
Branch Prediction

•Branch prediction is one of the ancient performance improving techniques which still finds
relevance into modern architectures. While the simple prediction techniques provide fast
lookup and power efficiency they suffer from high misprediction rate.

•On the other hand, complex branch predictions – either neural based or variants of two-
level branch prediction – provide better prediction accuracy but consume more power and
complexity increases exponentially.

• In addition to this, in complex prediction techniques the time taken to predict the
branches is itself very high – ranging from 2 to 5 cycles – which is comparable to the
execution time of actual branches.

•Branch prediction is essentially an optimization (minimization) problem where the
emphasis is on to achieve lowest possible miss rate, low power consumption and low
complexity with minimum resources.

There really are three different kinds of branches:

 Forward conditional branches - based on a run-time condition, the PC (Program Counter) is
changed to point to an address forward in the instruction stream.

 Backward conditional branches - the PC is changed to point backward in the instruction
stream. The branch is based on some condition, such as branching backwards to the beginning
of a program loop when a test at the end of the loop states the loop should be executed again.

 Unconditional branches - this includes jumps, procedure calls and returns that have no
specific condition. For example, an unconditional jump instruction might be coded in assembly
language as simply "jmp", and the instruction stream must immediately be directed to the
target location pointed to by the jump instruction, whereas a conditional jump that might be
coded as "jmpne" would redirect the instruction stream only if the result of a comparison of
two values in a previous "compare" instructions shows the values to not be equal. (The
segmented addressing scheme used by the x86 architecture adds extra complexity, since jumps
can be either "near" (within a segment) or "far" (outside the segment). Each type has different
effects on branch prediction algorithms.)

A Closer Look At Branch Prediction

Static Branch Prediction predicts always the same direction for the same
branch during the whole program execution.

It comprises hardware-fixed prediction and compiler-directed prediction.

Simple hardware-fixed direction mechanisms can be:
•Predict always not taken
•Predict always taken
•Backward branch predict taken, forward branch predict not taken

Sometimes a bit in the branch opcode allows the compiler to decide the
prediction direction.

Static Branch Prediction

Dynamic Branch Prediction: the hardware influences the prediction while execution
proceeds.

Prediction is decided on the computation history of the program.

During the start-up phase of the program execution, where a static branch
prediction might be effective, the history information is gathered and dynamic
branch prediction gets effective.

In general, dynamic branch prediction gives better results than static branch
prediction, but at the cost of increased hardware complexity.

Dynamic Branch Prediction

Forward branches dominate backward branches by about 4 to 1 (whether conditional or not).
About 60% of the forward conditional branches are taken, while approximately 85% of the
backward conditional branches are taken (because of the prevalence of program loops).
Just knowing this data about average code behavior, we could optimize our architecture for the
common cases. A "Static Predictor" can just look at the offset (distance forward or backward
from current PC) for conditional branches as soon as the instruction is decoded.
Backward branches will be predicted to be taken, since that is the most common case. The
accuracy of the static predictor will depend on the type of code being executed, as well as the
coding style used by the programmer.
These statistics were derived from the SPEC suite of benchmarks, and many PC software
workloads will favor slightly different static behavior.

Using Branch Statistics for Static Prediction

Static Profile-Based Compiler Branch Misprediction Rates for

SPEC92

Floating Point Integer

More Loops

Average 9%
Average 15%

(i.e 91% Prediction Accuracy)
(i.e 85% Prediction Accuracy)

• Dynamic branch prediction schemes are different from static mechanisms because they utilize
hardware-based mechanisms that use the run-time behavior of branches to make more
accurate predictions than possible using static prediction.

• Usually information about outcomes of previous occurrences of branches (branching history) is
used to dynamically predict the outcome of the current branch. Some of the proposed
dynamic branch prediction mechanisms include:

– One-level or Bimodal: Uses a Branch History Table (BHT), a table of usually two-bit
saturating counters which is indexed by a portion of the branch address (low bits of
address). (First proposed mid 1980s)

– Two-Level Adaptive Branch Prediction. (First proposed early 1990s),

– MCFarling’s Two-Level Prediction with index sharing (gshare, 1993).

– Hybrid or Tournament Predictors: Uses a combinations of two or more (usually two)
branch prediction mechanisms (1993).

• To reduce the stall cycles resulting from correctly predicted taken branches to zero cycles, a
Branch Target Buffer (BTB) that includes the addresses of conditional branches that were taken
along with their targets is added to the fetch stage.

Dynamic Conditional Branch Prediction

How to further reduce the impact of branches on pipeline processor performance

Dynamic Branch Prediction:

Hardware-based schemes that utilize run-time behavior of
branches to make dynamic predictions:

Information about outcomes of previous occurrences of
branches are used to dynamically predict the outcome of
the current branch.
Why? Better branch prediction accuracy and thus fewer
branch stalls

Branch Target Buffer (BTB):
A hardware mechanism that aims at reducing the stall cycles
resulting from correctly predicted taken branches to zero
cycles.

To refine our branch prediction, we could create a buffer that is indexed by the low-order address bits
of recent branch instructions. In this BHB (sometimes called a "Branch History Table (BHT)"), for each
branch instruction, we'd store a bit that indicates whether the branch was recently taken. A simple
way to implement a dynamic branch predictor would be to check the BHB for every branch
instruction. If the BHB's prediction bit indicates the branch should be taken, then the pipeline can go
ahead and start fetching instructions from the new address (once it computes the target address).

By the time the branch instruction works its way down the pipeline and actually causes a branch, then
the correct instructions are already in the pipeline. If the BHB was wrong, a "misprediction" occurred,
and we'll have to flush out the incorrectly fetched instructions and invert the BHB prediction bit.

Dynamic Branch Prediction with a Branch History Buffer (BHB)

High bit determines

branch prediction

0 = NT= Not Taken

1 = T = Taken

0 0

0 1

1 0

1 1

Not Taken

 (NT)

Taken

 (T)

2-bit saturating counters (predictors)

N Low Bits of

Branch History Table (BHT)

Dynamic Branch Prediction with a Branch History Buffer (BHB)

It turns out that a single bit in the BHB will be wrong twice for a loop--once on the first
pass of the loop and once at the end of the loop. We can get better prediction accuracy by
using more bits to create a "saturating counter" that is incremented on a taken branch and
decremented on an untaken branch. It turns out that a 2-bit predictor does about as well
as you could get with more bits, achieving anywhere from 82% to 99% prediction
accuracy with a table of 4096 entries.
This size of table is at the point of diminishing returns for 2 bit entries, so there isn't
much point in storing more. Since we're only indexing by the lower address bits, notice
that 2 different branch addresses might have the same low-order bits and could point to
the same place in our table--one reason not to let the table get too small.

Refining Our BHB by Storing More Bits

There is a further refinement we can make to our BHB by correlating the behavior of other
branches. Often called a "Global History Counter", this "two-level predictor" allows the
behavior of other branches to also update the predictor bits for a particular branch instruction
and achieve slightly better overall prediction accuracy. One implementation is called the
"GShare algorithm".
This approach uses a "Global Branch History Register" (a register that stores the global result
of recent branches) that gets "hashed" with bits from the address of the branch being
predicted. The resulting value is used as an index into the BHB where the prediction entry at
that location is used to dynamically predict the branch direction. Yes, this is complicated stuff,
but it's being used in several modern processors.

Two-Level Predictors and the GShare Algorithm

Two-Level Predictors and the GShare Algorithm

Combined branch prediction*
Scott McFarling proposed combined branch prediction in his 1993 paper 2. Combined branch prediction
is about as accurate as local prediction, and almost as fast as global prediction.
Combined branch prediction uses three predictors in parallel: bimodal, gshare, and a bimodal-like
predictor to pick which of bimodal or gshare to use on a branch-by-branch basis. The choice predictor
is yet another 2-bit up/down saturating counter, in this case the MSB choosing the prediction to use.
In this case the counter is updated whenever the bimodal and gshare predictions disagree, to favor
whichever predictor was actually right.
On the SPEC'89 benchmarks, such a predictor is about as good as the local predictor.
Another way of combining branch predictors is to have e.g. 3 different branch predictors, and merge
their results by a majority vote.
Predictors like gshare use multiple table entries to track the behavior of any particular branch.
This multiplication of entries makes it much more likely that two branches will map to the same
table entry (a situation called aliasing), which in turn makes it much more likely that prediction
accuracy will suffer for those branches. Once you have multiple predictors, it is beneficial to arrange
that each predictor will have different aliasing patterns, so that it is more likely that at least one
predictor will have no aliasing. Combined predictors with different indexing functions for the different
predictors are called gskew predictors, and are analogous to skewed associative caches used
for data and instruction caching.

* From : http://en.wikipedia.org/wiki/Branch_prediction

http://en.wikipedia.org/w/index.php?title=Scott_McFarling&action=edit
http://citeseer.nj.nec.com/mcfarling93combining.html
http://en.wikipedia.org/w/index.php?title=Skewed_associative_cache&action=edit

In addition to a large BHB, most predictors also include a buffer that stores the actual target
address of taken branches (along with optional prediction bits). This table allows the CPU to look to
see if an instruction is a branch and start fetching at the target address early on in the pipeline
processing. By storing the instruction address and the target address, even before the processor
decodes the instruction, it can know that it is a branch.

A large BTB can completely remove most branch penalties (for correctly-predicted branches) if the
CPU looks far enough ahead to make sure the target instructions are pre-fetched. Using a Return
Address Buffer to predict the return from a subroutine One technique for dealing with the
unconditional branch at the end of a subroutine is to create a buffer of the most recent return
addresses.
There are usually some subroutines that get called quite often in a program, and a return address
buffer can make sure that the correct instructions are in the pipeline after the return instruction.

Using a Branch Target Buffer (BTB) to Further Reduce the
Branch Penalty

Branch Target Buffer (BTB)

• Effective branch prediction requires the target of the branch at an early pipeline
stage. (resolve the branch early in the pipeline)

• One can use additional adders to calculate the target, as soon as the branch
instruction is decoded. This would mean that one has to wait until the ID stage
before the target of the branch can be fetched, taken branches would be fetched
with a one-cycle penalty (this was done in the enhanced MIPS pipeline).

• To avoid this problem one can use a Branch Target Buffer (BTB). A typical BTB is an
associative memory where the addresses of taken branch instructions are stored
together with their target addresses.

• Some designs store n prediction bits as well, implementing a combined BTB and
Branch history Table (BHT).

• Instructions are fetched from the target stored in the BTB in case the branch is
predicted-taken and found in BTB. After the branch has been resolved the BTB is
updated. If a branch is encountered for the first time a new entry is created once it
is resolved as taken.

• Branch Target Instruction Cache (BTIC): A variation of BTB which caches also the
code of the branch target instruction in addition to its address. This eliminates the
need to fetch the target instruction from the instruction cache or from memory.

BTB

BTB Flow

Fetch

Decode

Execute

Prediction Output

BTB Penalties

Branch Penalty Cycles
Using A Branch-Target Buffer (BTB)

Assuming one more stall cycle to update BTB

Penalty = 1 + 1 = 2 cycles

Base Pipeline Taken Branch Penalty = 1 cycle (i.e. branches resolved in ID)

 No Not Taken Not Taken 0

Dynamic Branch Prediction

• Simplest method: (One-Level)

– A branch prediction buffer or Branch History Table (BHT) indexed by low address bits of
the branch instruction.

– Each buffer location (or BHT entry) contains one bit indicating whether the branch was
recently taken or not

• e.g 0 = not taken , 1 =taken

– Always mispredicts in first and last loop iterations.

• To improve prediction accuracy, two-bit prediction is used:

– A prediction must miss twice before it is changed.

• Thus, a branch involved in a loop will be mispredicted only once when encountered
the next time as opposed to twice when one bit is used.

– Two-bit prediction is a specific case of n-bit saturating counter incremented when the
branch is taken and decremented when the branch is not taken.

– Two-bit prediction counters are usually always used based on observations that the
performance of two-bit BHT prediction is comparable to that of n-bit predictors.

The counter (predictor) used is updated after the branch is resolved

Smith

Algorithm

Why 2-bit

Prediction?

. . .

BHT Entry: One Bit

0 = NT = Not Taken

1 = T = Taken

N Low Bits

of Branch

Address

One-Level (Bimodal) Branch Predictors

• One-level or bimodal branch prediction uses only one level of branch
history.

• These mechanisms usually employ a table which is indexed by lower N
bits of the branch address.

• Each table entry (or predictor) consists of n history bits, which form an n-
bit automaton or saturating counters.

• Smith proposed such a scheme, known as the Smith Algorithm, that uses
a table of two-bit saturating counters. (1985)

• One rarely finds the use of more than 3 history bits in the literature.

• Two variations of this mechanism:

– Pattern History Table: Consists of directly mapped entries.

– Branch History Table (BHT): Stores the branch address as a tag.
It is associative and enables one to identify the branch
instruction during IF by comparing the address of an instruction
with the stored branch addresses in the table (similar to BTB).

N Low Bits of

Table has 2N entries

(also called predictors) . 0 0

0 1

1 0

1 1

High bit determines

branch prediction

0 = NT = Not Taken

1 = T = Taken

Example:

For N =12

Table has 2N = 212 entries

 = 4096 = 4k entries

Number of bits needed = 2 x 4k = 8k bits

Sometimes referred to as

Decode History Table (DHT)

or

Branch History Table (BHT)

What if different branches map to the same predictor (counter)?
This is called branch address aliasing and leads to interference with current branch prediction by
other branches and may lower branch prediction accuracy for programs with aliasing.

Not Taken

 (NT)

Taken

 (T)

2-bit saturating counters (predictors)

Update counter after branch is resolved:

-Increment counter used if branch is taken

- Decrement counter used if branch is not

taken

One-Level (Bimodal) Branch Predictors

11 10

01 00

Taken

 (T)

Not Taken

 (NT)

Basic Dynamic Two-Bit Branch Prediction:

 Two-bit Predictor State

 Transition Diagram

Or Two-bit saturating counter predictor state transition diagram (Smith Algorithm):

0 0

0 1

1 0

1 1

Not Taken

 (NT)

Taken

 (T)

* From: New Algorithm Improves

Branch Prediction Vol. 9, No. 4,

March 27, 1995 © 1995

MicroDesign Resources

Prediction Accuracy of A 4096-
Entry Basic One-Level Dynamic
Two-Bit Branch Predictor

Integer average 11%

FP average 4%

Integer

Misprediction Rate:

(Lower misprediction rate

due to more loops)

FP

N=12

2N = 4096

Has, more branches

involved in

IF-Then-Else

constructs the FP

MCFarling's gshare Predictor

• McFarling noted (1993) that using global history information might be less

efficient than simply using the address of the branch instruction, especially

for small predictors.

• He suggests using both global history (BHR) and branch address by

hashing them together. He proposed using the XOR of global branch

history register (BHR) and branch address since he expects that this value

has more information than either one of its components. The result is that

this mechanism outperforms GAp scheme by a small margin.

• The hardware cost for k history bits is k + 2 x 2k bits, neglecting costs for

logic.

gshare = global history with index sharing

gshare is one one the most widely implemented two level dynamic branch

prediction schemes

operation

gshare Predictor

Branch and pattern history are kept globally. History and branch address

are XORed and the result is used to index the pattern history table.

First Level:

Second Level:

XOR

(BHR)

2-bit saturating counters (predictors) Index the second level

gshare = global history with index sharing

Here:

m = N = k

(bitwise XOR)

One Pattern History Table (PHT) with 2k entries (predictors)

(PHT)

gshare Performance

gshare

(Gap)

(One Level)

GAp
One Level

GAp = Global, Adaptive, per address branch predictor

Hybrid Predictors
(Also known as tournament or combined predictors)

• Hybrid predictors are simply combinations of two or more branch

prediction mechanisms.

• This approach takes into account that different mechanisms may perform

best for different branch scenarios.

• McFarling presented (1993) a number of different combinations of two

branch prediction mechanisms.

• He proposed to use an additional 2-bit counter selector array which serves

to select the appropriate predictor for each branch.

• One predictor is chosen for the higher two counts, the second one for the

lower two counts.

• If the first predictor is wrong and the second one is right the counter is

decremented, if the first one is right and the second one is wrong, the

counter is incremented. No changes are carried out if both predictors are

correct or wrong.

Intel Pentium 1

• It uses a single-level 2-bit Smith algorithm BHT associated with a

four way associative BTB which contains the branch history

information.

• The Pentium does not fetch non-predicted targets and does not

employ a return address stack (RAS) for subroutine return

addresses.

• It does not allow multiple branches to be in flight at the same time.

• Due to the short Pentium pipeline the misprediction penalty is only

three or four cycles, depending on what pipeline the branch takes.

Intel P6,II,III

• Like Pentium, the P6 uses a BTB that retains both branch history
information and the predicted target of the branch. However the
BTB of P6 has 512 entries reducing BTB misses. Since the

• The average misprediction penalty is 15 cycles. Misses in the
BTB cause a significant 7 cycle penalty if the branch is backward.

• To improve prediction accuracy a two-level branch history
algorithm is used.

• Although the P6 has a fairly satisfactory accuracy of about 90%,
the enormous misprediction penalty should lead to reduced
performance. Assuming a branch every 5 instructions and 10%
mispredicted branches with 15 cycles per misprediction the overall
penalty resulting from mispredicted branches is 0.3 cycles per
instruction. This number may be slightly lower since BTB misses
take only seven cycles.

AMD K6

• Uses a two-level adaptive branch history algorithm implemented in a BHT
(gshare) with 8192 entries (16 times the size of the P6).

• However, the size of the BHT prevents AMD from using a BTB or even
storing branch target address information in the instruction cache. Instead,
the branch target addresses are calculated on-the-fly using ALUs during the
decode stage. The adders calculate all possible target addresses before
the instruction are fully decoded and the processor chooses which
addresses are valid.

• A small branch target cache (BTC) is implemented to avoid a one cycle
fetch penalty when a branch is predicted taken.

• The BTC supplies the first 16 bytes of instructions directly to the instruction
buffer.

• Like the Cyrix 6x86 the K6 employs a return address stack (RAS) for
subroutines.

• The K6 is able to support up to 7 outstanding branches.

• With a prediction accuracy of more than 95% the K6 outperformed all other
microprocessors when introduced in 1997 (except the Alpha).

Motorola PowerPC 750

• A dynamic branch prediction algorithm is combined with static branch

prediction which enables or disables the dynamic prediction mode

and predicts the outcome of branches when the dynamic mode is

disabled.

• Uses a single-level Smith algorithm 512-entry BHT and a 64-entry

Branch Target Instruction Cache (BTIC), which contains the most

recently used branch target instructions, typically in pairs. When an

instruction fetch does not hit in the BTIC the branch target address is

calculated by adders.

• The return address for subroutine calls is also calculated and stored

in user-controlled special purpose registers.

• The PowerPC 750 supports up to two branches, although

instructions from the second predicted instruction stream can only be

fetched but not dispatched.

The SUN UltraSparc

• Uses a dynamic single-level BHT Smith algorithm.

• It employs a static prediction which is used to initialize the state

machine (saturated up and down counters).

• However, the UltraSparc maintains a large number of branch

history entries (up to 2048 or every other line of the I-cache).

• To predict branch target addresses a branch following mechanism

is implemented in the instruction cache. The branch following

mechanism also allows several levels of speculative execution.

• The overall claimed performance of UltraSparc is 94% for FP

applications and 88% for integer applications.

Branch Prediction comparisons

 Pentium1 Pentium Pro, II, III AMD K6 Motorola PowerPC 750 Sun UltraSparc

Branch type 2-level Smith 2-level Smith 2-level adaptive branch 1-level Smith 1-level Smith

BHT 2048 entries 4096 entries 8192 entries 512 entries 2048 entries

BTB no 512 entries 512 entries no no

Static no no no

Forward branches are not-
taken and backward
branches are taken

yes, until the state machine
is initialized

Latency 3 - 4 cycles 7 - 15 cycles 1 - 4 cycles 3 - 4 cycles 9 to 14 cycles

Performance 80% 90% 95% 96% 94%

Additional features

branch target cache(BTC),
Return address stack (RAS),

up to 7 outstanding
branches

branch target instruction
cache (BTIC), Return

address stack (RAS), up to 2
outstanding branches

