number of resequenced chromosomes changes from site to site. 

Another 27% of the SNPs genotyped (class B) were segregating sites found in other public 

databases such as dbSNP. The rest of the SNPs (class C) were unvalidated polymorphic 

positions from dbSNP or low-confidence SNPs found by their resequencing protocols. From 

Perlegen, we have downloaded the information of all SNPs from 

http://genome.perlegen.com/browser/download.html but we have only used those belonging 

to class A. 

 

2 COALESCENT SIMULATIONS 
In the different papers included in this thesis, coalescent simulations have been 

performed using a wide range of parameters that include different sequence lengths, mutation 

rates, recombination rates and demographic and selective models. Moreover, these 

genealogies have been built using different programs. 

2.1 Programs designed to run coalescent simulations 
A number of programs have been developed in the last years to simulate neutral 

genealogies using coalescent alrogithms. However, besides the purely neutral model explained 
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in section 3.1, they are also able to simulate departures from neutrality such as demographic 

events, recombination or selection. Indeed, each one of them includes particularities that 

make it more suitable for simulating coalescent trees under different assumptions. Some of 

the most representative of such programs are discussed below. 

ms (http://home.uchicago.edu/~rhudson1/; Hudson. 2002) is one of the more widely 

used programs aimed to generate samples under neutral models. ms simulates neutral 

models, population size changes, migration, and recombination. Mutation can be simulated 

fixing θ or S and uses an infinite sites model, so no recurrent mutation is allowed. This program 

outputs the matrix of DNA sequences for each individual, and it can also include their 

genealogic tree. 

SimCoal (http://cmpg.unibe.ch/software/simcoal/; Excoffier et al. 2000) is another 

program aimed to generate neutral genealogies with the possibility to include demographic 

events in them, but it does not take into account recombination. SimCoal allows running 

simulations conditioned only on θ, but it uses three different mutation models: (a) restriction 

fragment length polymorphisms (RFLP), that are modelled using a two-allele model with finite 

sites; (b) STRs, using an stepwise mutation model; and (c) nucleotide replacements, which can 

be modeled using different finite-sites models. Sequences for each individual are outputted as 

several Arlequin (Schneider et al. 2000; Excoffier et al. 2005) or Nexus compatible formats. A 

second version of the program, SimCoal2 (http://cmpg.unibe.ch/software/simcoal2/; Laval and 

Excoffier. 2004), also enables (a) to include recombination, (b) multiple coalescent events per 

generation, (c) to simulate SNP data with a given minimum frequency, (d) to output diploid 

genotypic data, and (e) to simulate different mutation models along the sequence. 

cosi (http://www.broad.mit.edu/~sfs/cosi/; Schaffner et al. 2005) generates samples 

under stationarity and different demographic models, with or without recombination. The 

main difference with ms is that it allows applying different recombination rates along the 

sequence and that it can use either a finite or an infinite sites model. cosi outputs two files for 

each simulated population, a file with the haplotypes of each individual and another with the 

position and allele frequency of each segregating site. The cosi package includes two 

programs: coalescent, to run the simulations, and recosim, to produce random maps of 

recombination rates. 

SelSim (http://www.stats.ox.ac.uk/~spencer/SelSim/Controlfile.html; Spencer and 

Coop. 2004) is a program to generate genealogies under neutrality and selection with 

recombination. It implements several mutation models, among which the possibility to 

produce SNPs or microsatellites, to fix S or θ, and to use finite or infinite models. 

Recombination rates can vary along the sequence. SelSim is able to simulate positive and 

overdominant selection and allows choosing a deterministic or a stochastic model for 

simulating the trajectory of the derived allele. The program outputs the haplotypes of all 

individuals in the population. Furthermore, if required, it can provide the genealogic trees of 

each sample and the location of the recombination events. 

mlcoalsim (http://www.ub.es/softevol/mlcoalsim; Ramos-Onsins and Mitchell-Olds. 

2007) is an ms-based program to generate samples under the stationary model, several 

demographic scenarios and strong positive selection, with recombination. Mutation can be 
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simulated by fixing θ or S, or by using distributions of θ. This allows using different mutation 

rates along the sequence. Furthermore, mutation can be placed on the tree either following an 

infinite-sites model or allowing recurrent mutation. Recombination can also be incorporated in 

the model in different ways, including (a) a constant recombination rate, (b) a distribution of 

recombination values and (c) a fixed number of recombination events. Besides, a particularity 

of mlcoalsim is that it can output the sequences of every individual in the sample or calculate 

several neutrality statistics and output their value. 

Of all the programs described above only ms, cosi and SelSim have been used. ms has 

been used to generate neutral genealogies and simple demographic models with and without 

recombination. Cosi has been used to run coalescent simulations under the best-fit model of 

human demography described in Schaffner et al. (2005). SelSim has been used to produce 

genealogies with positive selection. 

2.2 Mutation models 
Gene genealogies can be simulated according to several mutation models. As seen in 

the above section, these models can be classified according to whether they refere to (a) the 

kind of polymorphism produced, (b) the mutation parameter, and (c) the model of alleles used. 

The most problematic of these points is how to include the mutation parameter, θ, in 

the simulated genealogy. The question arises because θ cannot be obtained directly from the 

observation of the data and, thus, it is usually unknown. To solve that, three main strategies 

have been proposed: (a) simulations can be produced using an estimate of θ, such as the 

Watterson’s estimate θW (Watterson. 1975); however, it is difficult to ascertain the accuracy of 

an estimate of θ, especially if the region of interest is not under neutrality; and even if it was 

accurate, it produces broad confidence intervals, thus reducing the power of neutrality tests 

(Depaulis et al. 2005). 

(b) simulations can be performed fixing the number of segregating sites, S, which can 

be directly counted in the sample after resequencing (Hudson. 1993). Nevertheless, this 

method is not accurate either, as it does not take into account the length of tree. Therefore, 

short trees will have relatively high mutation rates, while long trees will have lower mutation 

rates than expected (Tavare et al. 1997; Pritchard et al. 1999; Jakobsson et al. 2006). 

(c) several strategies have been proposed which run simulations conditioned to S and 

taking into account the uncertainity of θ. In this case, the different trees produced for a given θ 

are weighted according to the probability that such a θ produce the S observed in the sample. 

This method, although more accurate, is also much more computationally intensive. 

In the papers included in the Results section simulations have been run both fixing θW 

and S, depending on their purpose. In the first work, both methods have been used and 

differences between them have been discussed. For the second paper, devoted to see how 

phasing data modifies the power of neutrality tests, simulations have only been produced 

fixing S, as a consistent number of segregating sites along the samples was needed. In the third 

manuscript all simulations have been conditioned on θW, as we wanted to investigate the 

accuracy of the estimators of θ. On the fourth θW has been also used, as we used the 
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parameters published by Schaffner et al. (2005). As for the other kinds of mutation models, 

DNA sequence data has been simulated in all cases, using an infinite-sites model. 

2.3 General parameters used 
In this section I will only discuss those parameters that have been used along all the 

works presented in the results. Therefore, I will not discuss the demographic or selective 

models used, as they only affect the two first (sudden population expansions, bottlenecks and 

sudden population contractions) and the last (Schaffner et al.’s (2005) calibrated genealogy for 

humans) manuscripts presented. I will neither discuss particular values of the parameters 

explained that only apply to specific cases. 

Sample sizes have been generally assumed to be n=20, 50 and 100, as to compare 

results for small, medium and large sample sizes. Effective population size has been set to 

Ne=10,000, as this correponds to the value estimated for humans (Takahata et al. 1995). 

In order to obtain realistic estimates of the number of segregating sites to simulate, we 

have used S=10, 100 and 400, which corresponds to the rounded minimum, average and 

maximum S found in the genes resequenced by SeattleSNPs (http://pga.gs.washington.edu/; 

Crawford et al. 2005). Sequence lenghts of 3,000, 21,000 and 72,000 base pairs (bp) have been 

assumed for each S respectively, as they also correspond to the rounded minimum, average 

and maximum lenghts resequenced in SeattleSNPs. θw values have been estimated from these 

S values when needed. 

Recombination rates, when applied, have been set to r=0, r=10-10, r=10-8, and r=10-7 

per bp. The non-null values correspond to the rounded minimum, average, and maximum 

values estimated by Kong et al. (2002) for the human genome.  

 

3 NEUTRALITY TESTS 

3.1 Neutrality tests used 
As stated in the Introducton, neutrality tests can be classified in three classes: (a) Class 

I, based on the frequency spectrum of mutations, (b) Class II, based on the haplotype 

distribution, and (c) Class III, based on the distribution of pairwise differences. 

As Class III tests have been shown to perform poorly in the presence of population 

expansions (Ramos-Onsins and Rozas. 2002), in the first manuscript presented only Class I and 

Class II tests have been used. Among each class all the statistics described above have been 

included; however, two point estimators of EHH have been developed in order to use it as a 

neutrality statistic. In order to do that, the first three SNPs of each sequence have been taken 

as the core haplotype, and the distance from each core at which EHH decays to or under 0.5 

has been registered. The two point statistics, then, have been defined as: a) EHH Average, that 

is, the weighted average of the distance at which EHH decays to or under 0.5, for all core 

haplotypes, and b) EHH Maximum, the longest distance to which a core haplotype in the 

sample decays to or under 0.5. If a simulated segment finishes without EHH reaching a value 

under 0.5, EHH Maximum has been set to 2L, where L is the sequence length. 
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The second manuscript uses the same neutrality statistics than the first. On the third 

we have only used Tajima’s D, as we have focused on correcting this statistic for its use under 

ascertainment bias. In the last manuscript we have not used any neutrality test but FST. 

However, neutrality tests have been included in the developed program. 

3.2 Power of the tests 
The power of the tests to detect an event has been estimated by comparing the 

distribution of the values of the statistic under the neutral model against the distribution of its 

values under the event of interest, as shown in Figure 25. 

 

In order to do that, 10,000 samples have been generated both for the null hypothesis, 

that is, the neutral model, and for the alternative hypothesis, that is, the non-neutral model. 

Two one-tailed tests have been performed, both with an α=5% significance level. That is, the 

5% and the 95% percentiles have been obtained for each statistic. 

Next, for the 10,000 non-neutral samples, the value of each statistic has been 

compared against its α, and all the values that were more extreme than α were counted. The 

power of a test, then, was the number of values more extreme than α divided by 10,000.  

 

4 PHASE ESTIMATION 
Nowadays, two main strategies are available to detect variation in genomic sequences. 

If the variation is known it can be characterised on the populations of interest by means of 

genotyping methods, while if it is unknown it can be found by resequencing a number of 

individuals.  

However, given a polymorphism, both 

technologies are unable to specify which 

chromosome in a homologous pair each variant 

belongs to. Genotyping and resequencing, then, 

provide genotypes, from which the haplotypes, or 

the phase, needs to be inferred (see Figure 26). 

Figure 25: example of the calculation of the power of a 
test to detect population expansions. 

Figure 26: above, in blue, a genotype. 
Below, in orange, the four possible 
haplotype combinations. 
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4.1 Programs to estimate the phase 
Several programs have been developed to estimate the phase of a set of genotypes, 

each one of them using different algorithms. The most important among them are Arlequin, 

PHASE and fastPHASE. 

Arlequin (Schneider et al. 2000; Excoffier et al. 2005) is a program for genetic analysis 

that performs a number of different calculations among which Hardy-Weinberg (HW) 

equilibrium, measures of LD, some neutrality statistics or the analysis of variance (AMOVA). 

Moreover, it also implements phase reconstruction using an Expectation-Maximization (EM) 

algorithm. This algorithm provides the maximum-likelihood frequency of each haplotype 

working iteratively, starting with a random estimation of the frequencies. From these initial 

frequencies it follows two steps, namely E and M. In the E-step Arlequin calculates the most 

probable genotype frequencies from the current haplotype frequencies assuming HW 

equilibrium. In the M-step, it uses the new genotype frequencies as weight for producing new 

haplotype frequencies. These two steps are repeated until equilibrium is reached in haplotype 

frequencies, that is, until haplotype frequencies do not change more than a predefined value 

between iterations. However, this method is computationally very intensive and Arlequin has 

been progressively abandoned for this purpose in favour of other software. The kind of data 

accepted by Arlequin includes sequences, SNPs, STRs, RFLPs and allele frequencies. It can also 

deal with missing data, including the possibility to specify a maximum number of missing 

genotypes in a position to take it into account for analysis. 

PHASE (Stephens et al. 2001; Stephens and Donnelly. 2003) is the most widely used 

method to estimate haplotypes nowadays. It uses a Bayesian algorithm, which is based on the 

prior distribution of haplotype frequencies and on the likelihood of this distribution. As a prior 

distribution PHASE uses a distribution approaching the coalescent, and implements a Markov 

Chain Monte Carlo (MCMC) method to estimate the posteriori distribution. This method 

reduces the error in the reconstruction and is more efficient than the EM algorithm, allowing 

reconstructing the haplotypes for larger numbers of SNPs (Stephens et al. 2001). PHASE is able 

to work on SNP data, STRs and multiallelic data such as triallelic SNPs, and to reconstruct 

missing positions.  

Finally, fastPHASE (Scheet and Stephens. 2006) has been developed to deal with the 

huge numbers of SNPs produced by the new genotyping technologies, which make even 

PHASE largely inefficient. fastPHASE is based on a cluster method with two versions, which 

assume or not HW equilibrium. A cluster represents a combination of alleles at close SNPs, and 

each haplotype is composed by a mosaic of clusters of different size and distribution (see 

Figure 27). The algorithm implemented in fastPHASE, then, beggins with the assumption that 

an allele originates from one of the clusters, and calculates the cluster at which the next 

marker belongs using a Hidden Markov Model (HMM), which considers the probability of 

transition to another cluster. When the HW equilibrium is assumed, the two hapltoypes 

forming a genotype are assumed to be independent and use the same probability distribution 

to belong to a cluster. fastPHASE can deal only with biallelic SNP data, and also imputes which 

alleles correspond to a missing genotype.  
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4.2 Methods used to assess the effect of phasing on neutrality statistics 
In the second manuscript presented in the Results section we intended to ascertain 

the effect of phasing data on the power of neutrality statistics.  

In order to do this we have simulated 10,000 sets of samples, formed by 100 

chromosomes, under different demographic and recombination parameters. Afterwards, each 

set of samples have been split into 10,000 files, each one of them containing a sample formed 

by 50 individuals. To create the individuals, the 100 chromosomes of the sample have been 

randomly paired. Furthermore, these 10,000 files have been created five times each, assuming 

different fractions of missing genotypes. Missing values have been applied substituting the 

desired fraction of alleles by ‘?’. The alleles to be transformed to missing values have been 

selected at random through the sample. 

Once the new files with one sample each have been created, their individuals have 

been phased. The phasing has been performed using fastPHASE as, even if each file did not 

contain many SNPs, the large number of files to phase made the use of PHASE computationally 

unfeasible. 

Finally, the 10,000 phased files have been transformed again into a single file 

containing 10,000 samples. This new file has then been compared with the original simulations 

into two different ways, comparing (a) the error commited by fastPHASE and (b) the power of 

the neutrality statistics. 

 

  

Figure 27:. example of clustering. Each line is a haplotype, and consecutive 
lines taken two by two represents individuals. Blanks and crosses represent 
the two possible states of each allele. Colours represent the different 
clusters. (Scheet and Stephens. 2006) 
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5 DATA ANALYSIS PROGRAMS 
Besides from using programs publicly available through Internet, I have written several 

other programs and scripts to transform file formats as well as to analyse data. 

5.1 Programming languages used 
Thousands of programming languages have been developed since the first computers 

appeared, and still now new languages appear every year. Each one of them possesses 

characteristics that make it more suitable to particular uses, and can be classified in a number 

of ways according to their properties. Of all the available programming languages only C, Java, 

and Perl will be discussed, as they are the three I have used during the present work. 

C was developed in 1972 at Bell Telephone Laboratories by Dennis Ritchie. It is an 

imperative language, that is, programs written in C are a sequence of commands for the 

computer to perform. Then, C is sequentially structured, and its code is organised in functions 

that receive parameters passed by value as well as memory positions, passed by means of 

pointers containing their addresses. Furthermore, C is a compiled language, which means that 

a compiled C program can run on any computer by itself, without the need of any supporting 

software. However, it must be compiled in the same operative system where it is to be used. 

As most programs designed to simulate neutral genealogies, such as ms or cosi, are 

programmed in C, I started using this language. However, lately I changed the programs I had 

written in C to Java, as it is quicker to program and powerful enough for the purposes of my 

work. 

Java is a language developed by James Gosling at Sun Microsystems in 1991. Although 

its syntax derived from C and its further version C++, it is not an imperative language as the 

former but and object-oriented one as C++, even if simplified. As an object-oriented language 

its code is primarily organised in Objects, particular instances of code which own a set of 

variables and methods (functions) not shared with other parts of the code. These objects can 

be called from other objects, as well as inherit properties from them. Another difference 

between Java and C is that the former has been designed to be multiplatform, that is, it can be 

used on any operative system no matter in which one has been compiled. This is accomplished 

by compiling the font code to an intermediate language which can be further interpreted by 

the Java Virtual Machine (JVM). Furthermore, Java uses default methods that are continuously 

revised and sometimes eliminated or updated, so the JVM must be in the same version that 

the Java methods used. Most of the programs detailed below have been built or transformed 

to Java. 

Perl was developed in 1987 by Larry Wall. As C, Perl is an imperative language, but also 

takes characteristics from the shell programming language developed for UNIX systems. 

However, unlike C, it is not compiled but interpreted, that is, it needs an interpreter that reads 

the code and executes it before every usage. During this work Perl has only been used to 

program some small scripts to perform file organisation tasks on Linux, and thus no Perl 

program is explained in detail nor included in the attached CD-rom. 
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5.2 Programs and scripts 
In this section the different programs and scripts used in this thesis are described. Note 

that the programs developed in C and further translated to Java are included in their latest 

Java version.  

The font code of all programs is provided in a CD-rom at the end of this thesis. For 

each program there is a folder with the program name, which coincides with which is 

presented below unless the contrary is stated, and a compiled .jar executable. Except for the 

programs with graphic environment, the programs are run using the command “java –jar 

program.jar” followed by the arguments required, and must be executed in the folder where 

their input files are placed. Programs with graphic environment are run by double-clicking the 

executable .jar file. 

5.2.1 Scripts to modify simulation outfile formats 

The first program to generate neutral genealogies that I used was ms. For this reason, 

the scripts written to analyse sample data were created to be able to read the standard ms 

outfile format. This format is characterized by a general header followed by the different 

simulated samples separated by a space and a double bar (//). 

The header has two lines. The first includes the name of the program, the number of 

chromosomes per sample, the number of runs and the parameters indicating the mutation 

model. If any demographic event or recombination rate has been applied to the genealogy it is 

specified after the mutation model. The second line consists on a number specifying the seed 

used by ms to run the simulation. A simulation with 50 individuals per sample, 10,000 

simulated samples, fixing 10 segregating sites and with no demography or recombination 

would look as follows:  

ms 10 10000 -s 10 

5294 

After this header all the simulated samples (10,000 in the example) would follow. 

Samples start with the double bar. After that, the two subsequent lines contain the number of 

segregating sites in the sample and the position of each one of them. Positions are scaled 

between 0 and 1, so the absolute position on the sequence can be obtained multiplying the 

relative position by the total simulated sequence length. Finally the chromosomes are listed, 

one per line. The alleles are coded as 0 (ancestral) and 1 (derived). The first sample 

corresponding to the above header would be: 

// 

segsites: 10 

positions:  0.0001 0.0193 0.0350 0.0442 0.0609 0.0864 0.0872 0.1004 0.1016 0.1071  

1010000000 

0010000101 

0010001101 

0010000010 

0010000101 

1010100000 

0010000101 
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0010000000 

0010000101 

0010000000 

The object of the scripts discussed in this section, then, is to transform other format 

files to the ms format. This transformation is basically aimed to use a second program, 

SampleStats, which calculates neutrality statistics for each sample. As of all the information 

that ms outputs in the header SampleStats only uses the number of chromosomes per sample 

and the number of runs, the transformation only includes this information on the first line of 

the header. On the second line, the seed number is always assigned to 111. Positions are 

assigned to 0, 1, 2 … n, as they are neither used by SampleStats. A version of these scripts 

which does include the actual position of the sample is implemented in the FABSIM program 

(see section 5.2.5). 

CosiToMs transforms the outfile of cosi to a file with the ms format. It requires as 

arguments the name of the cosi’s outfile, the number of individuals for sample, the number of 

simulated samples and a complete name, including the extension, for the outfile.  

SelsimToMs transforms a Selsim outfile into the ms format. To do so, it requires the 

name of the SelSim’s outfile, the selected segregating site, the number of individuals per 

sample, and the number of simulated samples. The resulting file is given the same name that 

the input file with the extension .out. 

FastphaseToMs was developed to convert a number of fastPHASE output files to a 

single ms file format. In order to run, it requires the number of files to be included in the final 

file and a pattern, that is, a fragment of the name of the fastPHASE outfiles which is shared 

among all the files to be included. The FastphaseToMs output file is named as the entered 

pattern and has the extension .out. 

ConvertPerlegen transforms the genotype files for each chromosome as downloaded 

from Perlegen (http://genome.perlegen.com/browser/download.html) into the ms format, as 

required for TajimaCorrection (see 5.2.5), conserving only Class A SNPs. It only requires as 

arguments the name of the file with the genotypes (g_chrxx.dat). However, a d_chrxx.dat file 

containing the information on the Class A SNPs (see Results, section 3, Theory and methods) 

must exist in the same folder. The output file is named c_chrxx.out.  

5.2.2 SampleStats 

SampleStats is a program developed to calculate neutrality statistics. The first version 

of this program was a modification of sample_stats, a program provided by Hudson together 

with the ms package that calculates the number of pairwise differences between sequences 

(π), Tajima’s D, Fay and Wu’s estimator of θ (θH), and the difference between θH and π. The 

first version of SampleStats, then, was written in C, as was Hudson’s sample_stats. In that 

version I maintained the same structure for reading samples which was already implemented, 

but I changed the code to calculate the neutrality tests of my interest. In this sense I deleted θH 

and the difference between θH and π and implemented instead all the statistics cited in the 

Method’s section 3. Afterwards, the program was translated to Java, optimizing the code and, 

thus, its speed. 
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SampleStats can calculate neutrality statistics over a number of samples in ms format, 

described above. To run, it only requires the infile name and an outfile name. For each sample, 

the outfile consists on a list of the different neutrality statistics included, classified according 

whether they belong to Class I or to Class II. An example of a SampleStats output for two 

samples would be as follows: 

SAMPLE 1 

Sequences: 46 Seg. sites: 42 Pi: 8.668598 Singletons: 10 

Class I Statistics 

Tajima's D: -0.320972 

Fu and Li D*: -0.045210 Fu and Li F*: -0.170661 

Fu and Li D: -0.099298 Fu and Li F: -0.223524 

R2: 0.102917 

Fay and Wu H: -9.773913 

Class II Statistics 

Fu's Fs: -2.411875 

EHH average: 15.239130 EHH maximum: 34.000000 

Dh: 0.88405797 

Wall's B: 0.292682 Wall's Q: 0.428571 

ZnS: 0.140208 Za: 0.344554 ZZ: 0.204346 

 

SAMPLE 2 

Sequences: 46 Seg. sites: 17 Pi: 6.558454 Singletons: 0 

Class I Statistics 

Tajima's D: 2.201818 

Fu and Li D*: 1.616728 Fu and Li F*: 2.146899 

Fu and Li D: 1.734385 Fu and Li F: 2.284009 

R2: 0.192895 

Fay and Wu H: 0.050242 

Class II Statistics 

Fu's Fs: 5.077704 

EHH average: 34.000000 EHH maximum: 34.000000 

Dh: 0.790338 

Wall's B: 0.187500 Wall's Q: 0.352941 

ZnS: 0.364722 Za: 0.380532 ZZ: 0.015810 

SampleStats is accompanied by three other scripts: ExtractStats, Analyse, and Stats. 

ExtractStats takes the neutrality statistics from a SampleStats output file and displays them in a 

tabulated format, in columns. The name of the ExtractStats outfile is the same as the infile but 

with the extension .ext. 

Stats has two associated main projects, Stats and Stats2. Stats calculates the value that 

defines α for a given confidence interval. It needs a file with the neutrality statistics tabulated, 

such as the produced by ExtractStats, and the confidence interval to calculate (e.g. 0.05). The 

outfile consists in a column with the α for every statistic without labels in the order they 

appear in the ExtractStats file. The outfile name is the same as the input finished with the 

confidence interval and with extension .stats (e.g. CSM_n100_s10_r0_0.05.stats). Stats2 

calculates the mean and the variance of each statistic and displays them in two columns, with 



52 

one column at the beginning with the labels. Its outfile name is the same as the infile but with 

the extension .stats. 

Analyse was created to calculate the power of each statistic to detect a determinate 

event. It takes a SampleStats output file and, for each statistic, it compares its value against a 

Stats (version Stats) file which has the α of a given confidence interval calculated on another 

distribution. For example, if we want to see the power of neutrality test to detect population 

expansions with a confidence interval of 0.05, the SampleStats file would correspond to the 

expansion simulations and the Stats file to the neutral simulations. The parameters to run 

Analyse are the SampleStats file, the Stats file, the tail against which to compare (right or left, 

that is, under or over α), and the direction in which to display the results (line or columns). 

Results have no labels. The output file name is the same as the SampleStats input, finished 

with the tail and with extension .ana (e.g. CSM_n100_s10_r0_left.ana). 

5.2.3 Scripts to create fastPHASE input files 

Input fastPHASE files only need to include the number of diploid individuals in the 

sample, the number of segregating sites and the genotypes for each individual. However, it 

also accepts the PHASE infile format, which also includes the position of each segregating site 

and a row of ‘S’ characters, one for each segregating site. In order to create files which are 

compatible with both programs, the scripts described in this section produce the PHASE infile 

format. Thus, the output of these scripts will look as follows: 

5 

6 

P 0 1 2 3 4 5 

SSSSSS 

DY01 

? ? A G G A G 

? ? A G G A G 

DY02 

? ? A A T A G 

? ? A A T A G 

DY03 

? T A A T A G 

? T A A T A G 

DY04 

? ? ? A G A G 

? ? ? G T A G 

DY05 

? T A A T A G 

? T A A T A G 

The first two lines indicate that there are 5 individuals and 6 segregating sites. The third line 

gives the position of each segregating site, and the fourth is the row of ‘S’. Next, it follows the 

genotype for each individual with its label. Missing genotypes are coded as ‘?’. Two scripts 

have been developed to convert files into PHASE format: msToPhase and SeattleSnpsToPhase.  

msToPhase converts a file in ms format with a given number n of simulated samples 

into n input fastPHASE files with one sample each. Individuals in a sample are labelled #1, #2, 

…, #i, and their genotypes are coded as ‘0’ and ‘1’ as were in the simulations. Moreover, 
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msToPhase allows including a number of missing genotypes in the sample, distributed 

randomly along all the genotypes. To run, msToPhase needs to be given the name of the file 

containing the simulations without extension, the extension preceded by a point (e.g. .out) and 

the desired number of missings to include (0 is allowed). 

SeattleSnpsToPhase uses two of the files provided by SeattleSNPs for their 

resequenced genes: (i) the individual genotypes (gene.prettybase.txt) and (ii) the SNP alleles 

file (gene.alleles.txt) and converts them into two input fastPHASE file, one for the genotypes of 

African Americans (gene_AA.inp) and the other for the genotypes of Europeans (gene_EU.inp). 

Note that the program only works for those genes resequenced on, and exclusively on, African 

Americans and Europeans. The program looks for all the genes that have both an individual 

genotypes and an alleles files in the folder where it is placed and produces the two output files 

for each of them. Thus, SeattleSnpsToPhase does not require any argument to be run. 

5.2.4 AscertainSample 

AscertainSample is a program developed to bias simulated data as if its SNPs had been 

identified by using a discovery sample, a process consisting in resequencing a subsample of 

size d and genotype the SNPs found in the whole sample n. This is accomplished by selecting d 

random sequences and discarding from the sample all loci that are not polymorphic in this 

subsample. 

The program has three versions, implemented as different packages inside the 

AscertainSample project, named ascertainsample_1, _2 and _3, which implement different 

ways to apply the bias. In all cases, the program only accepts as infile data in ms format, and 

the output consists on the same ms sample, also in ms format, but without the SNPs not found 

in the d sample. 

Versions _1 and _2 ascertain data using the same subsample along the whole 

haplotype. The latter is an optimised version of the former, which also needs less parameters 

to run: version _2 requires the infile name and the d size, while version _1 also requires the n 

sample size as last argument. The output file of both versions is named as the infile, adding the 

word “_ascertained” after the infile name and with the extension .out. Furthermore, they can 

launch ms to produce new, non-ascertained simulations, with the same sample size than the 

original simulations and the same number of segregating sites after ascertainment. This new 

simulations are run for each sample and stored in a new file named infile_control.out. This 

option can be shut down by commenting the lines under the code //execute ms to generate a 

non-ascertained sample and //generates the final file with the non-ascertained sample. 

Version _3 assumes a different d sample for each locus in the chromosome, that is, it 

selects randomly d different sequences for each SNP. As version _2, it only requires the infile 

name and the d size as arguments. The outfile name is the same as the infile followed by the d 

size and “_ascertained”, with the extension .out. If, for instance, the infile is named “test” and 

d=5, the outfile will be test_d5_ascertained.out. 



 

5.2.5 TajimaCorrection 

TajimaCorrection (Ramirez-Soriano and Nielsen. submitted) is a program with different versions that implements the corrected estimators of θ and 

their variances and covariances as derived in Results, section 3, and provides the corrected Tajima’s D value for data with underlying discovery sample 

ascertainment bias.  

The paper is accompanied by a version with a graphic environment that can work both with simulation and empirical data, with or without changing 

the d size (see 5.2.4). This version, named Tajima’s D Corrector (in the TajimaCorrectionGraphic project), is built by adapting and putting together the 

versions of TajimaCorrection developed by the analysis of simulations and of Perlegen data plus the scripts developed to ascertain simulation data explained 

above. Details on how to use the graphic version are explained in the program’s documentation, included in the Apendices. 

The TajimaCorrection project includes three different programmes implemented as different packages, each with their own main class: 

tajimacorrection, TajimaPerlegen and TajimaPerlegenUncorrected. Tajimacorrection was designed to calculate the corrected Tajima’s D using our corrected 

estimators for data with and without ascertainment bias. To run, it needs as arguments the input file and the d sample size. If d=0, our corrected formulas 

are used substituting the probability to find a SNP by 1. The output file is named after the input file with the extension .tcr and contains six columns, for the 

corrected estimators, their variances and covariances and for the Tajima’s D: 

Watterson's theta corrected Tajima's theta corrected Variance W_theta corrected Variance T_theta corrected Covariance corrected Tajima's D 

corrected 

17.000000 15.642857 70.940928 109.347628 84.654057 -0.409558 

2.000000 0.542857 2.396624 2.952241 2.497456 -2.449229 

13.000000 11.300000 43.936709 66.437652 51.801591 -0.653306 

5.000000 4.771429 8.966245 12.336695 9.974563 -0.196445 

4.000000 1.814286 6.379747 8.547731  6.984738 -2.233110 

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

1.000000 1.071429 1.000000 1.145714 1.000000 0.187122 

5.000000 4.571429 8.966245 12.336695 9.974563 -0.368335 

7.000000 6.142857 15.329114 21.897060 17.446582 -0.561171 

1.000000 1.071429 1.000000 1.145714 1.000000 0.187122 

This example corresponds to the analysis of a sample with d>0. If d=0, the headers lack the word “corrected”.  



    

TajimaPerlegen and TajimaPerlegenUncorrected were written to analyse Perlegen data, and thus take into account the two main particularities of 

this data: (a) the large region to analize, as each file contains a whole chromosome and (b) the different d size along the chromosome. To adress the first 

issue the program analyses the chromosomes using windows. To take into account the changing d size the programs need two files with the same name and 

extension, a c_file with the sample in the ms format and a d_file (see section 5.2.1 and Results, section3, Theory and methods) with the d size of each SNP. 

The d_file should be organized in eight columns separated by tabulators, the last two containing the d sample for each allele, and a row for each SNP plus 

another for the header. The arguments required for both programs are the name of the c_file, the size of the windows in kb and the step size between 

windows also in kb. The outfile is named after the c_file and contains 11 columns: (a) the window number (column 1), (b) the absolute position of the start 

and end SNPs, with 0 representing the first SNP in the sample (columns 2 and 3), (c) the average number of SNPs per window (column 4), (d) the average 

number of valid haplotypes per window, that is, the number of haplotypes without missings (column 5), (e) the corrected estimators of Watterson’s and 

Tajima’s θ and their variances and covariance (columns 6 to 10) and the corrected Tajima’s D (column 11):  

Window start_pos end_pos snp_num average_n W_theta T_theta average_Theta Var_W_theta VarT_theta Cov

 Tajima's D 

1 0 49 49 139 23.432733 17.535322 23.432733 79.241026 163.471632 106.042844 -0.192556 

2 20 49 29 140 12.906103 8.235925 12.906103 25.571425 51.268497 33.403851 -0.465518 

3 28 49 21 139 8.681747 6.103672 8.681747 12.306826 24.077158 15.766162 -0.531380 

4 35 49 14 139 5.739914 4.164504 5.739914 6.053543 11.337225 7.525796 -0.673489 

5 41 49 8 139 2.749935 2.359691 2.749935 1.745456 3.019952 2.061302 -0.607096 

6 42 49 7 141 2.284971 1.744746 2.284971 1.270244 2.165306 1.477794 -1.125558 

7 44 49 5 141 1.670762 1.352576 1.670762 0.826446 1.330367 0.931516 -1.083072 

8 44 49 5 141 1.670762 1.352576 1.670762 0.826446 1.330367 0.931516 -1.083072 

9 46 49 3 142 1.028643 0.651729 1.028643 0.439866 0.651925 0.473517  -2.603770 

A script named AnalyseTajimaResults is included with the TajimaCorrection. AnalyseTajimaResults takes a TajimaPerlegen or a 

TajimaPerlegenUncorrected output file and selects only those windows that have a minimum number of SNPs and a Tajima’s D value above a positive 

threshold or below a negative one. To run, this script requires the TajimaCorrection output file name, the minimum number of SNPs allowed for window 

and the threshold for Tajima’s D. It returns two files named infile_xsnps.tcr and infile_tajimax.tcr, where x is the minimum number of SNPs per window and 

the Tajima’s D threshold respectively. 
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5.2.6 FABSIM 

FABSIM (Ramirez-Soriano and Calafell. submitted) is a program with a graphical 

interface developed to produce FST distributions with ascertainment bias. Furthermore, it also 

calculates minor (MAF) and derived (DAF) allele frequencies and neutrality statistics. 

This program works on simulated data produced using ms, cosi or SelSim, or in any 

other software whose output is translated to one of those formats. It implements seven 

different ascertainment biases grouped into four categories: (a) related to the discovery 

sample, (b) related to the presence of polymorphism in a population, (c) related to the MAF, 

and (d) related to distance. Results can be outputted in two different formats, as a list of 

values per samples or as tabulated statistics. 

More details on how to use it, its characteristics and the infile and output files can be 

found in Results, section 4, and on the program documentation, included in the Apendices. 

5.2.7 Other scripts 

PhaseEfficiency is a script that estimates the precision of fastPHASE to reconstruct 

haplotypes and impute missing alleles, using simulations (see Results, section 2). This program 

compares the true haplotypes with the reconstructed lines and gives four indicators of the 

precision: (a) the fraction of correctly estimated haplotypes, (b) the average number of 

incorrectly estimated positions per haplotype, (c) the average number of incorrectly estimated 

positions per incorrect haplotype and (d) the number of incorrectly estimated positions 

divided by total number of positions, the last understood as the number of chromosomes 

multiplied by the number of SNPs per chromosome. PhaseEfficiency compares the fastPhase 

input files (actual haplotypes) in a folder against the fastPHASE output files (reconstructed 

haplotypes) in the same folder. To run, the program only needs a file pattern, that is, a 

fragment of the input and output phase files. This pattern has to be shared among both files 

and to correspond to the beginning of the file names. PhaseEfficiency will compare two by two 

all the files sharing this pattern. 

HistogramBuilder is a script that creates histograms from tabulated data. It needs 

seven parameters to run: (a) the infile name, (b) the minimum and maximum values of the 

distribution, (c) the range of classes (that is, the distance between them), (d) the symbol that 

codes invalid values (even if all values are valid in the input file, an invalid value character –

such as any character absent in the file- must be added), (e) the column containing the values 

with which build the histogram and the number of header lines in the file. HistogramBuilder 

return a file named as the input file with the extension .hst that contains two columns 

separated by tabulators: the classes and the absolute frequency of values of each category, as 

shown below.  

classes frequency 

0.05 21450 

0.10 3305 

0.15 2084 

0.20 1180 

0.25 837 

0.30 512 

0.35 403 
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0.40 368 

0.45 248 

0.50 335 

0.55 324 

0.60 260 

0.65 259 

0.70 199 

0.75 168 

0.80 262 

0.85 302 

0.90 295 

0.95 299 

1.00 381 

This file can be directly imported to Excel or any other program that accepts tabulated 

formats to draw the graphic. 
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1 STATISTICAL POWER ANALYSIS OF NEUTRALITY TESTS UNDER 
DEMOGRAPHIC EXPANSIONS, CONTRACTIONS AND BOTTLENECKS 
WITH RECOMBINATION (Ramirez-Soriano et al. 2008)  
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2 NEUTRALITY STATISTICS IN DIPLOID SEQUENCES: ESTIMATING THE 
LOSS OF POWER DUE TO STATISTICAL PHASING (Ramirez-Soriano and 
Calafell. in preparation)  
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ABSTRACT  

The coalescent allows the estimation of the statistical significance of neutrality 

statistics through the simulation of neutral scenarios against which to compare the DNA 

data, and thus to infer whether the population deviates from the neutral model. However, 

there is a crucial difference between simulation and empirical, diploid data obtained 

from resequencing, as the former provide real haplotypes while the latter have to be 

phased. This could affect the power of neutrality statistics through (a) the loss of low-

frequency variants and (b) the reduction in the number of different haplotypes. In this 

work, we have acknowledged how the reconstruction of haplotypes, performed using 

fastPHASE, affects the power of neutrality tests under several demographic models and 

different levels of recombination and missing genotypes. We have found that, although 

the accuracy of the phasing is not optimal, the power of neutrality statistics is not 

affected by it. 
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INTRODUCTION 

In the last years, much interest has been devoted to unravel both the 

demographic processes and the selective forces that lay behind the populations. In this 

direction, a considerable effort has been put in the development of statistical tests (e.g.  

Tajima. 1989; Fu and Li. 1993; Fu. 1997; Kelly. 1997; Fay and Wu. 2000; Ramos-

Onsins and Rozas. 2002) that can detect departures from the neutral theory of evolution, 

mainly modelled upon the Wright Fisher model (Fisher. 1930; Wright. 1931; Hein et al. 

2005), which assumes neutral populations of constant size that are panmictic and non-

recombining, in the DNA variability patterns. 

These concerns have been usually approached from the coalescent theory 

(Kingman. 1982a; Kingman. 1982b; Hudson. 1990; Donnelly and Tavare. 1995; Fu and 

Li. 1999; Kingman. 2000), a theoretical framework that provides the mathematical basis 

for the development of neutrality statistics. The coalescent allows the estimation of the 

statistical significance of neutrality tests through the simulation of neutral scenarios 

against which to compare the DNA data, and thus to infer whether the population 

deviates from the neutral model ( Wall. 1999; Ramos-Onsins and Rozas. 2002; Depaulis 

et al. 2003). However, this approach presents several limitations. In the first place, 

demographic and selective events leave similar traces in the genome, and thus it is often 

difficult to distinguish them when comparing against neutral models. That implies that 

the reliability of the results lies on the precision of the model against which empirical 

data is compared. Indeed, it has been shown that under- or over-estimation of 

recombination greatly affect the power of tests, mainly those based on haplotypes and 

linkage disequilibrium (LD; Ramirez-Soriano et al. 2008). Secondly, bias can be 

introduced in the detection or selection of SNPs as most tests, especially those based on 

the frequency spectrum of mutation, depend on low-frequency variants that are 

frequently lost if data is not carefully resequenced.  

Besides those two well-known limitations of the use of coalescent methods to 

detect departures from neutrality, a third issue could affect the power of neutrality tests 

and that, to the best of our knowledge, has not yet been explored. When such methods 

are used there is a crucial difference between simulation data (used to build the 

distribution against which to compare) and empirical, diploid data obtained from 

resequencing, as the former provide real haplotypes while the latter have to be phased. 

Furthermore, as said above, resequencing often does not provide complete information 

on all loci, and a number of missing genotypes can be introduced. The most widely 

method to estimate haplotypes at this moment is Phase (Stephens et al. 2001; Stephens 

and Donnelly. 2003), which uses a Bayesian algorithm based on the known haplotypes 

(that is, on homozygote individuals); although fastPHASE (Scheet and Stephens. 2006), 

which uses an expectation-maximization (EM) algorithm based on dynamic haplotype 

clustering, is becoming increasingly popular as larger amounts of data are generated. 

Both methods are inconvenient as they can lead to the loss of rare variants. This can be 

more important if the data contains missing genotypes, which have to be inferred. 
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Moreover, high recombination introduces uncertainty in the estimation of haplotypes as 

it increases the number of different combinations. 

In this work, we investigate how the reconstruction of haplotypes using the 

algorithm implemented in fastPhase affects the power of tests both in neutral models 

and under several demographic scenarios taking also into account the presence of 

missing genotypes. 
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METHODS 

Statistics 

We have tested the power of statistics based on a) the frequency spectrum of 

mutation (Class I), which use the differences between estimators of the population 

mutation rate θ = 4Nµ, where N is the effective population size and µ is the mutation 

rate; and b) based on linkage disequilibrium and haplotype distribution (Class II), which 

are expected to be the most affected by recombination. From Class I, we present results 

for Tajima’s D (Tajima. 1989), Fu and Li’s D, F, D* and F* (Fu and Li. 1993), Fay and 

Wu’s H (Fay and Wu. 2000), and R2(Ramos-Onsins and Rozas. 2002), which is based 

on the difference between the number of singletons per sequence and the average 

number of nucleotide differences. Within Class II  we have studied Fu’s Fs (Fu. 1997), 

the unbiased haplotype diversity estimate Dh (Nei. 1987, equation 8.4 replacing 2n by 

n), Wall’s B and Q (Wall. 1999), Kelly’s ZnS (Kelly. 1997), Rozas’ ZA and ZZ (Rozas et 

al. 2001), and two statistics based on the Extended Haplotype Homozygosity, EHH 

(Sabeti et al. 2002; Ramirez-Soriano et al. 2008) .  Furthermore, we have also taken into 

account in all cases the number of segregating sites (S), the number of pairwise 

differences (π), and the number of singletons. 

Coalescent Simulations 

Simulations have been performed using the ms package (Hudson. 2002), a 

program that generates coalescent trees using the algorithm described by Hudson (1990). 

ms assumes an infinite-sites mutation model and can simulate any given population size, 

recombination rate, and demographic scenario.  

Simulations have been run conditioned on the number of segregating sites (S), 

which have been fixed to 10 and 100. These values are representative for small and 

large S values, as S has been shown to affect the power of statistical tests (Ramos-

Onsins and Rozas. 2002). These S values correspond to the rounded minimum and 

average number of segregating sites found in the genes resequenced by SeattleSNPs 

(http://pga.gs.washington.edu/; Crawford et al. 2005) and have been associated to 

sequence lengths of 3000 and 21000, which also corresponds to the rounded minimum 

and average lengths resequenced by them. One hundred chromosomes have been 

simulated per sample in order to create 50 individuals to phase. Simulations where 

performed with and without recombination. When applied, recombination rates were set 

to r=10
-10

, r=10
-8

, and r=10
-7

 per nucleotide pair. These values correspond to the 

rounded minimum, average and maximum values found by Kong et al. (2002) in the 

human genome.  

Scenarios 

  We have simulated two models: stationarity and sudden population growth, 

under the different conditions of S, n, and recombination listed above. For each scenario 

we have ran 10,000 simulations. As mutations were simulated under an infinite-sites 

model (which implies no recurrent mutation), for those statistics that require an 

outgroup it has been set to a string of 0’s (the ancestral state as coded by ms). 
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The sudden population growth model (Rogers and Harpending. 1992) assumes 

that an initial population in equilibrium of size N0 experienced a sudden growth and 

reached a size Nmax Te generations (scaled in units of 4N generations) before present. We 

have set two expansions at Te = 0.05 and Te = 0.2, as these times have been shown to 

have maximum and lowest power in a previous work (Ramirez-Soriano et al. 2008). 

The degree of expansion (De=Nmax/N0) has been set to De=10, that is, a 10-fold 

population increase.  

Haplotype reconstruction  

Haplotypes have been reconstructed using fastPHASE 

(http://www.stat.washington.edu/stephens/software.html; Scheet and Stephens. 2006), 

version 1.1. In order to reconstruct haplotypes we have generated one fastPhase input 

file for each of the 10,000 samples obtained with ms for each scenario. The 100 

chromosomes of each sample have been paired randomly as to generate 50 individuals. 

For each condition, the 10,000 fastPHASE input infiles were created four times each, 

introducing in them either no missing genotypes or 5%, 10%, 15% missing genotypes.  

Phase accuracy 

The accuracy of fastPhase in the haplotype reconstruction has been estimated by 

comparing the original haplotypes with the reconstructed ones. To do that we have 

created a script that compares, locus by locus, the haplotypes before and after phasing. 

This scripts provides four measures of phase accuracy (a) the fraction of correctly 

estimated haplotypes, (b) the average number of incorrectly estimated positions per 

haplotype, (c) the average number of incorrectly estimated positions per incorrect 

haplotype, and (d) the number of incorrectly estimated positions divided by total 

number of positions, that is, the number of haplotypes multiplied by the number of 

segregating sites per haplotype. 

Effects of phasing in neutrality statistics 

How neutrality tests are affected by haplotype reconstruction is explored in three 

different ways, listed below. In all cases, a two-tailed α=0.95 has been used.  

First, we have estimated the type I error committed as a result of phasing by 

comparing the neutrality statistics computed on (a) the simulated haplotypes as 

produced by ms against (b) the same haplotypes, grouped in pairs and phased. This 

procedure has been applied to the different demographic scenarios and to the different 

fractions of missing genotypes.  

Secondly, we have compared each non-neutral scenario with its corresponding 

neutral model in order to estimate the power of each test to detect the event of interest. 

Afterwards, we have repeated this analysis but using the phased files. Again, this 

comparison has been repeated for each fraction of missing genotypes. Finally, in order 

to assess the effect of phasing on the power of the tests, we have calculated the 

difference in the power of the tests between both comparisons. 
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RESULTS 

Phase reconstruction  

Figure 1 shows the accuracy of fastPHASE in haplotype reconstruction. As 

expected, it is mainly dependant on the number of segregating sites, on the fraction of 

missing genotypes in the sample and on recombination. The larger effect on accuracy is 

seen for  S=100 and for high levels of recombination (r=10
-7

). However, the effect of 

high recombination is almost negligible for S=10. Furthermore, fastPhase is more 

accurate in the reconstruction for the constant size model than in sudden population 

expansions. This could be explained by the increase in the number of low frequency 

variants in the latter scenario. 

Type I error analysis  

Type I error is directly influenced by the accuracy of fastPhase reconstruction, 

increasing with the errors in haplotype estimation. In all simulation conditions the error 

committed is around 0.05, that is, what is expected using α=0.95; or lower (see Figure 2 

for an example with an expansion at Te=0.05). In all demographic scenarios the main 

exceptions to this are Fu’s Fs and Dh, for S=10; and Fu’s Fs, Dh, EHH average and ZZ 

for S=100. The largest errors are found for Fs, Dh, which in absence of missing 

genotypes reach errors above 0.60,  and, with a 15% missing genotypes, of well above 

0.90 (S=100 in both cases). The error in all those tests also increases with recombination, 

which is consistent with the fact that they are based on haplotypes. When a number of 

missing genotypes is included in the sample before phasing, the number of segregating 

sites after reconstruction shows also a high type I error (over 0.90 for S=100) when 

compared with the original S. However, this effect is not shared by singletons. The 

number of pairwise differences is also slightly affected by phasing in presence of 

intermediate and high fractions of missing genotypes (between 0.06 and 0.1). 

Power of the tests after phasing  

Figure 3 shows the difference in the power of the neutrality statistics due to 

statistical phasing for an expansion at Te=0.05. It can be seen that the difference in the 

the power of the statistics if data has or has not been phased (computed as phased 

against neutral model minus unphased against neutral model) is mainly found between 

0.06 and -0.06, which implies that most tests are not affected by phasing. This same 

pattern can be found for all the demographic scenarios tested (data not shown). The 

most widely affected statistics are Fu’s Fs, Dh, ZnS, ZA, and ZZ, all belonging to Class II. 

However, their error is not the same under the different parameters.  Fs is liberal in all 

conditions except in Te=0.05, which could be explained by the fact that, at this time, the 

power of this test is nearly saturated (Ramirez-Soriano et al. 2008). Dh is conservative 

except in Te=0.05 for S=100 and recombination values below r=10
-7

, where it is liberal, 

and Te=0.2 for S=10, where is not affected. ZA is conservative in most conditions, while 

ZnS is only affected for S=10 and ZZ for S=100. 
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DISCUSSION 

We have explored in this work the possible effects of comparing empirical, 

phased diploid data against simulated data in order to see if the power of neutrality tests 

is affected by it. Although the most widely used tool to phase genotypes is PHASE 

(Stephens et al. 2001; Stephens and Donnelly. 2003), instead of it we have used 

fastPHASE (Scheet and Stephens. 2006), a faster algorithm developed to be used in 

large genotyping projects. In the framework of this work, the choice of the latter is 

justified by the large amounts of files to be phased, which made unfeasible the use of 

PHASE. However, given that fastPHASE has been shown to perform missing 

imputation better than PHASE but is slightly less efficient reconstructing haplotypes 

(Scheet and Stephens. 2006), we believe the conclusions of this work can be 

extrapolated to the use of PHASE. 

Scheet and Stephens (2006) tested the accuracy of fastPHASE in haplotype 

reconstruction using a set of X-chromosome data and HapMap simulated and empirical 

data. They considered two types of error: (a) the proportion of ambiguous individuals 

whose haplotypes are not completely correct (individual error), and (b) the proportion of 

heterozygote genotypes that are not correctly phased relative to the previous 

heterozygote genotype (the switch error). For the X-chromosome data they obtained 

errors of 0.654 and 0.111, respectively, and of 0.879 and 0.055 respectively for HapMap 

empirical data. Those amount of errors are consistent with the values found in our data 

for S=100. 

We have shown that the power of neutrality statistics to detect departures from 

neutrality when data is phased is mainly not affected in Class I statistics, while it is for 

most Class II, especially for FS and Dh. When found, errors tend to be conservative, 

except in some statistics (ZnS, ZA and ZZ) that are mostly liberal. These results, then, 

show that although fastPHASE accuracy may not be perfect, that does not represent a 

problem to be taken into consideration when using neutrality statistics on diploid, 

phased data. 
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FIGURE LEGENDS 

Figure 1. Fraction of correctly estimated haplotypes in the neutral model (pale colours, 

CSM) and in the sudden expansion model at Te = 0.05 (dark colours, SEM). At the left 

side of the graph are shown results for S=10, and at the right side for S=100. m0_CSM, 

m5_CSM, etc. indicate the fraction of missings. 

Figure 2. Type I error for the sudden expansion model at Te = 0.05. In blue are shown 

the values <0.04, in green 0.04<x<0.06 and in red the values >0.06. A. S=10. B. S=100. 

Figure 3. Difference between the power of neutrality tests due to phasing for the sudden 

expansion model at Te = 0.05. -0.04<x<0.04 is depicted in green, 0.04>x>0.06 

and -0.04>x>-0.06 in blue and x>0.06 and x<-0.06 in red. Negative values are in light 

colours, and positive in dark. A. S=10. B. S=100. 
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3 CORRECTING ESTIMATORS OF THETA AND TAJIMA’S D FOR 
ASCERTAINMENT BIASES CAUSED BY THE SNP DISCOVERY PROCESS 
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ABSTRACT  

Most single nucleotide polymorphism (SNP) data suffer from an ascertainment 

bias caused by the process of SNP discovery followed by SNP genotyping.  The final 

genotyped data are biased towards an excess of common alleles compared to directly 

sequenced data, making standard genetic methods of analysis inapplicable to this type 

of data.  We here derive corrected estimators of the fundamental population genetic 

parameter θ/= 4Neµ (Ne = effective population size, µ = mutation rate) based on the 

average number of pairwise differences and based on the number of segregating sites.  

We also derive the variances and co-variances of these estimators, and provide a 

corrected version of Tajima’s D statistic.  We re-analyze a human genome-wide SNP 

data set and find substantial differences in the results with or without ascertainment bias 

correction. 
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INTRODUCTION 

The HapMap data (International HapMap Consortium. 2007) and other genome-

wide SNP data sets provide a valuable resource for population genetic analysis.  Much 

interest in the analysis of such data has focused on estimating demographic parameters 

or inferring natural selection (e.g. Bamshad and Wooding. 2003; Wooding. 2004; 

Voight et al. 2006; Wang et al. 2006; Carlson et al. 2006; Sabeti et al. 2006; Tang et al. 

2007; Williamson et al. 2007). However, many of the studies of genome-wide SNP data 

have been challenged by the fact that the SNP genotyping data have been obtained by a 

process in which SNPs are first discovered in a small panel of individuals and 

subsequently typed in a much larger panel (e.g. Picoult-Newberg et al. 1999; Altshuler 

et al. 2000; Mead et al. 2003). Although this procedure provides a much faster and 

cheaper way of generating data than direct sequencing of the full panel, it also produces 

data with a relative excess of alleles of intermediate frequencies compared to directly 

sequenced data.  Rare SNPs are more easily discovered in large panels than in small 

panels, so an initial discovery process based on a small panel produces an excess of 

high frequency alleles in the genotyped sample.  As a consequence, the data will be 

different from what is assumed in standard population genetic models with respect to  

allele frequency distribution (e.g. Nielsen. 2000; Wakeley et al. 2001), patterns of 

linkage disequilibrium (Nielsen and Signorovitch. 2003) , and  level of population 

subdivision (Nielsen. 2004). This ascertainment bias towards high-frequency alleles can 

have serious consequences when standard population genetic tools (e.g. Tajima. 1989; 

Fu and Li. 1993;  Fay and Wu. 2000; Ramos-Onsins and Rozas. 2002) are used for the 

analysis of the data.  For example, Kreitman & Di Rienzo (2004) and Soldevila et al. 

(2005) showed that the apparent effects of balancing selection detected in the PRPN by 

Mead et al. (2003) in fact were an artifact caused by this type of ascertainment bias. 

Three different approaches have been used to address the problem of 

ascertainment biases in studies of real data:  i) applying methods that may be more 

robust to the effect of ascertainment bias, such as methods based on haplotype structure 

(e.g. Sabeti et al. 2002), ii) simulating data under the ascertainment bias to derive 

appropriate critical values and confidence intervals using a distribution which directly 

takes ascertainment into account (e.g. Carlson et al. 2004; Voight et al. 2006), and iii) 

directly correcting the statistical estimators and statistics for the ascertainment bias (e.g. 

Nielsen. 2000; Wakeley et al. 2001; Nielsen and Signorovitch. 2003; Polanski and 

Kimmel. 2003; Nielsen et al. 2004)  in specific models.  However, hitherto there have 

been no ascertainment correction methods available for some of the most basic 

population genetic tools.  Here we derive ascertainment corrected estimators of the 

fundamental population genetic parameter θ= 4Neµ (Ne = effective population size, µ = 

mutation rate) and an ascertainment corrected version of the popular statistic used for 

detecting selection: Tajima’s D.    
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THEORY AND METHODS 

Estimators of θ  

Tajima’s D (Tajima. 1989) is calculated as the difference between Tajima’s estimator of 

θ, θT, (Tajima. 1989) and Watterson’s estimator of θ, θw (Watterson. 1975). Tajima’s 

estimator is based on the average number of pairwise differences (π), and is given by 
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where  ηi is the number of (arbitrarily labeled) alleles segregating at a frequency of i/n, 

in a sample of n chromosomes.  Watterson’s estimator is given by 
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where S is the number of segregating sites. 

We will assume an ascertainment model in which a subset of d chromosomes have been 

chosen independently among the n chromosomes for ascertainment.  We further assume 

that the chromosomes chosen for ascertainment are independent among SNPs.  The 

probability of ascertainment of a SNP with alleles of frequencies i/n and (n – i)/n, is 

then (Nielsen. 2004): 
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where we use the definition 0=
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 if k>n.  The final sample after ascertainment is 

denoted the genotyped sample. 

 The expected number of segregating sites in the genotyped sample under this 

ascertainment scheme, S
(A)

, is then simply the sum over all allelic classes of the 

expected number of segregating sites of that allelic class (E[ηi] = θ/I; Tajima. 1989; Fu. 

1995) multiplied by the probability of ascertainment of the allelic class: 
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An unbiased method of moments estimator of θ, similar to Watterson’s estimator 

is then given by 
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The expected number of pairwise differences in the genotyped sample is 

similarly given by the sum over all allelic classes of the expected contribution to the 

pairwise differences of the allelic class multiplied by the probability of ascertainment of 

the allelic class 
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An unbiased ascertainment corrected method of moments estimator similar to 

Tajima’s estimator is then given by 
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Notice that these estimators are identical to the traditional estimators, Wθ̂  and  

Tθ̂ , when there is no ascertainment bias, i.e. 1)( =iPA . 

Variances of the estimators 

We will use notation and some results from chapter 2 of Durrett (2008), to 

derive covariance and variances of these estimators.  In the absence of any 

ascertainment bias (Fu. 1995; Durrett. 2008): 
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Using the conditional variance formula 
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The variance of the ascertainment corrected estimator of θ based on the number of 

segregating sites is then given by 
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The variance of the estimator based on the average number of pairwise differences 

becomes 
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Covariances and Tajima’s D 

Defining the following coefficients 
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Also 
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We now define an ascertainment corrected Tajima’s D as 
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To calculate )ˆˆ( TCWCVar θθ −  for real data we need to know the value of θ and θ
2
.  We 

will estimate θ/ using WCθ̂ .  We estimate θ
2
 as 
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The DC statistic is identical to the traditional Tajima’s D in the absence of an 

ascertainment, i.e. when 1)( =iPA . 

Simulations 

Simulated data were generated using the standard coalescent simulation program 

ms (Hudson. 2002)  with 10.000 and /or 1.000.000 replicates. We explored three 

different values of θ: 2.23, 22.33 and 89.30, corresponding to the estimates of θ based 

on Watterson’s estimator calculated from the minimum, average and maximum number 

of segregating sites found in the genes represented in the SeattleSNP database 

(http://pga.gs.washington.edu/, Crawford et al. 2005).  We also explored results for an 

extreme value of theta θ =150. To generate ascertainment samples from the simulated 

data, we subsampled d (= 2, 5, or 10) gene-copies from each segregating site in the 

sample of size n (= 20 or 50). If the segregating site was polymorphic in the sub-sample, 

it was included in the final the sample, otherwise it was ignored.  

Perlegen Data 

Genotype data from Perlegen was obtained from 

http://genome.perlegen.com/browser/download.html, and we used information 

regarding the ascertainment protocol discussed in Clark et al. (2005) and Hinds et al. 

(2005).  In the analysis of the Perlegen data we have only use those SNPs that were 

obtained using the ascertainment protocol described above, which in Perlegen 

nomenclature corresponds to ascertainment class A (array-based genomic 

resequencing). 69% of all SNPs of all the Perlegen SNPs were obtained using this 

protocol. 

For Perlegen data, Tajima’s D was calculated chromosome by chromosome 

through a sliding window of 100 and 500 kb, sliding by 10 kb at a time. Only those 

windows which contained at least 10 class A SNPs were included in the analysis. As 

Perlegen genotypes contain missing data we have corrected the sample size and the 

nucleotide diversity for each window. To correct the sample size we have used the 

average number of sequences at each segregating site in the window, and calculations of 

summary statistics have been done using the actual sample size in each site taking 

missing data into account.  As the size of the discovery panel, d, also varies among 

SNPs, we calculate the ascertainment probability PA(i) by averaging over different 

values of d according to their relative contribution in the window. To examine the effect 

of the ascertainment bias, we have included results both for the uncorrected and the 

corrected values of Tajima’s D. 
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RESULTS 

Correction of the estimators of theta 

Figure 1 shows the distribution of the estimates based on the uncorrected 

estimators Wθ̂  and Tθ̂  in the presence of an ascertainment bias (d = 5) and without an 

ascertainment bias, and the corresponding distributions of the corrected estimates, WCθ̂  

and TCθ̂ , in the presence of an ascertainment bias for n = 50 and θ =150.  For Wθ̂ , the 

average estimate of θ is 69.82 and 150.07 with and without an ascertainment bias, 

respectively.  However, the ascertainment corrected estimate is WCθ̂ = 150.11. For Tθ̂ , 

the average estimate of θ is 104.18 and 150.11 with and without an ascertainment bias, 

respectively, and  the ascertainment correct estimate is TCθ̂ = 150.14.  This shows that 

the traditional estimators, as expected, are biased in the presence of an ascertainment 

bias, but that the ascertainment corrected estimators derived here recover an unbiased 

estimate.  

Correction of the variances and the covariance 

As seen in Figure 1, the variance in the estimate is increased in the presence of 

an ascertainment bias when the number of SNPs in the data set is held constant.  

Formulas 13 and 14 quantify the variance in the estimate, and have been verified by 

simulations (not shown).   

Figure 2 shows the relationship between d and the variance in the estimators. 

When the ascertainment sample size is small compared to the size of the sample, the 

variances and covariances are greatly increased (for d=2 the variance of Tajima’s θ is 

nearly doubled, and the variance of Wθ̂ is nearly multiplied by four). However, when d 

approaches n/2 the difference between the real variance and the estimated variance is 

drastically reduced, especially for Tθ̂ . 

Correction of Tajima’s D 

Figure 3 shows the distribution of Tajima’s D and DC values. When there is no 

ascertainment bias, the distribution of Tajima’s D values using Equation 17 is identical 

to the one obtained using the standard method, with mean=-0.1103 in both cases, while 

when there is ascertainment bias and we do not apply the corrected formula the 

distribution is greatly skewed towards positive values (mean=1.5170). If the correction 

is applied to the simulated data suffering from the ascertainment bias, the non-

ascertained distribution is approximately recovered and its mean, -0.2497, gets closer to 

the non-ascertainment one. However, because the correction is non-linear it does not 

match the original distribution exactly but is slightly skewed towards negative values 

compared to the original distribution, and has a slightly larger variance. 

Analysis of Perlegen data 

To illustrate the use of the correction of Tajima’s D, we applied it to a Perlegen 

data set (Hinds et al. 2005), previously analyzed by Clark et al. (2005) without 
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correcting for ascertainment biases. The Perlegen data was analyzed chromosome by 

chromosome taking windows of 100 spanning 10 kb obtaining, on average, 12221 

windows per chromosome.  74.47% of the windows have 10 or more SNPs and are, 

therefore, included for the comparison between the corrected and uncorrected Tajima’s 

D values.  

An example of the result, using windows of 500 kb on chromosome 1, is shown 

in Figure 4.  Positive Tajima’s D values (1.9) are found in the area containing the genes 

TMEM57, MAN1C1 and LDLRAP1. The former is a transmembrane protein and the 

second a mannosidase. The latter encodes for a cytosolic protein that interacts with the 

LDL receptor, and mutations in it have cause hypercholesterolaemia, an autosomal 

recessive disorder (Mishra et al. 2005; Quagliarini et al. 2007). Negative Tajima’s D 

values around -2 were found in windows containing HIST2H*, FCGR1A and  PPIAL4, 

a histone cluster, a fragment of the IgG receptor and the peptidylprolyl isomerase A, 

respectively. D values of -1.6 were found around the SRGAP2 gene, whose mRNA has 

been found in melanoma, germ cell tumors, chondrosarcoma and retinoblastoma (Katoh 

and Katoh. 2003). 

Figure 5 shows the correlation of Tajima’s D results with and without correction 

for all chromosomes. As expected, the D values are higher than the DC values. We 

examine windows with extreme values of Tajima’s D, which we have arbitrarily defined 

as those with values lower than -2 or higher than 2, in more detail. While there are 210 

windows with DC  < -2, there are only 17 windows with D < -2. Likewise, there are 99 

windows with DC  >  2 and 8317 with D  >  2. Table 1 summarizes the information about 

the 50 windows with the most extreme values of DC (25 lowest and 25 highest). Of the 

25 windows with lowest values of DC, three would not be found among the 25 most 

significant windows using D, and eight, including the GPC3 gene, would be excluded 

based on the D <-2 criterion. Among the 25 most significant windows with positive 

values of DC, 10 of them are not included in the set of the 25 most extreme genes based 

on D. Among these windows there are genes such as BRCA1 or NF1. 
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DISCUSSION 

We have here derived estimators of the population genetic parameter θ, and the 

variances and covariances of the estimators, under a model with ascertainment bias.  

This leads us to an ascertainment correction of Tajima’s D.  We notice that similar 

corrections could easily be derived for other statistics as well, particularly if they can be 

written as functions of site frequency spectrum, i.e. ηI, i = 1, 2,…,n-1.  Statistics such as 

Fu and Li’s D (Fu and Li. 1993)  and Fay and Wu’s H (Fay and Wu. 2000) are included 

in this category.  We should also emphasize that while the ascertainment scheme here is 

quite specific, and the results may therefore not always apply to real data,  all results are 

expressed in terms of the probability of ascertainment of a SNP as a function of its 

frequency, )(iPA .  It is, therefore, quite trivial to extend this work to other ascertainment 

schemes, including the ones considered in Nielsen et al. (2005), as long as appropriate 

ascertainment information is available. 

The analysis of the Perlegen data illustrates that ascertainment bias correction is 

of great importance when analyzing SNP genotyping data.  Even when just applying 

outlier approaches in studies of natural selection, the ranking of different genes is likely 

to change with and without ascertainment bias correction.   Likewise, any study aimed 

at quantifying variability based on typical SNP data will be challenged by the 

ascertainment bias.  It is, therefore, highly desirable that SNP genotyping projects keep 

close track of the SNP discovery/selection protocols used.  Only when such detailed 

data regarding these protocols are available will it be possible to make accurate 

ascertainment bias corrections of the data. 

A computer program implementing the ascertainment bias corrections discussed 

in this paper can be dowloaded from 

http://www.snpator.com/public/downloads/aRamirez/tajimasDCorrector/. A list of 

corrected Tajima’s D values for different regions of the human genome can be found as 

Supplemental Data. 

 



108 

ACKNOWLEDGEMENTS 

 We would like to thank Marta Melé and Francesc Calafell for their comments on 

this manuscript.  The work was supported by National Institutes of Health grant 

U01HL084706 and the Danish National Science Council (FSS). 



  109 

LITERATURE CITED  

Altshuler, D., V. J. Pollara, C. R. Cowles, W. J. Van Etten, J. Baldwin et al. 2000 An 

SNP map of the human genome generated by reduced representation shotgun 

sequencing. Nature 407: 513-6.  

Bamshad, M., and S. P. Wooding, 2003 Signatures of natural selection in the human 

genome. Nat. Rev. Genet. 4: 99-111.  

Carlson, C. S., M. A. Eberle, L. Kruglyak and D. A. Nickerson, 2004 Mapping complex 

disease loci in whole-genome association studies. Nature 429: 446-52.  

Carlson, C. S., J. D. Smith, I. B. Stanaway, M. J. Rieder and D. A. Nickerson, 2006 

Direct detection of null alleles in SNP genotyping data. Hum. Mol. Genet. 15: 1931-

1937.  

Clark, A. G., M. J. Hubisz, C. D. Bustamante, S. H. Williamson and R. Nielsen, 2005 

Ascertainment bias in studies of human genome-wide polymorphism. Genome Res. 15: 

1496-1502.  

Crawford, D. C., D. T. Akey and D. A. Nickerson, 2005 The patterns of natural 

variation in human genes. Annu Rev Genomics Hum Genet 6: 287-312.  

Durrett, R., 2008 Probability Models for DNA Sequence Evolution (Probability and its 

Applications). Springer.  

Fay, J. C., and C. I. Wu, 2000 Hitchhiking under positive darwinian selection. Genetics 

155: 1405-13.  

Fu, Y. X., 1995 Statistical properties of segregating sites. Theor. Popul. Biol. 48: 172-

197.  

Fu, Y. X., and W. H. Li, 1993 Statistical tests of neutrality of mutations. Genetics 133: 

693-709.  

Hinds, D. A., L. L. Stuve, G. B. Nilsen, E. Halperin, E. Eskin et al. 2005 Whole-

genome patterns of common DNA variation in three human populations. Science 307: 

1072-1079.  

Hudson, R. R., 2002 Generating samples under a wright-fisher neutral model of genetic 

variation. Bioinformatics 18: 337-8.  

International HapMap Consortium 2007 A second generation human haplotype map of 

over 3.1 million SNPs. Nature 449: 851-861. 



110 

Katoh, M., and M. Katoh, 2003 FNBP2 gene on human chromosome 1q32.1 encodes 

ARHGAP family protein with FCH, FBH, RhoGAP and SH3 domains. Int. J. Mol. 

Med. 11: 791-797.  

Kreitman, M., and A. Di Rienzo, 2004 Balancing claims for balancing selection. Trends 

Genet. 20: 300-4.  

Mead, S., M. P. Stumpf, J. Whitfield, J. A. Beck, M. Poulter et al. 2003 Balancing 

selection at the prion protein gene consistent with prehistoric kurulike epidemics. 

Science 300: 640-643.  

Mishra, S. K., P. A. Keyel, M. A. Edeling, A. L. Dupin, D. J. Owen et al. 2005 

Functional dissection of an AP-2 beta2 appendage-binding sequence within the 

autosomal recessive hypercholesterolemia protein. J. Biol. Chem. 280: 19270-19280.  

Nielsen, R., 2004 Population genetic analysis of ascertained SNP data. Hum. Genomics 

1: 218-224.  

Nielsen, R., 2000 Estimation of population parameters and recombination rates from 

single nucleotide polymorphisms. Genetics 154: 931-942.  

Nielsen, R., and J. Signorovitch, 2003 Correcting for ascertainment biases when 

analyzing SNP data: Applications to the estimation of linkage disequilibrium. Theor. 

Popul. Biol. 63: 245-55.  

Nielsen, R., M. J. Hubisz and A. G. Clark, 2004 Reconstituting the frequency spectrum 

of ascertained single-nucleotide polymorphism data. Genetics 168: 2373-2382.  

Nielsen, R., S. Williamson, Y. Kim, M. J. Hubisz, A. G. Clark et al. 2005 Genomic 

scans for selective sweeps using SNP data. Genome Res. 15: 1566-1575.  

Picoult-Newberg, L., T. E. Ideker, M. G. Pohl, S. L. Taylor, M. A. Donaldson et al. 

1999 Mining SNPs from EST databases. Genome Res. 9: 167-174.  

Polanski, A., and M. Kimmel, 2003 New explicit expressions for relative frequencies of 

single-nucleotide polymorphisms with application to statistical inference on population 

growth. Genetics 165: 427-36.  

Quagliarini, F., J. C. Vallve, F. Campagna, A. Alvaro, F. J. Fuentes-Jimenez et al. 2007 

Autosomal recessive hypercholesterolemia in spanish kindred due to a large deletion in 

the ARH gene. Mol. Genet. Metab. 92: 243-248.  

Ramos-Onsins, S. E., and J. Rozas, 2002 Statistical properties of new neutrality tests 

against population growth. Mol. Biol. Evol. 19: 2092-100.  



  111 

Sabeti, P. C., S. F. Schaffner, B. Fry, J. Lohmueller, P. Varilly et al. 2006 Positive 

natural selection in the human lineage. Science 312: 1614-1620.  

Sabeti, P. C., D. E. Reich, J. M. Higgins, H. Z. Levine, D. J. Richter et al. 2002 

Detecting recent positive selection in the human genome from haplotype structure. 

Nature 419: 832-7.  

Soldevila, M., F. Calafell, A. Helgason, K. Stefansson and J. Bertranpetit, 2005 

Assessing the signatures of selection in PRNP from polymorphism data: Results support 

kreitman and di rienzo's opinion. Trends Genet. 21: 389-391.  

Tajima, F., 1989 Statistical method for testing the neutral mutation hypothesis by DNA 

polymorphism. Genetics 123: 585-95.  

Tang, K., K. R. Thornton and M. Stoneking, 2007 A new approach for using genome 

scans to detect recent positive selection in the human genome. PLoS Biology 5: e171 

OP.  

Voight, B. F., S. Kudaravalli, X. Wen and J. K. Pritchard, 2006 A map of recent 

positive selection in the human genome. PLoS Biology 4: e72 OP.  

Wakeley, J., R. Nielsen, S. N. Liu-Cordero and K. Ardlie, 2001 The discovery of single-

nucleotide polymorphisms--and inferences about human demographic history. Am. J. 

Hum. Genet. 69: 1332-1347.  

Wang, Y., L. P. Zhao and S. Dudoit, 2006 A fine-scale linkage-disequilibrium measure 

based on length of haplotype sharing. Am. J. Hum. Genet. 78: 615-628.  

Watterson, G. A., 1975 On the number of segregating sites in genetical models without 

recombination. Theor. Popul. Biol. 7: 256-76.  

Williamson, S. H., M. J. Hubisz, A. G. Clark, B. A. Payseur, C. D. Bustamante et al. 

2007 Localizing recent adaptive evolution in the human genome. PLoS Genet. 3: e90.  

Wooding, S., 2004 Natural selection: Sign, sign, everywhere a sign. Curr. Biol. 14: 

R700-1.  

 

  

  



112 

Table 1: 50 windows with more extreme Tajima's D values for the corrected estimator 

chromosome Window first SNP last SNP gene 

containing 

first SNP 

gene 

containing 

last SNP 

corrected 

Tajima's 

D  

uncorrected 

Tajima's D  

25 windows with lowest corrected Tajima's D  

19 1505 rs11883009 rs10775618 --- AKAP8L -3.282039 -2.527051 

22 1278 rs16986494 rs4035540 TTC28 CHEK2 -3.200966 -2.545256 

X 1726 rs16980685 rs17320692 --- --- -3.164725 -2.499758 

X 1722 rs10521677 rs17246666 --- --- -3.110302 -2.426383 

19 1503 rs16980448 rs10775618 BRD4 AKAP8L -3.049939 -2.356206 

X 2088 rs16981582 rs6528025 CNKSR2 CNKSR2  -2.968399 -2.151076 

02 13306 rs16849050 rs16849021 --- --- -2.958659 -2.765536 

03 1909 rs10510486 rs17005761 KCNH8 KCNH8 -2.892485 -2.138216 

X 10073 rs17331728 rs17342441 --- --- -2.867873 -2.051048 

16 1463 rs17260976 rs16966953 PARN NTAN1 -2.856588 -2.018186 

X 13139 rs17251454 rs17000462 GPC3 GPC3 -2.831727 -1.991586 

19 1497 rs16980438 rs4616406 --- --- -2.813864 -2.045236 

X 13140 rs7061117 rs17000463 GPC3 GPC3 -2.809700 -1.991586 

19 1171 rs17001730 rs10424893 ZNF700 --- -2.802120 -1.927546 

06 6799 rs17446192 rs4710655 --- --- -2.795281 -2.372185 

X 10074 rs16984144 rs10521499 BHLHB9  --- -2.794317 -2.070374 

17 6325 rs16961696 rs2221741 --- --- -2.761039 -2.083343 

X 1720 rs12845504 rs17246666 --- --- -2.754714 -2.094886 

19 1499 rs16980438 rs16980462 --- --- -2.706380 -2.012035 

07 7214 notfound rs2353082 nf BAZ1B -2.663340 -1.858293 
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17 6324 rs16961697 rs2221741 --- --- -2.661940 -2.045867 

01 5148 rs12094202 rs10489546 OSBPL9 OSBPL9 -2.659012 -1.964506 

19 1501 rs8104223 rs10775618 BRD4 AKAP8L -2.654787 -1.953696 

08 9984 rs16897122 rs2029596 --- VPS13B -2.652911 -1.812917 

06 10935 rs17070142 rs351730 SESN1 --- -2.645325 -1.770006 

25 windows with highest corrected Tajima's D  

01 11083 rs1774778 rs17026872 --- --- 3.131594 5.174721 

X 13405 rs5975710 rs6633822 MAP7D3 GPR112 3.069725 5.475525 

01 11084 rs1774778 rs325910 --- --- 2.749263 4.683911 

X 13061 rs5975352 rs17324216 HS6ST2 HS6ST2 2.743219 4.817528 

04 13648 rs7658327 rs13143611 --- --- 2.723831 5.389725 

05 7065 rs986217 rs1017225 --- BDP1 2.717593 4.800969 

X 12501 rs203491 rs5931921 --- --- 2.682832 4.922305 

18 3626 rs2217945 rs7232770 --- --- 2.656100 5.096458 

04 12950 rs1870687 rs12510308 LARP2 --- 2.645268 4.870015 

10 12713 rs10794030 rs7918092 DHX32 FANK1 2.590828 4.981469 

09 8180 rs7044691 rs9410888 GKAP1 KIF27 2.577577 4.565764 

01 11082 rs1342353 rs17026872 --- --- 2.553143 4.457859 

X 13109 rs5975387 rs5977860 --- GPC4 2.551131 4.648231 

03 4834 rs725310 rs734071 FBXW12 SCOTIN 2.534127 4.769015 

04 5577 rs10434442 rs17085274 KDR KDR 2.531075 4.478948 

X 13062 rs17317147 rs5933229 HS6ST2 HS6ST2 2.523093 4.457818 

09 8024 rs2788113 rs12686026 --- --- 2.511495 4.827204 

12 5603 rs537482 rs511752 --- ARHGAP9  2.509088 4.637981 

17 2954 rs12948444 rs2952991 NF1  NF1  2.501910 4.508276 
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03 9662 rs6806361 rs1533148 --- --- 2.484018 4.814285 

17 4158 rs3950989 rs8070085 BRCA1 NBR1 2.479324 4.643384 

X 13110 rs5975387 rs17317322 --- GPC4 2.457019 4.491652 

06 7949 rs9352669 rs956550 IRAK1BP1 --- 2.455673 5.427745 

14 4683 rs9323475 rs17182817 GPHN GPHN 2.444739 4.476493 

03 9663 rs6806361 rs9833997 --- --- 2.428898 4.650462 

In bold, windows not found among the 25th most extreme for the uncorrected Tajima's D 
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FIGURE LEGENDS 

Figure 1. The distribution of the estimates of θ assuming non-ascertained data (no asc), 

ascertained data with correction (asc|c) and ascertained data without correction (asc|nc). 

The mean and the variance of each set of data is shown next to the legend. Simulations 

have been performed for n = 50, θ  = 150 and 1.000.000 replicates. (A) Watterson’s 

estimator. (B) Tajima’s estimator.  

Figure 2. The variance of Watterson’s estimator of θ, Tajima’s estimator of θ  and the 

covariance as a function of d calculated using estimated value of θ and θ 
2
 for a sample 

of size n=100. (A) θ /= 150. (b) θ = 22.33. 

Figure 3. The distribution of Tajima’s D for data without ascertainment bias and 

without correction (no asc), ascertained data with correction (asc|c) and ascertained data 

without correction (asc|nc). The mean and the variance among estimates is shown next 

to the legend. A value of  θ/ = 150 was used  and 1.000.000 replicates were performed.  

Figure 4.   The distribution of the ascertainment bias corrected Tajima’s D on 

chromosome 1 in the human genome based on the Perlegen data.  The genes with the 

most extreme D values are also indicated on the Figure. 

Figure 5. Correlation of Tajima’s D results from Perlegen data with and without 

correction for all chromosomes. 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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ABSTRACT 

FST is widely used to find genes under local selection by comparing the FST value 

of a single locus against genome-wide, empirical values. However, empirical 

distributions suffer from ascertainment bias caused by the protocol used to select SNPs, 

which affects the shape of the distribution. An alternative is working with simulated 

distributions, but this procedure also produces unreliable distributions as FST is highly 

dependant on the demographic history of the samples, and simulations do not take into 

account ascertainment bias. Provided that there is an increasing amount of information 

on the demographic history of populations, we have developed a software that applies 

ascertainment bias on simulated sequences and calculates FST on them. Moreover, we 

also used our program to generate several simulated FST distributions with different 

ascertainment biases and have compared them against the FST values found in an 

empirical database. 
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INTRODUCTION 

Since the beginning of their journey out of Africa, approximately 60,000 years 

ago (Jobling et al. 2004), humans have colonized the entire world. In their expansion, 

they have adapted to a wide range of different habitats and, thus, of diverse ecological 

conditions. In these circumstances, human populations have been exposed to 

geographically localized selective pressures, leading to an increase in the genetic 

differences among them. Diseases such as sickle cell anemia (Motulsky et al. 1966) or 

cystic fibrosis (Lao et al. 2003), which show today a distinc geographical pattern across 

populations, are clear examples of the consequences of such local selective pressures. 

One of the most widely used methods to detect differential selective pressures 

between populations is FST, a measure of the proportion of the genetic variance 

explained by differences among populations. FST can be used to find genes under local 

selection by comparing the FST value of a single locus against the genome-wide values. 

Allele frequency differences between populations are mainly caused by genetic drift, 

that is, by the random process driven by demographic history. Drift affects all of the 

genome and, thus, a genomewide FST distribution reflects primarily drift. Against this 

backdrop, a gene with extremely large FST values becomes suspect of having suffered 

local adaptation in a subset of the human populations. A large number of works have 

been published based on this principle, building genome-wide empirical distributions of 

FST based on increasing numbers of autosomical SNPs (Akey et al. 2002, Walsh et al. 

2006, Xue et al. 2006, Myles et al. 2008, Savage et al. 2008).  

However, this methodology has a few problems. Although empirical 

distributions are presumably neutral (since they report the differentiation due to 

demographic events), they are not built over the total variation found on the genome but 

on a particular subset of SNPs. The way the SNPs are ascertained may thus produce an 

underlying bias that affects the shape of the distribution (Hinds et al. 2005; International 

HapMap Consortium. 2007). Furthermore, when comparing the FST of the SNPs in a 

gene against a published empirical distribution, the biases applied to both sets of 

samples can be different (eg. Ferrer-Admetlla et al. 2008). An alternative is working 

with simulated distributions, as suggested by Beaumont and Nichols (1996). However, 

this procedure also produces unreliable distributions, as (a) FST is highly dependant on 

the demographic history of the samples, which may not be known with sufficient 

precision, and thus may not be accurately simulated, and (b) simulations do not take 

into account ascertainment biases. The former issue can now be addressed in humans 

using the calibrated demographic model proposed by Schaffner et al. (2005), which fits 

different empirical parameters, such as FST (under the ascertainment model used in 

Sachidanandam et al. (2001), minor allele frequencies (MAF) or linkage disequilibrium 

(LD). 

In this work we adress the second issue, that is, how to produce an FST 

distribution with the same bias than the genotyped samples. In order to do that we have 

developed a program that applies several ascertainment biases on simulated sequences 



126 

and calculates FST on them. This program, then, allows producing FST distributions with 

the same underlying ascertainment biases than a genotyped gene of interest against 

which to compare it. Moreover, we provide several simulated FST distributions with 

different ascertainment biases. 
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RESULTS 

We have developed FABSIM, a Java software package that builds simulated FST 

distributions under different ascertainment biases. Moreover, as a complement, it can 

also calculate minor (MAF) and derived (DAF) allele frequencies and a number of 

neutrality statistics; although the last should only be calculated on simulations without 

applying any bias. 

FABSIM works on coalescent-based simulation results, which may be generated 

using any of the available packages developed to simulate neutral genealogies. 

FABSIM supports only as input the output file formats of ms, cosi, and SelSim 

packages, or any other simulation translated to reproduce one of these formats. Different 

populations are introduced in the program in separate files. 

FABSIM works on the data introduced by the user, to which four different bias 

categories (with a total of seven different bias types) can be applied, alone or combined 

with other biases; the input data can also be left unbiased. The four bias categories are: 

(a) related to the discovery sample, (b) related to the presence of polymorphism in a 

population, (c) related to the MAF, and (d) related to distance.  If more than one 

population is introduced for analysis in the program, SNPs are selected over only one 

population (determined by the user), but the bias is applied over all populations. That is, 

the SNPs deleted from the chosen population are deleted from all populations. (a) 

Discovery sample biases imply that only some chromosomes (a subsample of size d) of 

a general sample of size n have been resequenced, and the segregating sites found on 

them have been genotyped on the whole sample n. If this bias is applied d sequences are 

randomly selected (where 0<d<n is specified by the user) over the total number of 

sequences in the sample, and keeps only the SNPs that are polymorphic in these d 

sequences. This procedure can be performed by gene, that is, the d selected sequences 

are the same over all the segregating sites; or by SNP, selecting a different d sample 

(but always of the same size) for each site. (b) In the bias related to the presence of 

polymorphism, only the SNPs that are polymorphic either in a given population or in all 

populations are kept. (c) In the MAF bias, all the SNPs that have a MAF below a 

threshold provided by the user are discarded. This procedure biases towards markers of 

high heterozigosity. (d) In physical distance biases SNPs are selected with a physical 

spacing specified by the user. To do so, FABSIM selects randomly one segregating site 

among the x first base pairs, where x is the spacing, in base pairs, selected by the user. 

From this first selected SNP, the position x base pairs downstream is determined. If in 

this new position a segregating site is found, it is selected; otherwise, the nearest one is 

selected, regardless of whether it is found upstream or downstream. FABSIM proceeds 

as explained until the new position is found outside the simulated fragment. This bias 

can be applied using the same distance along the gene or using different SNP densities. 

In the last case, a file must be provided stating which fragments are to have particular 

densities, and which densities these are.  
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Three different statistics can be calculated with FABSIM: FST, MAF and DAF, 

and 17 neutrality statistics. FST can be calculated correcting or not correcting by the 

different sample size of the populations involved; and by gene, by SNP, or both. The 

neutrality statistics included are the ones used in (Ramirez-Soriano et al. 2008), that is, 

Tajima’s D (Tajima 1989); Fu and Li’s D, F, D* and F* (Fu et al. 1993); Fay and Wu’s 

H (Fay et al. 2000), R2 (Ramos-Onsins et al. 2002), Fu’s Fs (Fu 1997), Dh (Nei 1987, 

equation 8.4 replacing 2n by n), Wall’s B and Q (Wall 1999), Kelly’s ZnS (Kelly, 1997), 

Rozas’ ZA and ZZ (Rozas et al. 2001) and extended haplotype homozygosity EHH 

(Sabeti et al. 2002, Ramirez-Soriano et al. 2008). The results can be provided in two 

different formats: as a list of the calculated parameters for sample or tabulated. In the 

former, each sample starts with a line stating the sample number (e.g. SAMPLE 1), and 

is followed by a list with the FST, MAF/DAF or neutrality statistic values. In the latter, 

FABSIM provides a file with as many columns as statistics plus one first colum with the 

sample number, separated by tabulators. The first line is a header stating what each 

column is. 

As an example of a possible use of the program, we have used it to produce 

several FST distributions with and without ascertainment bias and have compared them 

with the empirical FST distribution of all the segregating sites found in the human genes 

resequenced by the SeattleSNPs project (http://pga.gs.washington.edu/, Crawford et al. 

2005). We have run simulations using the parameters provided by Schaffner et al. 

(2005), which have been shown to fit empirical human data for several statistics. Only 

two populations, African-Americans and Europeans, have been simulated, as they are 

the populations resequenced in SeattleSNPs. To match SeattleSNPs data we have 

simulated 48 African-American and 46 European chromosomes. The FST values for all 

SNPs and simulations, together with the numerical results behind the histograms, are 

shown as Supplementary Data. 

Figure 1 shows how FST distributions are affected by selecting SNPs according 

to their MAF, ascertaining either on European or on African-American samples. When 

SNPs are selected by MAF in European samples, the number of segregating sites with 

low FST (<0.05) decreases, while the number of SNPs with higher FST increases. This 

can be easily explained as low frequency SNPs tend to produce FST values near 0. Thus, 

if all these SNPs are eliminated from the analysis, the proportion of low FST is expected 

to decrease. However, if the selection of SNPs by MAF is performed over African-

American samples, the fraction of low FST values is extremely reduced for MAF biases 

between 0.05 and 0.20 and increased for intermediate FST (between 0.05 and 0.2), in 

comparison with ascertainment on Europeans. This differential pattern can be due to the 

fact that African-Americans share a large fraction of low-frequency SNPs with 

Europeans due to asymmetrical gene flow.  

  Figure 2 shows the effect of selecting only those SNPs that are polymorphic in 

all populations or in a given population. It can be seen that, if we keep only the 

segregating sites that are polymorphic in all populations, FST tends to increase, as it can 

be expected that the SNPs shared among populations have originated before the Out-of-
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Africa and, thus, that they have had more times to reach higher allelic frequencies, and 

so larger FST values. However, if SNPs are selected according to whether they are 

polymorphic in one of the populations irrespectively of whether they are polymorphic in 

the other, the effect is less pronounced, and a high fraction of SNPs at low frequency is 

maintained, especially if SNPs are selected in African-Americans. This is consistent 

with a larger fraction of African-American’s low-frequency SNPs being also present in 

Europeans than the other way round. 

The result of ascertaining SNPs by discovery sample is shown in Figure 3. As 

the d sample size increases the proportion of SNPs with low FST also increases. This 

happens because with larger d samples it is more probable to find SNPs at low 

frequency. The effect of using an ascertainment subsample on data is nearly identical 

independently on which population is ascertained. 

We have also compared the distribution of FST obtained by simulation against 

the empirical distribution of the SNPs in the genes resequenced by SeattleSNPs, as 

shown in Figure 4. The number of SNPs with low FST is higher in simulations than in 

SeattleSNPs data. Furthermore, the distribution of FST in SeattleSNPs data has a larger 

tail of SNPs at high frequencies. This could be explained by (a) the effect of imputing 

missing genotypes or by (b) the presence of genes affected by natural selection. In order 

to ascertain the weight of these two possible explanations, the analysis was repeated by 

dropping the sites with missing data instead of imputing their alleles. Although deleting 

the sites that contain missing increases the number of low FST values (<0.05), it also 

increases the fraction of values with high FST, mainly those SNPs with FST >0.95. 

However, removing SNPs with missing genotypes does not make the empirical FST 

distribution significantly closer to the simulated distribution. This result points to 

positive selection as a significant force in shaping the FST distribution for SeattleSNPs 

genes; a plausible explanation given that genes in this database have been chosen for 

their relationship with human inflammatory response. 
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DISCUSSION 

In this work we have presented FABSIM, a program that can generate FST 

distributions under different ascertainment schemes from simulations. FABSIM accepts 

simulated sequences to be inputted in three different formats and implements four 

different ascertainment bias categories. Furthermore, it can also calculate minor and 

derived allele frequencies and neutrality statistics. 

Besides, we have also presented several FST distributions of simulated samples 

with different ascertainment biases matching the calibrated demographic history for 

humans described by Schaffner et al. (2005) in African-Americans and Europeans, 

which can be directly used to compare empirical FST values from human genes 

genotyped in those populations.  

Until now, FST methods were always used over empirical distributions obtained 

from large numbers of genotyped SNPs. However, this method can be influenced by 

local selection acting on the SNPs from which the distribution has been built. The main 

problem arises as the number of SNPs under selection cannot be known and, thus, the 

empirical significance obtained from the distribution can be misleading. This is the 

case, for example, of the SeattleSNPs FST distribution presented here. On the other 

hand, FST is usually applied not on resequencing data but on genotyping projects, which 

often have different ascertainment biases than those affecting the FST distribution 

against which results are compared. In fact, from the distributions with ascertainment 

we provide, it can be clearly seen that ascertainment bias affects the distribution, mainly 

reducing the number of SNPs with low FST and, thus, increasing the estimated 

differences between populations. Moreover, they show that the different biases have 

discernible effects on the FST distribution, particularly on the fraction of FST values 

found in any histogram category. 

FABSIM is a program designed to solve both problems at the same time. With 

FABSIM, the FST resulting from the analysis of data from the genotyping process can be 

compared not against an empirical distribution, which can have underlying selective 

processes shifting it, but against a neutral distribution, that is, a distribution that takes 

into account the demographic history of the sample but that does not include any 

selective events.  Furthermore, FABSIM can reconstruct the ascertainment bias 

introduced in the SNP selection on the simulated data. Then, provided we have a valid 

description of the demographic events shaping the sample, FABSIM allows building 

simulated FST distributions that match with precision both the demographic history and 

the ascertainment process of the sample. Those simulated distributions became, then, a 

much more powerful framework against which to compare the FST of the samples than 

any empirical distribution, as the user can be sure that any of its SNPs is under 

selection.  
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METHODS  

FABSIM programmation 

FABSIM has been programed in Java using NetBeans IDE 6.0. It has been 

released as an executable file FABSIM.jar that can be run in any platform provided that 

a Java Runtime Environment (JRE) 6 has been installed (see the Java web page 

http://java.sun.com/javase/downloads/index.jsp). Both the executable file and the font 

code can be downloaded from 

http://www.snpator.com/public/downloads/aRamirez/FABSIM/, together with the 

Help.pdf file. 

Simulation data 

Simulations have been performed using the cosi package with the parameters 

provided by Schaffner et al. (2005) to reproduce their best-fit demographic model of 

human data. These parameters assume a sequence length of 250 kb, a mutation rate of 

1.5×10
-8

 per site and per generation, a gene conversion rate of 4.5×10
-9

 and the 

recombination map provided by Kong et al. (2002). We have simulated only two 

populations, African-Americans and Europeans, with 48 and 46 chromosomes each. 

Asians and Africans have been considered in the demography but their number of 

individuals has been set to 0. 

SeattleSNPs data 

The genotypes of all the genes resequenced by SeattleSNPs have been obtained 

from http://pga.gs.washington.edu/data_download.html. We have dowloaded all 

variation data files as provided by the Bulk Dowload link and, from them, we have 

selected the individual genotypes (gene.prettybase.txt) and the SNP alleles file (gene. 

alleles.txt). Of the 319 genes dowloaded we have kept only the 303 that were 

resequenced exactly in African-Americans and Europeans. For each gene we have 

discarded the indel polymorphisms and the triallelic SNPs. 

Missing genotypes reconstruction 

The missing genotypes in SeattleSNPs genes have been estimated using 

fastPHASE (Scheet et al. 2006), a program that reconstructs haplotypes and estimates 

missing genotypes using a cluster method. The input fastPHASE files have been created 

using the SeattleSnpsToPhase.jar script. SeattleSnpsToPhase.jar uses the individual 

genotypes and SNP alleles files from SeattleSNPs and produces two input fastPHASE 

files, one for each population (African-Americans and Europeans), discarding the indel 

polymorphisms and triallelic positions. SeattleSnpsToPhase.jar can also be downloaded 

from http://www.snpator.com/public/downloads/aRamirez/toPhaseFormat.  
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FIGURE LEGENDS 

 

Figure 1: FST distributions for simulations ascertained by MAF. Sims_maf05, 

Sims_maf10, etc. indicate that the thresold MAF has been set to 0.05, 0.10, etc. 

Sims_maf0 are the simulations without ascertainment. A) Ascertainment applied over 

European populations. B) Ascertainment applied over African-American populations. 

Figure 2: FST distributions for simulations ascertained according to whether SNPs are 

polymorphic in all populations (Sims_polymorphicAll), on Europeans 

(Sims_polymorphicEU) or on African-Americans (Sims_polymorphicAA). 

Sims_allSNPs stands for the non-ascertaiend distribution. 

Figure 3: FST distributions for simulations ascertained using a discovery sample. 

Sims_d8, Sims_d16, etc. indicate d sample sizes of 8, 16, etc. Sims_all are the 

simulations without ascertainment. A) Ascertainment applied over European 

populations. B) Ascertainment applied over African-American populations. 

Figure 4: comparison between simulated (Sims) and empirical (SeattleSNPs and 

SeattleSNPs_nm) FST distributions. SeattleSNPs shows the empirical distribution 

reconstructing missing data and SeattleSNPs_nm the empirical distribution deleting all 

the loci with missing genotypes. 
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“ Ítaca t'ha donat el bell viatge,  

sense ella no hauries sortit.  

I si la trobes pobra, no és que Ítaca 

t'hagi enganyat. Savi, com bé t'has fet,  

sabràs el que volen dir les Ítaques.” 

Viatge a Ítaca 

Konstantinos P. Kavafis 

 (Adaptació de Lluís Llach sobre la versió de Carles Riba) 
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1 THE FINAL FRONTIER 
The papers presented in the Results section tackle two different issues, both directed 

to detect departures from neutrality based in genomic data. 

The first two works are aimed to ascertain how the power of the neutrality tests is 

affected by different parameters such as recombination and phasing of the sequences in 

samples with underlying demographic histories. In the first paper (Results, section 1) we have 

tested the power of neutrality statistics under different demographic events and 

recombination rates. We have shown that recombination has a large impact on the power of 

the neutrality statistics, mainly on those that are based on the haplotype distribution. This 

effect is mostly relevant if the recombination rate has not been correctly estimated, especially 

if it has been overestimated in the neutral model. Based on these results, we also provide 

some basic guidelines for the election of the neutrality tests to be used in empirical studies, 

according to the characteristics of the resequenced sample. 

In the second work (Results, section 2), we were concerned about the possible effect 

of comparing empirical, phased sequences, against simulated distributions, of known phase 

that, thus, do not need to be estimated. Our results show that, although fastPHASE is not very 

efficient to reconstruct individual haplotypes, especially for large numbers of segregating sites 

and high recombination rates, in most cases the power of neutrality tests is only slightly 

affected. Thus, neutrality statistics can be used without any concern over phased data. 

In the last part of the thesis we have explored different methods to deal with 

ascertainment bias. First, we have developed corrected estimators of θ and their variances and 

covariances and we have presented a Tajima’s D corrected to work with data that has been 

ascertained finding the SNPs in only a subset of samples (Results section 3). Using coalescent 

simulations, this new, corrected Tajima’s D can reconstruct the distribution of the usual D 

without ascertainment with considerable accuracy, although it slightly tends towards negative 

values. We have applied the corrected D over Perlegen data, which has mostly been 

genotyped using this kind of bias, and have found some genes with extreme values of Tajima’s 

D. We also provide a program to calculate the corrected Tajima’s D over sequences. 

Finally, we have developed a software that allows comparing FST from genotyping data 

against coalescent simulations (Results, section 4). This program is based upon the idea that, if 

we have good information on the demographic history of the populations, we can simulate an 

FST distribution that matches the bias applied to the samples. We have applied our program to 

build that simulated FST distributions with different biases. 

2 RAIDERS OF THE LOST ARK 
In a world in which, in the best of cases, empirical data is obtained through 

resequencing, but in which the information we have about recombination and demography is 

only partial and under constant change, is there any hope to detect natural selection? 

Although the tools we currently possess to detect departures of neutrality are 

powerful enough, we are well aware that their blind application over genomic data does not 

provide information on selection but on a number of factors that also leave their trace on 
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sequences. This ‘genetic noise’ is mainly produced by demographic events and recombination, 

which, in fact, are also deviations from strict neutrality.  

Along the first two papers presented in this thesis (Results sections 1 and 2) we have 

explored intensely these two forces shaping genetic variation and how they affect the power 

of neutrality tests. For the former we have stated that, as previously known, neutrality 

statistics can detect a large fraction of demographic events when compared against a neutral 

distribution. Considering that, in addition, selection and demography leave similar traces on 

the genomes, how can we distinguish them using such tests? The clue to solve this problem 

lies in the fact that, while demographic events affect the whole genome, selection has a local 

effect, acting over particular genetic variants. Thus, two strategies can be employed: (a) to use 

a neutral model that assumes an underlying demography or (b) to compare against an 

empirical distribution. 

Both strategies were used by Soldevila et al. (2006) in a resequecing study aimed to 

describe the patterns of variation on the PRNP gene in humans and to unravel the selective 

pressures that have acted on it. In this work, we sequenced 348 chromosomes from 

populations worldwide and calculated Tajima’s D, Fay and Wu’s D* and F*, Fu’s FS and Fay and 

Wu’s H for the eight population groups defined and taking together the whole world sample. 

Significant negative values were found for each statistic except for Fay and Wu’s H in the world 

sample. The significance of the tests was first estimated by means of comparison against 

neutral coalescent simulations. However, taking into account the confounding effect of 

demographic events, confidence intervals were recalculated from a series of simulations 

assuming population histories with sudden expansions, as done by Wooding et al. (2004). 

Furthermore, Tajima’s D values were also compared to their distribution in the 132 genes 

resequenced at that moment by SeattleSNPs. 

After the publication of the calibrated human demographic history by Schaffner et al. 

(2005) in late 2005, we changed our strategy to ascertain the significance of the neutrality 

statistics obtained from resequencing projects. In the subsequent papers (Ogorelkova et al. in 

preparation; Calafell et al. in preparation; Casals et al. in preparation, a; Casals et al. in 

preparation, b), then, we compared our results against Schaffner’s demographic model 

(Schaffner et al. 2005). In order to do that, different models were generated for each gene or 

genes resequenced, all with the same underlying demography but with the sequence length, 

and S or θ, of the region of interest.  

In humans, this confounding effect of demographic events is particularly important 

when looking for positive selection, as was done in the papers explained above. This is due to 

the fact that humans have experienced several bottlenecks and population expansions, which 

shape the genome in an analogous way as selection does and, thus, made the use of neutral 

models liberal to detect selective sweeps. However, as balancing selection leaves the opposite 

traces over the genome, in this particular case using pure neutral models would be 

conservative. Based on that, in Calafell et al. (2008) Tajima’s D and Fu and Li’s F were used to 

detect traces of balancing selection on the ABO gene by comparing them against stationary 

distributions. Moreover, both tests were also computed in sliding windows along the 

sequence, and its statistical significance was tested using parametric bootstrapping. 
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As for the second issue, in the first paper included in the Results section we have 

shown that recombination affects the power of neutrality statistics, and particularly of those 

based on haplotypes. Using incorrect estimates of the recombination rate in the neutral 

model, that is, comparing against a neutral distribution with an underlying recombination rate 

larger or smaller than the one of the region of interest, leads to increased type I and II errors, 

depending on the neutrality statistic. For this reason, in all the papers discussed regarding 

neutral distributions, with or without underlying demography, simulations have been run 

assuming the same recombination rate than the resequenced gene. In Soldevila et al. (2006) 

and Calafell et al. (2008; in preparation) we have used the recombination rate provided by 

Kong et al. (2002) for STR D20597, D9S754 and D5S469, respectively. In Ogorelkova et al. (in 

preparation) we have used no recombination and the minimum, maximum, and average 

recombination in Kong et al.’s (2002) recombination map. In Casals et al. (in preparation, a; in 

preparation, b), the recombination rate for each region was obtained from HapMap 

(http://www.hapmap.org). 

 

3 SNPs: THE FATAL ATTRACTION 
Although resequencing data is the ideal base upon which to look for traces of selection 

by means of neutrality statistics, it a slow and expensive procedure. On the other hand, 

genotyping technologies have experienced a quick development that has made them the most 

attractive way to characterize genetic variation. SNPs are not only quick and cheap to obtain 

for anyone’s region of interest, but huge amounts of them are available in public databases. 

Genotyping platforms such as SNPlexTM by AppliedBiosystems or the Illumina BeadArray 

650Y, that allow whole-genome genotyping of over 655,000 tag SNPs described by the 

International HapMap Project (www.hapmap.org), have popularized the use of genomewide 

SNPs. Furthermore, public projects and databases such as HapMap, Perlegen 

(http://www.perlegen.com/) or the Stanford HGDP SNP Genotyping Data 

(http://shgc.stanford.edu/hgdp/files.html) provide large amounts of genotypes ready to use. 

It is thus tempting to use all this available information and to analyse it in terms of 

selection. However, the use of neutrality tests is not recommended on SNP data as the process 

of selecting them produces a bias that often shifts the statistics’ distributions, making their 

results unreliable if not completely misleading. Some tools, then, have been developed to 

make it possible to find traces of selection on genotyping data. One of the most popular of 

such methods is Sabeti’s EHH statistic (Sabeti et al. 2002), designed to detect recent selective 

sweeps based on haplotypes. Another widely used method is to use FST, comparing its value for 

each SNP of interest against an empirical distribution (Akey et al. 2002), to detect 

geographically localized selection events. 

EHH, the first of these methods, has been used in Moreno-Estrada et al. (2008), and 

Casals et al. (in preparation, a). In Moreno-Estrada et al. (2008) we used EHH over HapMap 

data, as the analysis of our genotypes was not feasible due to their low recombination rate. In 

Casals et al. (in preparation, a) we calculated EHH both over our genotypes and over HapMap 

data. Moreover, the iHS test (Voight et al. 2006), a derivation of EHH, was also applied. In 

neither of the works we could find traces of recent selective sweeps. 
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FST was used to detect population specific selection on 15 innate immunity genes by 

Ferrer-Admetlla et al. (2008) in the 1,049 samples included in the HGDP-CEPH Human Genome 

Diversity Panel (Cann et al. 2002). The FST distribution for all the SNPs in the selected genes 

were compared against empirical distributions obtained from three different sets of data 

composed by equivalent samples: (a) the SNPs in the Alfred database 

(http://alfred.med.yale.edu/alfred/, Rajeevan et al. 2003), (b) the SNPs from a gene free 

region on chromosome 22 (Gonzalez-Neira et al. 2004) and (c) an insertion/deletion set 

(Weber et al. 2002). Besides from the distributions comparison, single SNPs were also checked 

for extreme FST values. However, FST did not show in any case consistent traces of local 

selection. 

In the three works, moreover, neutrality tests were also used on resequencing data, 

obtained (a) by directly sequencing (Casals,F. et al. in preparation, a), (b) from the sequences 

published by Nielsen et al. (2005a) (Moreno-Estrada et al. 2008), and (c) by dowloading the 

sequences from SeattleSNPs (Ferrer-Admetlla et al. 2008). The significance of neutrality 

statistics was estimated by using Schaffner’s calibrated demography (Schaffner et al. 2005) as 

neutral model. 

In this thesis, we have adressed the SNP problem from two different perspectives. One 

one hand, we have adapted neutrality statistics to their use on SNP data (Results section 3). 

We have provided two corrected estimators of the mutation parameter θ, θW|C and θT|C, their 

variances and covariances, together with a corrected Tajima’s D. Our equations fit a discovery 

sample bias, that is, assume that only a subsample has been resequenced and the SNPs found 

have been genotyped in the whole sample. However, as the results are expressed in terms of 

the probability of ascertainment of a SNP as a function of its frequency, this work can be 

extended to other ascertainment schemes, such as those considered in Nielsen et al. (2005b). 

On the other hand, we have focused on the FST-based methods to detect local selection 

(Results section 4). In this sense, we have developed a program, FABSIM, that allows working 

with FST by comparing it against simulated distributions. Those simulations, built using 

demographic models close to what we know from the sample, can be biased using different 

ascertainment schemes, thus reproducing the process by which genotypes have been 

obtained. 

 

4 BACK TO THE FUTURE 
Although young, large-scale genotyping technologies are starting to see the beginning 

of their end. While the Human Genome Project, released on 2003, cost 13 years and 3 billion 

dollars, on 2007 James Watson had his genome resequenced in two months for 1 milion 

dollars (Check. 2007) using the 454 pyrosequencing platform acquired by Roche (Margulies et 

al. 2005). But 454 is not the only platform for large-scale resequencing. Illumina and 

AppliedBiosystems have also developed or acquired their own sequencing platforms, Solexa 

and SOLiD, respectively. All this new technologies are generally named ultrasequencing, in 

front of the traditional, Sanger sequencing. 
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Besides the existing platforms, companies and institutions are pushing hard for the 

improvement of these new sequencing technologies, mainly looking to saving money and time 

with each sequence. Companies are on the race to build the ‘thousand-dollar genome’, the 

goal of the new genomics era (Mardis. 2006). In the meantime, on 2006, Archon Genomics 

announced that they will give 10 million dollars to the first group that can sequence 100 

human genomes in 10 days with less than 10,000 dollars per genome 

(http://genomics.xprize.org/).  

The question that arises in this context is what impact will have the availability of 

hundreds, or even thousands, of resequenced genomes on the search for selection? This can 

move from science fiction into reality in only three years with the 1,000 Genomes Project 

(Kaiser. 2008), which plans to resequence 1,000 genomes in this time. The project, announced 

in January 2008, will be developed by an international consortium and has an estimate cost of 

between 30 and 50 million dollars. And they are not the only ones. The BGI Shenzhen, in China, 

will resequence 99 individuals in the Yanhuang Project, which also has an expected length of 

three years and will overlap and share some samples with the 1,000 Genomes Project. 

Furthermore, J. Craig Venter has vowed to provide complete diploid sequences for 10,000 

humans in 10 years. 

One of the first implications of the new, and mainly the future, ultrasequencing 

technologies will be the progressive abandonment of genotyping platforms to generate data 

aimed to detecting selection, especially when the $1,000-genome will be available. As a 

consequence, all the methods developed to find selection based on SNP data, such as FST (Akey 

et al. 2002), EHH (Sabeti et al. 2002) or the ones presented in this thesis, will became obsolete. 

However, even given that those tools are being produced with a short expiring date, the effort 

is worthwhile. Nowadays, only a very short fraction of all the scientific institutions worldwide 

can afford the price of large-scale resequencing, even with ultrasequencing, and even they 

cannot do that alone. Although we are glimpsing the future, this future will still be unavailable 

for most researchers for some years, and during this time, as well as in the present and recent 

past, there will be a great need for such methods. Moreover, even when the price of 

ultrasequencing reaches $1,000 or even less, a considerable large number of poor countries 

and laboratories will still not have the resources to pay for their own resequencing and will 

need to keep using SNPs or to work with publicly available sequences. 

On the other hand, ultrasequencing will represent the reemergence of classical tools 

such as neutrality tests. In this scenario, on the long run genotyping technologies and the 

methods developed for their analysis will look as a small oasis, a short transition period or 

parenthesis between resequencing technologies. However, how will we use these tools? 

Nowadays, neutrality statistics are usually applied on single genes or genomic regions. But 

when ultrasequencing spreads, we will be able to find traces of selection on full genomes. 

Under these circumstances, the efforts will surely be directed to apply neutrality statistics by 

overlapping windows in order to identify those regions under selection. Another problem that 

will arise with ultrasequencing is that it does not provide the complete diploid sequence for 

each individual and, thus, the sample size is not the same in all loci. This issue, also found in 

some Sanger resequencing projects that are performed assembling small reads of DNA, such as 
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the genome projects, is currently been addressed using Composite Likelihood Estimators 

(Hellmann et al. 2008). 

 

Finding how humans have adapted genetically to new environments provides a 

window to our evolutionary past. However, we are opening this window from our present 

genomes, and both the key to open the window (neutrality tests) and the lock in the window 

(the genome itself) have gathered rust in the process. We have attempted to polish both lock 

and key, probably just before new technologies will pick that lock by brute force. 
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LIST OF ABBREVIATIONS 
 

 

 

 

“The Spacer said, “I shall introduce myself. I am R. Daneel Olivaw.” 

“Yes? Am I making a mistake?  I thought the first initial--“ 

“Quite so. I am a Robot. Were you not told?”” 

The Caves of Steel 

Isaac Asimov 
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ARG Ancestral Recombination Graph 
 
DAF Derived Allele Frequency 
 
EHH Extended HaplotypeHomozigosity 
 
HW  Hardy-Weinberg 
 
LD Linkage Disequilibrium 
 
LUCA Last Unique Common Ancestor 
 
MAE Mean Absolute Error 
 
MAF Minor Allele Frequency 
 
MRCA Most Recent Common Ancestor 
 
mtDNA mitochondrial DNA 
 
NRY Non-Recombining segment of the Y chromosome  
 
SNP Single Nucleotide Polymorphism 
 
STR Short Tandem Repeat 
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APPENDICES 
 

 

 

 

“The Wheel of Times turns, and Ages come and pass,  

leaving memories that become legend. Legend fades to myth,  

and even myth is long forgotten when the Age that gave it birth  

comes again. […] There are neither beginnings nor endings 

 to the running of the Wheel of Time.” 

The Wheel of Time 

Robert Jordan 
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1 STATISTICAL POWER ANALYSIS OF NEUTRALITY TESTS UNDER 
DEMOGRAPHIC EXPANSIONS, CONTRACTIONS AND BOTTLENECKS 
WITH RECOMBINATION (Ramirez-Soriano et al. 2008): 
SUPPLEMENTAL DATA  
 

 

 

This section includes Supplemental Results and Supplemental Figures from Ramirez-Soriano et 

al. 2008. Supplemental Data A-F is included in the CD-ROM attached.  
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CONTRACTION RESULTS 

In contrast to the pattern described in sudden expansions, in the sudden 

contraction model (Supplemental Figure 1) neutrality tests show power for the right tail 

of the distribution with two exceptions: Dh and Fay and Wu’s H. This two tests not only 

show power at the right tail but also at the left tail, Dh for S=100 and H for all S values. 

As expected, power increases with sample size, number of segregating sites and degree 

of expansion. The most powerful tests for S=10 are Fu and Li’s D* for population 

contractions occurred before Tc=0.2 (except for n=100, which makes Fu and Li’s D 

more powerful) and Fs for older contractions. For larger S values, Fs remains the most 

powerful statistic for expansions more recent than Tc=0.2, while for older generations 

other tests reach similar or greater powers, mainly ZnS and ZA.  Maximum power to 

detect population contractions is extremely different than in the case of expansions: it is 

mainly influenced by the number of segregating sites and can be found between Tc=0.1 

(S=100) and Tc=0.4 (S=10). 

The effects of recombination over the power of tests in the sudden contraction 

model can be seen in Supplemental Figure 3. As in population expansions, Class I tests 

generally maintain or improve their power under recombination, while Class II tests 

perform worse (with the exception of Dh for S=10).  

In the contraction model, the errors induced by erroneous recombination rates 

(Supplemental Figure 5) differ from what is seen in population expansions. If 

recombination is underestimated (Supplemental Figure 5A) all tests, with exception of 

Dh and ZZ, experience an increased type I error. In contrast, the effect of overestimating 

recombination rates (Supplemental Figure 5B) is an increase of type I error for all tests 

(except Dh), Class II tests behaving opposite than in expansions. 
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BOTTLENECK RESULTS 

For bottlenecks (Supplemental Figure 2) the power of tests increases with the 

number of segregating sites with the exception of Dh, which has greater power for S=10. 

Regarding bottleneck properties, statistics have maximum power at their left tails to 

detect old (Tstart=0.04-0.08), strong (b=0.05 or stronger), long-lasting bottlenecks, and 

they have no power to detect bottlenecks that have just finished. In contrast, when 

testing at the right tail, most tests show power for weak, recent (Tstart=0.02-0.04) and 

just finished bottlenecks. This effect is most clear for Fs, ZnS and Class I tests (except 

Fay and Wu’s H). The most powerful tests are, as a general rule, Class I tests (except H) 

and Fu’s Fs, although Fu and Li’s tests lose power for older and short-lasting 

expansions. Tajima’s D also loses power with ancient bottlenecks, especially for small 

sample sizes. For S=100, ZnS and to a lesser degree ZA, are also among the most 

powerful statistics. Dh follows a particular pattern, being similar to other well-

performing tests for S=10 but not for S=100. In the latter case, it is similar to other tests 

but for the right tail of the distribution, while for the left tail shows power only for 

recent bottlenecks (Tstart=0.02-0.04), mainly when they have just finished.  

In the case of bottlenecks power generally increases with recombination 

(Supplemental Figure 4), especially for Dh and Wall’s B and Q, although the latter two 

tend to loose power again for higher recombination rates (from r=10
-8

 to r=10
-7

). In 

contrast, Fs, ZnS and ZA decrease their power in the presence of medium-high 

recombination levels. 

A comparison of the apparent and the true power of tests when using misestimates of 

recombination (Supplemental Figure 6) shows that doing so can lead to serious errors. 

When recombination is underestimated (comparing the alternative hypothesis with a 

neutral model without recombination) (Supplemental Figure 6A) most test became 
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conservative with the exception of Fs, EHH and ZnS, in which there is an increase of 

type I error. In this case, errors are larger than when testing for population expansions, 

and Dh, which was the most liberal test for expansions, becomes greatly conservative in 

bottlenecks. Recombination overestimates (Supplemental Figure 6B) produce the 

opposite pattern, Class II Fs, EHH and ZnS being conservative and the rest of tests 

liberal. 
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SUPPLEMENTARY FIGURE LEGENDS 

 

Supplemental Figure 1. Power of the test depending on the time elapsed since the 

contraction, without recombination. n=100 Dc=0.1. (A) S=10. (B) S=100. 

 

Supplemental Figure 2. Power of the test depending on duration of the bottleneck, 

without recombination. n=100 Tstart=0.04 b=0.01. (A) S=10. (B) S=100.  

 

Supplemental Figure 3. Power of the test in the contraction model depending on 

recombination rates. n=100 De=10. (A) S=10, Tc=0.02. (B) S=100, Tc=0.02. (C) S=10, 

Tc=0.15. (D) S=100, Tc=0.15. 

 

Supplemental Figure 4. Power of the test in the bottleneck model depending on 

recombination rates. n=100 Tstart=0.04 Tdur=0.02 b=0.01. (A) S=10. (B) S=100.  

 

Supplemental Figure 5. Error made by tests in population contractions when 

recombination is under- or overestimated in the null model. S=100 n=100 Dc=0.1 

Tc=0.15. (A) the apparent power of the null hypothesis was produced without 

recombination. (B) the apparent power of the null hypothesis has a recombination rate 

of 10
-7

. 

 

Supplemental Figure 6. Error made by tests in bottlenecks when recombination is 

under- or overestimated in the null model. S=100 n=100 b=0.1 Tstart=0.04 Tdur=0.02. (A) 

the apparent power of the null hypothesis was produced without recombination. (B) the 

apparent power of the null hypothesis has a recombination rate of 10
-7

. 
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Supplemental Figure 1 

 

 
 

 

Supplemental Figure 2 

 

 
 



176 

Supplemental Figure 3 

 

 
 

 

Supplemental Figure 4 

 

 



177 

Supplemental Figure 5 

 

 
 

 

Supplemental Figure 6 
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2 CORRECTING ESTIMATORS OF THETA AND TAJIMA’S D FOR 
ASCERTAINMENT BIASES CAUSED BY THE SNP DISCOVERY PROCESS 
(Ramirez-Soriano and Nielsen. submitted): SUPPLEMENTAL DATA  
 

 

 

Supplemental data from Ramirez-Soriano et al. (submitted) is included in the CD-ROM 

attached. 
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3 TAJIMA’S D CORRECTOR README FILE (Ramirez-Soriano and Nielsen. 
submitted)  
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TAJIMA’S D CORRECTOR 

ANNA RAMÍREZ-SORIANO AND RASMUS NIELSEN 

FEBRUARY 2008 

 

Most SNP data suffers from an ascertainment bias caused by the process of SNP discovery followed by 
SNP genotyping.  SNP genotyping data have an excess of common alleles compared to directly 
sequenced data, making standard genetic methods of analysis inapplicable to this type of data.  We 
have derived corrected estimators of the fundamental population genetic parameter θ= 4Neµ (Ne = 
effective population size, µ = mutation rate) based on the average number of pairwise differences and 
based on the number of segregating sites.  We also derive the variances and co-variances of these 
estimators, and provide a corrected version of Tajima’s D statistic. Tajima’s D Corrector implements the 
corrected estimators we have derived and provides the corrected Tajima’s D value of a sample, working 
both over simulation and empirical data, and over constant and changing d size. 

An example of what Tajima’s D Corrector can be used for is to find traces of selection on a gene through 
a genotyping study in which the SNPs have been selected from a discovery sample. That is, the SNP 
discovery protocol should be a) to resequence a subsample belonging to the genotyping sample and b) 
to genotype the SNPs found in the subsample d in the whole sample. Once the gene is genotyped, the 
value of the corrected Tajima’s D can be calculated using this program. Moreover, its significance can 
also be easily computed by means of simulations, performed using any program aimed at doing 
coalescent simulations such as ms (Hudson, R. R. 2002. Bioinformatics 18: 337-338). The output of ms 
can be directly introduced to Tajima’s D Corrector, where it is possible to simulate the ascertainment 
scheme done over the sample and to calculate the corrected Tajima’s D over each sample in te 
simulations.  Then, the significance of the Tajima’s D of the gene can be easily found by looking where in 
the distribution obtained by simulations falls.  

The program has been developed using Java version 6.0 and compiled under Windows, but it can also be 
used in Linux with graphic environment. To run Tajima’s D Corrector, just double-click the .jar file or, if 
working from the command line, write java –jar TajimaCorrection.jar. 

References: Ramírez-Soriano A, Nielsen R. Correcting Estimators of θ and Tajima’s D for ascertainment 
biases caused by the SNP discovery process 
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INPUT FILES 

GENERAL INFORMATION 

Input files can be entered to the program typing them directly by hand or selecting them using the 
Browse button.  

The only infile format accepted is the ms output format, both for simulations and for empirical data. 
This format is characterised by having a header and, below, the samples separated by a space and a 
double bar (//). 

The header has the name of the program, the number of chromosomes per sample, the number of runs, 
the parameter for running ms and the seed used: 

ms <chromosomes> <runs> -s/-t <various parameters> 
<seed> 

 
ms 50 10 -s 111 
111 

 
Of the header, the only information which will be actually used by Tajima’s D Corrector is the number of 
chromosomes per sample and the number of runs. 

The samples start with the double bar and next have a line with the number of segregating sites and 
another with their positions. Finally, there are the chromosomes, one per line: 

// 
segsites: 10 
positions:  0.0001 0.0193 0.0350 0.0442 0.0609 0.0864 0.0872 0.1004 0.1016 0.1071  
1010000000 
0010000101 
0010001101 
0010000010 
0010000101 
1010100000 
0010000101 
0010000000 
0010000101 
0101000000 
0010000101 
0010000101 
0010000101 
0010010101 
0010000000 
1010100000 
0010001101 
0010000101 
0010000000 
0010000000 
 

  



185 

SIMULATION DATA 

Samples generated using the ms program can be introduced directly into the program.  

If some other program has been used to generate the samples, it has to be transformed into the ms 
output format before being used in this program. Some scripts which transform the outputs of some 
programs (such as Cosi or SelSim) into ms outputs can be dowloaded from 
http://www.snpator.com/public/downloads/aRamirez/.  

EMPIRICAL DATA 

The samples obtained from empirical data must be transformed to an ms format. Thus, each position 
must be coded as 0 or 1; note that “0” does not necessarily denote ancestrality: 

ms 50 10 -s 111 
111 
 
// 
segsites: 10 
positions:  0.0001 0.0193 0.0350 0.0442 0.0609 0.0864 0.0872 0.1004 0.1016 0.1071  
1010000000 
0010000101 
0010001101 
0010000010 
0010000101 

 

If multiple population samples are to be analysed, they should be in separate files, and the program 
should be run once for each population file.  

If the d sample size is not constant, each population file has to be accompanied by a second file with the 
same name that the one containing the sample with the extension .asc. This file must have two 
columns: one with the position of the SNP and the other with the size of the discovery sample for this 
SNP: 

position dsample 
21452 18 
21662 17 
22106 16 
22328 3 
22925 2 
23393 1 
24224 5 
24685 17 
24808 3 
25062 2 
25690 5 
26249 1 

  



186 

CALCULATE TAJIMA’S D CORRECTED 

CONSTANT D SIZE 

When all the SNPs in the samples where the corrected Tajima’s D needs to be calculated share the same 
d size, two parameters need to be specified: if the sample is already ascertained (which will usually be 
the case on empirical data but not on simulation data) and the discovery sample size. 

This option does not allow data to have missings neither to work through windows along the region. 

ASCERTAIN SAMPLES 

“Ascertain simulations” specifies if the sample needs ascertainment or if it is already ascertained. If it is 
set to “No”, the corrected Tajima’s D will be calculated from the sample as it is introduced. This option 
should be used in empirical data and in simulation data if the ascertainment has been previously applied 
to the simulations. 

If the sample needs to be ascertained, “ascertain simulations” should be set to “Yes”. In this case, for 
each position a subsample of the size specified will be randomly selected. The SNP will only be 
considered to calculate Tajima’s D if it is polymorphic in the subsample.  

D SAMPLE SIZE 

The discovery sample size should be specified here. 

 

CHANGING D  SIZE 

This option should be set if the size of the d sample is not uniform over the SNPs. In this case the 
program accepts missings, which have to be coded as ‘?’, as well as a different discovery sample size for 
each position, which has to be specified in a separated file (see infiles section). The formulas used to 
treat missings and different discovery sample sizes are explained at Ramírez-Soriano A, Nielsen R. 
Correcting Estimators of θ and Tajima’s D for ascertainment biases caused by the SNP discovery process. 

The corrected Tajima’s D applied to non-uniform d sample size works through windows. The size of the 
windows and the step size between windows need to be specified at “windows size” and “step size” 
fields respectively. Both sizes have to be expressed in kilobases (kb) and must be integer number, as the 
program does not accept decimals. 
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OUTPUT FILES 

The corrected Tajima’s D will be given as an output file with the same name as the infile but with the 
extension .tcr. The output files are different depending if the input is simulation or empirical data. 

CONSTANT D SIZE 

Simulation data will provide an output file as follows: 

Watterson's theta corrected Tajima's theta corrected Variance W_theta corrected Variance 
T_theta corrected Covariance corrected Tajima's D corrected 
17.000000 15.642857 70.940928 109.347628 84.654057 -0.409558 
2.000000 0.542857 2.396624 2.952241 2.497456 -2.449229 
13.000000 11.300000 43.936709 66.437652 51.801591 -0.653306 
5.000000 4.771429 8.966245 12.336695 9.974563 -0.196445 
4.000000 1.814286 6.379747 8.547731 6.984738 -2.233110 
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 1.071429 1.000000 1.145714 1.000000 0.187122 
5.000000 4.571429 8.966245 12.336695 9.974563 -0.368335 
7.000000 6.142857 15.329114 21.897060 17.446582 -0.561171 
1.000000 1.071429 1.000000 1.145714 1.000000 0.187122 

This file has six columns, and the corrected Tajima’s D value is the last. The other columns provide the 
corrected estimators of Watterson’s and Tajima’s theta, their variances and the covariance among 
them. 

Moreover, if “Ascertain simulations” has been set to yes, another file will be generated with the sample 
obtained after ascertainment, that is, the sample over which the program will work. This file starts with 
the same name than the infile, but will have written at the end “_ascertained_x”, where x will 
correspond to the size of the discovery sample. In that case, the output file with the corrected Tajima’s 
D will be named as the file with the final sample. For example, if the infile was named Test.out and the 
discovery sample has been set to 5, two new files will be generated: Test_ascertained_5.out and 
Test_ascertained_5.tcr. They will contain, respectively, the ascertained sample and the corrected 
Tajima’s D. 
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CHANGING D SIZE 

Empirical data will provide an output file as follows: 

Window start_pos end_pos snp_num average_n W_theta T_theta
 average_Theta Var_W_theta VarT_theta Cov Tajima's D 
1 0 49 49 139 23.432733 17.535322 23.432733
 79.241026 163.471632 106.042844 -0.192556 
2 20 49 29 140 12.906103 8.235925 12.906103
 25.571425 51.268497 33.403851 -0.465518 
3 28 49 21 139 8.681747 6.103672 8.681747
 12.306826 24.077158 15.766162 -0.531380 
4 35 49 14 139 5.739914 4.164504 5.739914
 6.053543 11.337225 7.525796 -0.673489 
5 41 49 8 139 2.749935 2.359691 2.749935
 1.745456 3.019952 2.061302 -0.607096 
6 42 49 7 141 2.284971 1.744746 2.284971
 1.270244 2.165306 1.477794 -1.125558 
7 44 49 5 141 1.670762 1.352576 1.670762
 0.826446 1.330367 0.931516 -1.083072 
8 44 49 5 141 1.670762 1.352576 1.670762
 0.826446 1.330367 0.931516 -1.083072 
9 46 49 3 142 1.028643 0.651729 1.028643
 0.439866 0.651925 0.473517 -2.603770 

This file has 11 columns. 

Column 1: number of window. 

Columns 2 and 3: absolute position of the start and end SNP. That is, 0 represents the first SNP in the 
sample. 

Column 4: average number of SNPs per window. 

Column 5:  average number of valid chromosomes per window. For each position in the windows, the 
number of chromosomes corresponds to the number of chromosomes without missings. 

Columns 6 and 7: corrected estimators of Watterson’s and Tajima’s thetas. 

Columns 8 to 10: variances and covariance. 

Column 11: corrected Tajima’s D. 
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4 FABSIM README FILE (Ramirez-Soriano and Calafell. submitted)  
  



190 

  



  191 

FABSIM 

ANNA RAMÍREZ-SORIANO AND FRANCESC CALAFELL 

JULY 2008 

 

FST is widely used to find genes under local selection by comparing the FST  value of a single locus against 
genome-wide, empirical values. However, empirical distributions suffer from ascertainment bias caused 
by the protocol used to select SNPs, which affects the shape of the distribution. An alternative is 
working with simulated distributions, but this procedure also produces unreliable distributions as FST is 
highly dependant on the demographic history of the samples, and simulations do not take into account 
ascertainment bias. Provided that there is an increasing amount of information on the demographic 
history of populations, we have developed a software that applies ascertainment bias on simulated 
sequences and calculates FST on them. Moreover, we also used our program to generate several 
simulated FST  distributions with different ascertainment biases and have compared them against the FST  
values found in an empirical database. 

The program has been developed using Java version 6.0 and compiled under Windows, but it can also be 
used in Linux with graphic environment. To run FABSIM, just double-click the .jar file or, if working from 
the command line, write java –jar FABSIM.jar. 

 

References: Ramirez-Soriano, A., and F. Calafell, FABSIM: A software for generating fst distributions with 
various ascertainment biases. Submitted. 
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INFILE INFORMATION 

GENERAL INFORMATION 

Input files are entered to the program selecting them from their location using the Browse button. All 
infile names must have an extension separated from the name by a dot. However, FABSIM is not strict in 
the extension name. 

FABSIM accepts three different infile formats, the ones produced by ms 
(http://home.uchicago.edu/~rhudson1/;{{76 Hudson,R.R. 2002; }}), cosi 
(http://www.broad.mit.edu/~sfs/cosi/;{{330 Schaffner,S.F. 2005; }}), and SelSim 
(http://www.stats.ox.ac.uk/~spencer/SelSim/Controlfile.html) {{346 Spencer,Chris C.A. 2004; }}. 
Depending on the input format, FABSIM requires additional information, as detailed below. 

INFILE FORMATS 

ms format  

The ms format is characterised by having a header and, below, the samples separated by a space and a 
double bar (//). 

The header has the name of the program, the number of chromosomes per sample, the number of runs, 
the parameter for running ms and the seed used: 

ms <chromosomes> <runs> -s/-t <various parameters> 
<seed> 

 
ms 5 20 -s 10 
111 

 
Of the header, the only information that will be actually used by FABSIM is the number of chromosomes 
per sample and the number of runs. 

The samples start with the double bar. After that, two lines indicate the number of segregating sites and 
their positions. Finally the chromosomes are listed, one per line: 

// 
segsites: 10 
positions:  0.0001 0.0193 0.0350 0.0442 0.0609 0.0864 0.0872 0.1004 0.1016 0.1071  
1010000000 
0010000101 
0010001101 
0010000010 
0010000101 

As ms provides the relative position of each segregating site in a scale from 0 to 1, FABSIM requires the 
simulated sequence length from the user. Absolute positions are obtained multiplying the relative 
position by the length of the fragment and rounding to the nearest integer. 

cosi format 

cosi provides two files for each simulated population, named out.hap and out.pos, which contain the 
haplotypes and the information for each segregating site respectively. If run as provided, cosi only 
simulates one sample per file. However, FABSIM is able to process files containing multiple samples 
separated by a blank line (this must be implemented in both files). A multiple-sample files can be 
obtained using the script run_cosi, which can be dowloaded from 
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http://www.snpator.com/public/downloads/aRamirez/FABSIM/. Information on run_cosi can be found 
at the end of this manual. 

The cosi output haplotypes file only contains the sample or samples as follows: 
0 1 2 2 1 2 2 2 2 1 2 2 
1 1 1 2 2 1 2 2 2 2 2 1 
2 1 2 2 2 2 2 2 2 2 2 1 
3 1 2 1 1 2 1 2 2 1 2 2 
4 1 2 2 2 2 2 1 2 1 2 2 
5 1 2 2 2 2 2 2 2 2 2 1 

The first column states the chromosome number, the second the population label and afterwards come 
the segregating sites, each position separated by a blank space. 

The file containing the information per each segregating sites contains the SNP number, the population 
label, the position of the site, and the frequency of each allele: 

SNP     CHROM   CHROM_POS       ALLELE1 FREQ1   ALLELE2 FREQ2 
1 1 127.3788 1 0.1154 2 0.8846 
2 1 215.9448 1 0.0000 2 1.0000 
3 1 229.8352 1 0.0000 2 1.0000 
4 1 623.0247 1 0.4231 2 0.5769 
5 1 463.2629 1 0.1538 2 0.8462 

When using infiles in a cosi output format, the user must introduce in the program the two files 
provided for each population included in the analysis. The name of the haplotype files must contain a 
label followed by a dash, a number indicating the population code and a point: 

TC-1.testCosi.1 
TC-2.testCosi.1 

Information files must have the same label followed by a dot, the Word “pos”, a dash and the number 
indicating the population code: 

TC.pos-1.testCosi.1 
TC.pos-2.testCosi.1 

FABSIM requires the number of samples (iterations) in the file from the user. The positions are rounded 
for analysis to the nearest integer. 

SelSim format 

Output files from SelSim start with a blank line followed by a header that contains the name of the 
control file, the seed, and the type of output used. FABSIM only accepts “sequences” files: 

SelSimCON.txt   -1147959592  Sequences 

The header is followed by the samples, separated by a space. Samples start with a line with a double bar 
(//) followed by the number of chromosomes, the number of segregating sites and the sequence length. 
Next the positions of each segregating site are specified and after a blank line the samples, with each 
locus separated by blank spaces. After another blank line the time of the marginal genealogy underlying 
each position is provided, and finally the total time in all marginal trees which has not mutated, as 
follows: 

//5    11    2000 
1  35  132  285  299  330  463  525  781  1528  1703   

  
1  0  0  1  0  0  0  0  1  0  0  
1  1  0  0  0  0  0  0  0  0  1  
1  0  0  0  0  0  0  0  0  0  1  
1  0  0  1  0  0  0  0  1  0  0  
1  0  0  0  0  0  1  0  1  0  0  
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    3.33093   3.33093   3.33093   3.33093   3.33093   3.33093   3.33093   3.33093   3.33093   
3.33093   3.33093   3.33093 
 
    6621.9 

FABSIM requires the number of samples (iterations) in the file from the user. 
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CALCULATIONS 

ASCERTAINMENT BIAS 

Seven different ascertainment biases (or no bias) can be applied to data. Each one of them requires 
information to be added by the user. The appropriate fields required turn white rather than grey after 
the bias to be applied is selected by the user.  

More than one bias can be applied to data at the same time, except if “none” is selected. Other 
incompatibilities are listed when applicable. If more than one bias is selected, they are applied to the 
sample in the order FABSIM displays them (which is also the same in which they are explained here). 

Except if the contrary is said, in case that more than one population is introduced for analysis the SNPs 
are selected over only one population (determined by the user), but the bias is applied over all 
populations. That is, the SNPs deleted from the chosen population are deleted from all populations. 

Discovery sample per gene 

Discovery sample per gene assumes that only some chromosomes (a subsample of d size) of a sample of 
size n have been resequenced, and the segregating sites found on them have been genotyped on the 
whole sample n.  

When this bias is activated by the user, d sequences are randomly selected over the total number of 
sequences in the sample, and only those SNPs that are polymorphic in these d sequences are kept. 

The information required to apply this bias is the population where  the d sample is to be selected from 
and the d sample size. The latter must be an integer between 0 and n. 

This bias cannot be applied together with Discovery sample per SNP. 

Discovery sample per SNP 

Discovery sample per SNP works similarly to discovery sample per gene, but a different d sample is 
chosen for each locus.  

As above, the information required to apply this bias is the population where  the d sample is to be 
selected from and the d sample size. The latter must be an integer between 0 and n. 

This bias is incompatible with Discovery sample per gene. 

SNPs polymorphic in a given population 

SNPs polymorphic in a given population keeps only those SNPs that are polymorphic in the selected 
populations.  

FABSIM requires from the user the population in which to select the polymorphic loci.  

This bias cannot be applied together with SNPs polymorphic in all populations. 

SNPs polymorphic in all populations 

SNPs polymorphic in all populations keeps only those SNPs which are polymorphic in all the populations 
entered.  

No parameters are needed from the user in this bias.  

This bias cannot be applied together with SNPs polymorphic in a given population. 
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MAF > threshold 

The MAF > thresold bias discards all the SNPs that have a minor allele frequency (MAF) under the 
threshold provided by the user.  

The information required to apply this bias is the population to ascertain and the threshold. The last 
must be a positive number smaller than 0.5. 

Fixed SNP spacing 

The Fixed SNP spacing bias selects one SNP every given number of bases. To do so, FABSIM selects 
randomly one segregating site among the x first base pairs. From this first selected SNP, it counts the 
position that is found x base pairs further. If in this new position there is a segregating site FABSIM 
selects it; otherwise, it selects the nearest one, either upstream or downstream of the new position.  
FABSIM proceed as explained until the new position is found outside the simulated fragment.  

The information required to apply this bias is the population from which the SNPs should be ascertained 
and x, the spacing in basepairs. The latter must be a positive integer. 

This bias cannot be applied together with Variable SNP spacing. 

Variable snp spacing  

In this bias, the user can specify different segments in the simulated sequence in which different SNP 
spacings will be applied, as described above for Fixed SNP spacing.  

The information required to apply this bias is the population from which the SNPs should be ascertained 
and a file containing the different SNP densities. This file must have two columns: the first indicates the 
position in bp and the second the spacing for SNPs in this fragment: 

200 50 
300 10 
500 70 

In this example we consider a simulated 500-bp region. For its first 200 bp, a SNP is chosen every 50 bp. 
From the SNPs located between position 200 and 300, one SNP is chosen every 10 bp. From position 300 
to the end, the distance between SNPs is 70 bp. 

This bias cannot be applied together with Fixed SNP spacing. 

STATISTICS 

FABSIM can calculate Fst, minor (MAF) and derived (DAF) allele frequencies, and a number of neutrality 
tests on simulation data. Several statistics can be computed together in the same execution of the 
program. 

FST 

Fst can be calculated according to several parameters. On one hand, it can be corrected or not by the 
different sample sizes between populations. On the other hand, FABSIM can output the Fst for each SNP 
in the sample, per gene, or both. 

The number of populations to compare is not limited. However, all of them need to have the same 
number of segregating sites, located in the same positions. 
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MAF and DAF 

FABSIM calculates minor (MAF) and derived (DAF) allele frequencies for all the SNPs in all the samples of 
the simulations. 

To calculate DAF, FABSIM assumes as ancestral the locus coded as ‘0’ of ms and SelSim and the locus 
coded as ‘2’ for cosi, as stated in the documentation of the programs. 

Neutrality statistics 

The neutrality statistics included in FABSIM are the number of segregating sites, the number of pairwise 
differences, the number of singletons, Tajima’s D {{117 Tajima,F. 1989; }}; Fu and Li’s D, F, D* and F* {{66 
Fu,Y.X. 1993; }}; Fay and Wu’s H {{63 Fay,J.C. 2000; }}, R2 {{103 Ramos-Onsins,S.E. 2002; }}, Fu’s Fs {{68 
Fu,Y.X. 1997; }}, Dh {{97 Nei,M. 1987; }}( equation 8.4 replacing 2n by n), Wall’s B and Q {{123 Wall,J.D. 
1999; }}, Kelly’s ZnS {{81 Kelly,J.K. 1997; }}, Rozas’ ZA and ZZ {{109 Rozas,J. 2001; }} and extended 
haplotype homozygosity EHH {{111 Sabeti,P.C. 2002;352 Ramirez-Soriano,A. 2008;  }}.  
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OUTPUT FILES 

OUTFILE FORMATS 

FABSIM output file do not have an uniformly formatted content, given the diversity of the results 
FABSIM can produce. However, two general predefined formats are provided: information per sample 
and tabulated data.  

Information per sample 

Information per sample shows the information for all samples linearly, separating them by a blank line. 
Each sample starts with a line stating the sample number (e.g. SAMPLE 1), and is followed by a list with 
the desired statistic values. Examples of this format for each statistic are shown below. 

FST 
The Fst output file in the information per sample format has three different appearances depending on if 
the user wants the information per snp, per sample or both. In any case the first two lines, which are 
shared between this and the tabulated format, show the populations that are being compared (first) 
and the legend. Next come the Fst value for each SNP or the average, maximum and minimum Fst of the 
gene, depending on what it has been required. If both per gene and per locus Fst are requested, per 
locus Fst is given first, as shown in the example: 

Fst comparison between: TC-1.testCosi.1 TC-2.testCosi.1  
np = not polymorfic, fixed position 

  
SAMPLE 1 
Position 1 Fst value: 0.044446 
Position 2 Fst value: 0.000000 
Position 3 Fst value: 0.030770 
Position 4 Fst value: 0.249997 
Position 5 Fst value: 0.117649 
Position 6 Fst value: 0.000000 
Position 7 Fst value: 0.400003 
Position 8 Fst value: np 
Position 9 Fst value: 0.142855 
Position 10 Fst value: 0.025975 
Average Fst: 0.112411 Max Fst: 0.400003 Min Fst: 0.000000 

MAF and DAF 
If MAF and DAF are computed, for each sample information on every locus is displayed sequentially in 
three lines corresponding to the SNP number, the MAF, and the DAF: 

SAMPLE 1 
Snp 1 

  Maf: 0.1111111111 
  Daf: 0.1111111111 

Snp 2 
  Maf: 0.2222222222 
  Daf: 0.2222222222 

Snp 3 
  Maf: 0.1111111111 
  Daf: 0.1111111111 

Snp 4 
  Maf: 0E-10 
  Daf: 0E-10 

Snp 5 
  Maf: 0.4444444444 
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  Daf: 0.5555555556 

Neutrality statistics 
In the case of neutrality statistics, for each sample the outfile starts with a line containing some statistics 
describing the variability of the sequences. Next the neutrality statistics appear, classified according to 
whether they belong to Class I (based on the mutation spectrum of frequencies) or to Class II (based on 
haplotypes): 

SAMPLE 1 
Sequences: 9 Seg. sites: 4 Pi: 1.388889 Singletons: 2 
Class I Statistics 
Tajima's D: -0.228839 
Fu and Li D*: -0.264179 Fu and Li F*: -0.284088 
Fu and Li D: -0.467128 Fu and Li F: -0.483865 
R2: 0.157288 
Fay and Wu H: 0.777778 
Class II Statistics 
Fu's Fs: -1.686055 
EHH average: 8.000000 EHH maximum: 8.000000 
Dh: 0.805556 
Wall's B: 0E-8 Wall's Q: 0E-8 
ZnS: 0.116805 Za: 0.075890 ZZ: -0.040914 

Tabulated data 

The tabulated data format shows as many columns as satistics plus one first colum with the sample 
number, separated by tabulators. The first line is a header stating what each column is. Examples of this 
format for each statistic are shown below. 

FST 
The tabulated output file for Fst, as in the previous format, has three different appearances depending 
on the calculation chosen and contains the two lines showing the populations that are being compared 
(first) and the legend. If both SNP and gene information are displayed, the outfile will look as follows, 
with the average, maximum and minimum Fst added in three columns next to the last SNP in the sample: 

Fst comparison between: TC-1.testCosi.1 TC-2.testCosi.1  
np = not polymorfic, fixed position 

  
sample snp fst average_fst max_fst min_fst 
1 1 0.044446 
1 2 0.000000 
1 3 0.030770 
1 4 0.249997 
1 5 0.117649 
1 6 0.000000 
1 7 0.400003 
1 8 np 
1 9 0.142855 
1 10 0.025975 0.112411 0.400003 0.000000 

If information on SNPs is required exclusively only the first three columns are shown. Instead, if  the 
information asked is Fst per gene, the “snp” and “fst” columns are not displayed. 
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MAF and DAF 
MAF and DAF output tabulated format has four columns which, from left to right, correspond to the 
sample and locus number, MAF and DAF. 

Sample SNP maf daf 
1 1 0.3333333333 0.3333333333 
1 2 0.3333333333 0.3333333333 
1 3 0.4444444444 0.4444444444 
1 4 0.3333333333 0.3333333333 
1 5 0.3333333333 0.6666666667 

Neutrality statistics 
The neutrality statistics outfile has 21 columns, the first for the sample and the next for the descriptors 
and the statistics, in the same order as in the information per sample format: 
Sample seq segsites pi singl Ts_D FL_D2 FL_F2 FL_D FL_F R2 FW_H
 Fs EHH_a EHH_m Dh W_B W_Q ZnS Za ZZ 
1 9 4 1. 388889 2 -0. 228839 -0.264179 -0.284088
 -0.467128 -0. 483865 0. 157288 0. 777778 -1.686055
 8.000000 8.000000 0. 805556 0E-8 0E-8 0.116805
 0.075890 -0.040914  

OUTFILE NAMES 

With the exception of Fst, the name of the output is formed based on the name of the infile. The outfile 
name, then, is the infile without extension followed by a dash and an abbreviation for the calculation 
done. Its extension depends on the predefined outfile format selected. 

In the case of Fst, the outfile name without extension must be provided by the user. FABSIM will use this 
name to code it as explained. 

The codes for the calculations and the formats are: 

CALCULATIONS 
_fst Fst 
_maf MAF and DAF 
_stats neutrality statistics 
FORMATS 
.smp information per sample 
.tab tabulated data 

Examples 

The output file obtained from calculating neutrality statistics on a file named simulations.inp, specifying 
the information per sample format, would be named simulations_stats.smp. 

If the user wants to calculate Fst and MAF and DAF on a set of simulations from two populations which 
are in the files population1.out and population2.out, and obtain the results in a tabulated format, it first 
must provide a name for the Fst output file. Let’s say the given name is populations. FABSIM will then 
output three outfiles: 
 populations_fst.tab 

population1_maf.tab 
population2_maf.tab 

 

 




