
Branch Prediction 
 

•Branch prediction is one of the ancient performance improving techniques which still finds 
relevance into modern architectures. While the simple prediction techniques provide fast 
lookup and power efficiency they suffer from high misprediction rate.  
 
•On the other hand, complex branch predictions – either neural based or variants of two-
level branch prediction – provide better prediction accuracy but consume more power and 
complexity increases exponentially. 
 
• In addition to this, in complex prediction techniques the time taken to predict the 
branches is itself very high – ranging from 2 to 5 cycles – which is comparable to the 
execution time of actual branches.    
 
•Branch prediction is essentially an optimization (minimization) problem where the 
emphasis is on to achieve lowest possible miss rate, low power consumption and low 
complexity with minimum resources.  



There really are three different kinds of branches:  
 
 Forward conditional branches - based on a run-time condition, the PC (Program Counter) is 
changed to point to an address forward in the instruction stream.  

 
 Backward conditional branches - the PC is changed to point backward in the instruction 
stream. The branch is based on some condition, such as branching backwards to the beginning 
of a program loop when a test at the end of the loop states the loop should be executed again.  

 
 Unconditional branches - this includes jumps, procedure calls and returns that have no 
specific condition. For example, an unconditional jump instruction might be coded in assembly 
language as simply "jmp", and the instruction stream must immediately be directed to the 
target location pointed to by the jump instruction, whereas a conditional jump that might be 
coded as "jmpne" would redirect the instruction stream only if the result of a comparison of 
two values in a previous "compare" instructions shows the values to not be equal. (The 
segmented addressing scheme used by the x86 architecture adds extra complexity, since jumps 
can be either "near" (within a segment) or "far" (outside the segment). Each type has different 
effects on branch prediction algorithms.)  

A Closer Look At Branch Prediction  



 
Static Branch Prediction predicts always the same direction for the same 
branch during the whole program execution.  
 
It comprises hardware-fixed prediction and compiler-directed prediction.  
 
Simple hardware-fixed direction mechanisms can be:  
•Predict always not taken  
•Predict always taken  
•Backward branch predict taken, forward branch predict not taken  
 
Sometimes a bit in the branch opcode allows the compiler to decide the 
prediction direction. 

Static Branch Prediction 



 
Dynamic Branch Prediction: the hardware influences the prediction while execution 
proceeds.  
 
Prediction is decided on the computation history of the program.  
 
During the start-up phase of the program execution, where a static branch 
prediction might be effective, the history information is gathered and dynamic 
branch prediction gets effective.  
 
In general, dynamic branch prediction gives better results than static branch 
prediction, but at the cost of increased hardware complexity. 

Dynamic Branch Prediction 



Forward branches dominate backward branches by about 4 to 1 (whether conditional or not). 
About 60% of the forward conditional branches are taken, while approximately 85% of the 
backward conditional branches are taken (because of the prevalence of program loops).  
Just knowing this data about average code behavior, we could optimize our architecture for the 
common cases. A "Static Predictor" can just look at the offset (distance forward or backward 
from current PC) for conditional branches as soon as the instruction is decoded.  
Backward branches will be predicted to be taken, since that is the most common case. The 
accuracy of the static predictor will depend on the type of code being executed, as well as the 
coding style used by the programmer.  
These statistics were derived from the SPEC suite of benchmarks, and many PC software 
workloads will favor slightly different static behavior.  

Using Branch Statistics for Static Prediction  



Static Profile-Based Compiler Branch Misprediction Rates for 

SPEC92 

Floating Point Integer 

More Loops 

Average 9% 
Average 15% 

(i.e 91% Prediction Accuracy) 
(i.e 85% Prediction Accuracy) 



• Dynamic branch prediction schemes are different from static mechanisms because they utilize 
hardware-based mechanisms that use the run-time behavior of branches to make more 
accurate predictions than possible using static prediction. 

•  Usually information about outcomes of previous occurrences of branches (branching history)  is 
used to dynamically predict the outcome of the current branch.   Some of the proposed 
dynamic branch prediction  mechanisms include: 

– One-level or Bimodal:   Uses a Branch History Table (BHT),   a table of usually two-bit 
saturating counters which is indexed by a portion of the branch address (low bits of 
address). (First proposed mid 1980s) 

– Two-Level Adaptive Branch Prediction.  (First proposed early 1990s), 

– MCFarling’s Two-Level Prediction with index sharing (gshare, 1993). 

– Hybrid or Tournament Predictors:  Uses a combinations of two or more  (usually two) 
branch prediction mechanisms (1993). 

• To reduce the stall cycles resulting from correctly predicted taken branches to zero cycles,  a 
Branch Target Buffer (BTB) that includes the addresses of conditional branches that were taken 
along with their targets is added to the fetch stage.  

Dynamic Conditional Branch Prediction 



How to further reduce the impact of branches on pipeline processor performance 

 
Dynamic Branch Prediction: 

Hardware-based schemes that utilize run-time behavior of 
branches to make dynamic predictions:  

Information about outcomes of previous occurrences of 
branches are used to dynamically predict the outcome of 
the current branch.  
Why?  Better branch prediction accuracy and thus fewer 
branch stalls 
 

Branch Target Buffer (BTB): 
A hardware mechanism that aims at reducing the stall cycles 
resulting from correctly predicted taken branches to zero 
cycles. 



To refine our branch prediction, we could create a buffer that is indexed by the low-order address bits 
of recent branch instructions. In this BHB (sometimes called a "Branch History Table (BHT)"), for each 
branch instruction, we'd store a bit that indicates whether the branch was recently taken. A simple 
way to implement a dynamic branch predictor would be to check the BHB for every branch 
instruction. If the BHB's prediction bit indicates the branch should be taken, then the pipeline can go 
ahead and start fetching instructions from the new address (once it computes the target address).  
 
By the time the branch instruction works its way down the pipeline and actually causes a branch, then 
the correct instructions are already in the pipeline. If the BHB was wrong, a "misprediction" occurred, 
and we'll have to flush out the incorrectly fetched instructions and invert the BHB prediction bit.  

Dynamic Branch Prediction with a Branch History Buffer (BHB)  
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Dynamic Branch Prediction with a Branch History Buffer (BHB)  



It turns out that a single bit in the BHB will be wrong twice for a loop--once on the first 
pass of the loop and once at the end of the loop. We can get better prediction accuracy by 
using more bits to create a "saturating counter" that is incremented on a taken branch and 
decremented on an untaken branch. It turns out that a 2-bit predictor does about as well 
as you could get with more bits, achieving anywhere from 82% to 99% prediction 
accuracy with a table of 4096 entries.  
This size of table is at the point of diminishing returns for 2 bit entries, so there isn't 
much point in storing more. Since we're only indexing by the lower address bits, notice 
that 2 different branch addresses might have the same low-order bits and could point to 
the same place in our table--one reason not to let the table get too small.  

Refining Our BHB by Storing More Bits  



 
There is a further refinement we can make to our BHB by correlating the behavior of other 
branches. Often called a "Global History Counter", this "two-level predictor" allows the 
behavior of other branches to also update the predictor bits for a particular branch instruction 
and achieve slightly better overall prediction accuracy. One implementation is called the 
"GShare algorithm".  
This approach uses a "Global Branch History Register" (a register that stores the global result 
of recent branches) that gets "hashed" with bits from the address of the branch being 
predicted. The resulting value is used as an index into the BHB where the prediction entry at 
that location is used to dynamically predict the branch direction. Yes, this is complicated stuff, 
but it's being used in several modern processors.  

Two-Level Predictors and the GShare Algorithm  



Two-Level Predictors and the GShare Algorithm  

Combined branch prediction* 
Scott McFarling proposed combined branch prediction in his 1993 paper 2. Combined branch prediction  
is about as accurate as local prediction, and almost as fast as global prediction. 
Combined branch prediction uses three predictors in parallel: bimodal, gshare, and a bimodal-like  
predictor to pick which of bimodal or gshare to use on a branch-by-branch basis. The choice predictor  
is yet another 2-bit up/down saturating counter, in this case the MSB choosing the prediction to use.  
In this case the counter is updated whenever the bimodal and gshare predictions disagree, to favor  
whichever predictor was actually right. 
On the SPEC'89 benchmarks, such a predictor is about as good as the local predictor. 
Another way of combining branch predictors is to have e.g. 3 different branch predictors, and merge  
their results by a majority vote. 
Predictors like gshare use multiple table entries to track the behavior of any particular branch.  
This multiplication of entries makes it much more likely that two branches will map to the same  
table entry (a situation called aliasing), which in turn makes it much more likely that prediction  
accuracy will suffer for those branches. Once you have multiple predictors, it is beneficial to arrange  
that each predictor will have different aliasing patterns, so that it is more likely that at least one  
predictor will have no aliasing. Combined predictors with different indexing functions for the different  
predictors are called gskew predictors, and are analogous to skewed associative caches used  
for data and instruction caching. 

* From : http://en.wikipedia.org/wiki/Branch_prediction 

http://en.wikipedia.org/w/index.php?title=Scott_McFarling&action=edit
http://citeseer.nj.nec.com/mcfarling93combining.html
http://en.wikipedia.org/w/index.php?title=Skewed_associative_cache&action=edit


In addition to a large BHB, most predictors also include a buffer that stores the actual target 
address of taken branches (along with optional prediction bits). This table allows the CPU to look to 
see if an instruction is a branch and start fetching at the target address early on in the pipeline 
processing. By storing the instruction address and the target address, even before the processor 
decodes the instruction, it can know that it is a branch.  
 
A large BTB can completely remove most branch penalties (for correctly-predicted branches) if the 
CPU looks far enough ahead to make sure the target instructions are pre-fetched. Using a Return 
Address Buffer to predict the return from a subroutine One technique for dealing with the 
unconditional branch at the end of a subroutine is to create a buffer of the most recent return 
addresses.  
There are usually some subroutines that get called quite often in a program, and a return address 
buffer can make sure that the correct instructions are in the pipeline after the return instruction.  

Using a Branch Target Buffer (BTB) to Further Reduce the  
Branch Penalty  



Branch Target Buffer (BTB) 

• Effective branch prediction requires the target of the branch at an early pipeline 
stage. (resolve the branch early in the pipeline)   

• One can use additional adders to calculate the target, as soon as the branch 
instruction is decoded. This would mean that one has to wait until the ID stage 
before the target of the branch can be fetched, taken branches would be fetched 
with a one-cycle penalty (this was done in the enhanced MIPS pipeline). 

• To avoid this problem one can use a Branch Target Buffer (BTB). A typical BTB is an 
associative memory where the addresses of taken branch instructions are stored 
together with their target addresses.  

• Some designs store  n  prediction bits as well, implementing a combined BTB and 
Branch history Table (BHT).  

• Instructions are fetched from the target stored in the BTB in case the branch is 
predicted-taken and found in BTB.  After the branch has been resolved the BTB is 
updated. If a branch is encountered for the first time a new entry is created once it 
is resolved as taken.  

• Branch Target Instruction Cache (BTIC):  A variation of BTB which caches also the 
code of the branch target instruction in addition to its address.  This eliminates the 
need to fetch the target instruction from the instruction cache or from memory.  



BTB 
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BTB Penalties 

Branch Penalty Cycles 
Using A Branch-Target Buffer (BTB) 

Assuming one more stall cycle to update BTB 

Penalty = 1 + 1 = 2 cycles 

Base Pipeline Taken Branch Penalty = 1 cycle  (i.e. branches resolved in ID) 

  No                                             Not Taken                     Not  Taken                 0 



Dynamic Branch Prediction 

• Simplest method:  (One-Level) 

– A branch prediction buffer or Branch History Table (BHT) indexed by low address bits of 
the branch instruction. 

– Each buffer location (or BHT entry) contains one bit indicating whether the branch was 
recently taken or not  

• e.g   0 = not taken , 1 =taken 

– Always mispredicts in first and last loop iterations. 

 

• To improve prediction accuracy, two-bit prediction is used: 

– A prediction must miss twice before it is changed. 

• Thus, a branch involved in a loop will be mispredicted only once when encountered 
the next time as opposed to twice when one bit is used. 

– Two-bit prediction is a specific case of n-bit saturating counter incremented when the 
branch is taken and decremented when the branch is not taken. 

 

– Two-bit prediction counters are usually always used based on observations that the 
performance of two-bit BHT prediction is comparable to that of n-bit predictors. 

The counter (predictor) used is updated after the branch is resolved  
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One-Level (Bimodal) Branch Predictors 

• One-level or bimodal branch prediction uses only one level of branch 
history. 

• These mechanisms usually employ a table which is indexed by lower N 
bits of the branch address.  

• Each table entry (or predictor) consists of  n  history bits, which form an n-
bit automaton or saturating counters. 

• Smith proposed such a scheme, known as the Smith Algorithm, that uses 
a table of two-bit saturating counters. (1985) 

• One rarely finds the use of more than 3 history bits in the literature. 

•  Two variations of this mechanism: 

– Pattern History Table: Consists of directly mapped entries.  

– Branch History Table (BHT):  Stores the branch address as a tag.  
It is associative and enables one to identify the branch 
instruction during IF by comparing the address of an instruction 
with the stored branch addresses in the table (similar to BTB). 
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What if different branches map to the same predictor (counter)? 
This is called branch address aliasing and leads to interference with current branch prediction by 
other branches  and may lower branch prediction accuracy for programs with aliasing.  
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Update counter after branch is resolved: 

-Increment counter used if branch is taken 
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taken 
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   Transition Diagram 

Or Two-bit saturating counter predictor state transition diagram (Smith Algorithm): 
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* From: New Algorithm Improves  

Branch Prediction Vol. 9, No. 4,  

March 27, 1995 © 1995  

MicroDesign Resources 



Prediction Accuracy of       A 4096-
Entry Basic One-Level Dynamic 
Two-Bit Branch Predictor 
 

Integer average  11% 

FP average  4% 

Integer 

Misprediction Rate: 

(Lower misprediction rate  

due to more loops) 

FP 

N=12 

2N = 4096 

Has, more branches 
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IF-Then-Else 

constructs the FP 



MCFarling's gshare Predictor 

• McFarling noted (1993) that using global history information might be less 

efficient than simply using the address of the branch instruction, especially 

for small predictors.  

• He suggests using both global history  (BHR) and branch address by 

hashing them together. He proposed using the XOR of global branch 

history register (BHR) and branch address since he expects that this value 

has more information than either one of its components. The result is that 

this mechanism outperforms GAp scheme by a small margin. 

• The hardware cost for k history bits is  k + 2 x 2k bits, neglecting costs for 

logic. 

gshare = global history with index sharing 

gshare is one one the most widely implemented two level dynamic branch 

prediction schemes 

operation 



gshare Predictor 

Branch and pattern history are kept globally. History and branch address  

are XORed and the result is used to index the pattern history table. 

First Level: 

Second Level: 

XOR 

(BHR) 

2-bit saturating counters (predictors) Index the second level 

gshare = global history with index sharing 

Here: 

m = N = k 

(bitwise XOR) 

One Pattern History Table (PHT) with 2k entries (predictors) 

(PHT) 



gshare Performance 

gshare 

(Gap) 

(One Level) 

GAp 
One Level 

GAp = Global, Adaptive, per address branch predictor 



Hybrid Predictors 
(Also known as tournament or combined predictors) 

• Hybrid predictors are simply combinations of two or more  branch 

prediction mechanisms.  

• This approach takes into account that different mechanisms may perform 

best for different branch scenarios.  

• McFarling  presented (1993) a number of different combinations of two 

branch prediction mechanisms.  

• He proposed to use an additional 2-bit counter selector array which serves 

to select the appropriate predictor for each branch. 

• One predictor is chosen for the higher two counts, the second one for the 

lower two counts.   

• If the first predictor is wrong and the second one is right the counter is 

decremented, if the first one is right and the second one is wrong, the 

counter is incremented.  No changes are carried out if both predictors are 

correct or wrong. 



Intel Pentium 1 

• It uses a single-level 2-bit Smith algorithm BHT associated with  a 

four way associative BTB which contains the branch history 

information. 

• The Pentium does not fetch non-predicted targets and does not 

employ a return address stack (RAS) for subroutine return 

addresses. 

•  It does not allow multiple branches to be in flight at the same time.  

• Due to the short Pentium pipeline the misprediction penalty is only 

three or four cycles, depending on what pipeline the branch takes. 



Intel P6,II,III 

• Like Pentium, the P6 uses a BTB that retains both branch history 
information and the predicted target of the branch. However the 
BTB of P6 has 512 entries reducing BTB misses. Since the 

• The average misprediction penalty is 15 cycles.  Misses in the 
BTB cause a significant 7 cycle penalty if the branch is backward.  

• To improve prediction accuracy a two-level branch history 
algorithm is used.  

• Although the P6 has a fairly satisfactory accuracy of about 90%, 
the enormous misprediction penalty should lead to reduced 
performance.  Assuming a branch every 5 instructions and 10% 
mispredicted branches with 15 cycles per misprediction the overall 
penalty resulting from mispredicted branches is 0.3 cycles per 
instruction. This number may be slightly lower since BTB misses 
take only seven cycles. 



AMD K6 

• Uses a two-level adaptive branch history algorithm implemented in a BHT 
(gshare) with 8192 entries (16 times the size of the P6).   

• However, the size of the BHT prevents AMD from using a BTB or even 
storing branch target address information in the instruction cache. Instead, 
the branch target addresses are calculated on-the-fly using ALUs during the 
decode stage.  The adders calculate all possible target addresses before 
the instruction are fully decoded and the processor chooses which 
addresses are valid.  

• A small branch target cache (BTC)  is implemented to avoid a one cycle 
fetch penalty when a branch is predicted taken. 

• The BTC supplies the first 16 bytes of instructions directly to the instruction 
buffer.  

• Like the Cyrix 6x86 the K6 employs a return address  stack (RAS) for 
subroutines.  

• The K6 is able to support up to 7 outstanding branches.  

• With a prediction accuracy of more than 95% the K6 outperformed all other 
microprocessors when introduced in 1997 (except the Alpha).  



Motorola PowerPC 750 

• A dynamic branch prediction algorithm is combined with static branch 

prediction which enables or disables the dynamic prediction mode 

and predicts the outcome of branches when the dynamic mode is 

disabled. 

• Uses a single-level Smith algorithm 512-entry BHT and a 64-entry 

Branch Target Instruction Cache (BTIC), which contains the most 

recently used branch target instructions, typically in pairs. When an 

instruction fetch does not hit in the BTIC the branch target address is 

calculated by adders.  

• The return address for subroutine calls is also calculated and stored 

in user-controlled special purpose registers. 

• The PowerPC 750 supports up to two branches, although 

instructions from the second predicted instruction stream can only be 

fetched but not dispatched. 



The SUN UltraSparc 

• Uses a dynamic single-level BHT Smith algorithm.  

• It employs a static prediction which is used to initialize the state 

machine (saturated up and down counters). 

• However, the UltraSparc maintains a large number of branch 

history entries (up to 2048 or every other line of the I-cache).  

• To predict branch target addresses a branch following mechanism 

is implemented in the instruction cache. The branch following 

mechanism also allows several levels of speculative execution. 

• The overall claimed performance of UltraSparc is  94% for FP 

applications and 88% for integer applications. 



Branch Prediction comparisons 

  Pentium1 Pentium Pro, II, III AMD K6 Motorola PowerPC 750 Sun UltraSparc 

Branch type 2-level Smith 2-level Smith 2-level adaptive branch 1-level Smith 1-level Smith 

BHT 2048 entries 4096 entries 8192 entries 512 entries 2048 entries 

BTB no 512 entries 512 entries no no 

Static  no no no 

Forward branches  are not-
taken and backward 
branches are taken 

yes, until the state machine 
is initialized 

Latency 3 - 4 cycles 7 - 15 cycles 1 - 4 cycles 3 - 4 cycles 9 to 14 cycles 

Performance 80% 90% 95% 96% 94% 

Additional features     

branch target cache(BTC), 
Return address stack (RAS), 

up to 7 outstanding 
branches 

branch target instruction 
cache (BTIC), Return 

address stack (RAS), up to 2 
outstanding branches   


