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      Chapter 3

     Magnetism of the Electron

1. Orbital and Spin Moments

2. Magnetic Field Effects

3. Theory of Electronic Magnetism

4. Magnetism of Electrons in Solids

Comments and corrections please: jcoey@tcd.ie
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1. Orbital and Spin Moment

m

(µ0e
2/4!me)

The electron is not really a

spinning ball of charge; if it were

the surface would be moving

faster than the speed of light!

It is a point particle with an

intrinsic magnetic moment of

one Bohr magneton
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1.1 Orbital moment

 

 

 

The circulating current is I;  I = -ev/2!r

The moment is m = IA  m = -evr/2

In Bohr’s quantum theory, orbital angular momentum l
is quantized in units of  !; h is Planck’s constant, 6.6226
10-34 J s; ! = h/2! = 1.055 10-34 J s.

The orbital angular momentum is l = mer"v; Units are  J s

It is the z-component of lz that is quantized in units of !, taking a value ml!

ml is a quantum number, an integer with no units. Eliminating r in the expression for m,

 m = -(e/2me)l = (e!/2me)ml = mlµB

 m = #l
  gyromagnetic ratio

The quantity           µB = (e!/2me)   is the Bohr magneton, the basic unit of atomic magnetism;

µB =  9.274 10-24 A m2

Electrons circulate indefinitely in stationary states; unquantized orbital motion radiates energy

e  

e  

 

 m

m

l
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Orbital moment

Derivation can be generalized to noncircular orbits. M = IA for any planar orbit.

Angular momentum of an electron is mer x v. Average around the loop (vme/s)"looopr x

ds       The integral is 2A and I = -ev/s, hence m = -(e/2me)l.

The Bohr model provides us with a natural unit of length,  the Bohr radius

a0 = 4!$0!
2/mee

2

 a0 = 52.92 pm

And a natural unit of energy, the Rydberg R0

R0 = (m/2!2)(e2/4!$0)
2

 R0 = 13.606 eV
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1.2 Spin moment

The electron has a mysterious built-in spin angular momentum. Spin is a consequence of
relativistic quantum mechanics. The spin quantum number is 1/2.
The spin angular momentum is s. The z-component is quantized in units of !, taking values
±1/2 !.  Nonetheless, the magnetic moment associated with electron spin is also 1µB.

m = #s  = -(e/me)s  = (e!/me)ms. The two states % and &with ms = ±1/2 have moments ±1µB

For orbital angular momentum m = #l, hence

       #   =  '(e/2m)

The g-factor is defined as the ratio of m (in units of µB) to  l (in units of !)

         g  =  1 for orbital motion

For spin angular momentum     # = -(e/m)

        g = 2  for spin (after higher order corrections, 2.0023)

Spin angular momentum is twice as effective as orbital angular momentum in creating a
magnetic moment.
Generally there is both spin and orbital angular momentum for an atomic electron. They

produce a total angular momentum j, j = l + s ; m = -gj(e/2m)j
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Einstein - de Haas effect demonstrates the relation between magnetism and angular momentum.

The inverse effect is the Barnett effect.

A ferromagnetic rod is suspended on a torsion fibre. The field in the solenoid is
reversed, changing the direction of magnetization of the nickel. It rotates, to conserve
angular momentum as the angular momenta of the electrons are reversed.

For iron, Ms = 1710 kA m-1, g is found to be 2.09.  Magnetism is essentially due to electron spin.

Moment is 2.2 µB per iron atom, yet iron has 26 electrons. Just over two of them contribute to the

magnetization
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1.3 Spin-orbit coupling

e

Ze

From the electron’s point of view, the nucleus

revolves round it. It is a current loop

I = Zev/2!r

Which produces a magnetic field µ0I/2r at the centre

Bso = µ0 Zev/2!r2

Uso = - µBBso

Since r ! a0/Z,  and   mevr ≈ !

Uso ! -µ0µB
2Z4/4!a0

3
The Z4 variation  for inner electrons shows that

spin-orbit coupling increases strongly in heavy

elements.

The formula is wrong by a factor 2
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1.4 Quantum mechanics of angular momentum

In quantum mechanics, physical observables are represented by operators - differential or matrix.

e.g. momentum p = -i!(; energy p2/2me = -!2(2 angular momentum l = r x p

#

$

r
z

y

x
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Quantum mechanics of angular momentum

Oz 

2

h

2

h
!

h
2

3

B
B

µ2

A useful way of representing angular momentum (indispenable for half-integer quantum numbers) is by

matrices. Magnetic systems with v states are represented by v x v square hermitian matrices.

Hermitian matrices have real eigenvalues.

The electron, with  spin s = 1/2,, has 2 basis states, denoted by ms = ±1/2; these %  and   & states are

represented by  column vectors

1 and 0

0      1

Then sz takes the form   1     0   !/2   By rotation sx is  0      1 !/2 and sy is  0     -i  !/2

 0     -1  1       0                       i       0

Hence sz
2 =  sx

2 +  sy
2  +  sz

2   =    1      0   3 !2/4

       0      1

Pauli spin matrices
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Quantum mechanics of angular momentum

The fundamental property of angular momentum in quantum mechanics is that the operators satisfy the

commutation relations

[sx
,sy] =

  i !sz   and cyclic permutations

In quantum mechanics only variables whose operators commute can be measured simultaneously.

Hence if sz is measured precisely, sx and sy are indeterminate etc. All three have eigenvalues ± !/2

To determine the eigenvalues of a matrix O, solve the eigenvalue equation

|O - %I| = 0      where I is the unit matrix.

This proceedure diagonalizes the matrix. The eigenvalues appear on the diagonal; other elements are 0

e.g.  For sy, |sy - %I| = 0  - %        -i !/2  =  0

  - i !/2    - %

%2 - (!/2)2 = 0;       % = ± !/2.

Diagonal matrices commute. [s2,sz] =
  0

s2  and sz can be measured simultaneously

Commutator sxsy - sysx

Determinant

 s  x s  = i !s

Oz 

2

h

2

h
!

h
2

3

B
B

µ2

Zeeman splitting HZ =-m.B
= (e/me)s.B = ± µBB
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Quantum mechanics of angular momentum

Other useful operators are the ladder operators 

s+ = sx + sy    and  s- = sx - sy

They raise or lower ms by unity.   They are represented by matrices  0    1   !/2    and     0      0   !/2 

                   0    0                       1      0

[s2,s±] =
  0  [sz

,s±] =
  ±i!s± Commutation relations

Magnetic moment of the electron m (in units of Bohr magnetons) associated with the angular

momentum (in units of !) can be represented by similar matrices, with g factors of 1 or 2 for orbital

or spin moments.  The matrix elements of the operators for m and l or s are propoertional.

Generally m = (µB/!) (l + 2s)
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Polarization

An electron in a general state has wave function     |)>  = *|%>  + +|&>

Normalization <)|)> = 1 requires *2  + +2 =  1 .

For example, the state * = + = (1/,2) |)>  = (1/,2)   1     corresponds to a spin along Ox

             1

It is an equal superposition of |%>  and  |&>  states.    A measurement of sz for such an electron gives

!/2 and - !/2 with equal probability.

Polarization of an ensemble of electrons is defined as P = (n% - n&)/ (n% + n&)

P =  (*2  - +2)/ (*2  + +2)

Stern Gerlach experiment
%

&An atomic beam of Ag ….5s1

splits in two.
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Rotation of quantization axis

#

z z’

s.ez’ = szcos- + sxsin-

        =   cos-       sin-   !/2

              sin-      -cos-

Eigenvalue equation is

|M -.I| = 0

(!/2 cos- -.)(- !/2 cos- -.)- !2/4 sin2-  

         = 0

 .2 = ± !2/4

If  c1  is an eigenvector  c1cos- + c2sin- !/2 =  .  c1

       c2        c1sin-  - c2 cos-                c2

Equations for c1, c2   c1(cos- - .) + c2sin- = 0 ……

 c1/c2 = -sin-/ (cos- - .)

Eigenvectors in the rotated frame are  cos-/2    and      -sin-/2

             sin-/2                 cos-/2
        Ry(-) =    cos-/2   -sin-/2   

        sin-/2    cos-/2

Rotate quantization axis by - about Oy
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A transformation of an operator in a rotated frame is achieved by the proceedure

R-1MR

        R-1 =   cos-/2    sin-/2              

   -sin-/2   cos-/2

        R =    cos-/2   -sin-/2              

   sin-/2    cos-/2

Hence                    cos-/2   -sin-/2              

    sin-/2   cos-/2

   1    0        cos-/2    sin-/2              

  0    -1   -sin-/2    cos-/2

cos-/2    sin-/2 =   cos-    sin-      as expected.             

sin-/2    -cos-/2      sin-    -cos-

=                 cos-/2   -sin-/2              

    sin-/2   cos-/2
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Rotation by an angle / around Oz

 Rz(/) =     exp//2  - exp//2              

                  exp//2    exp//2 

The phase change created by

rotating a spinor is the Berry

phase.

Note you have to rotate by 4! to

get back to where you began.



                                  Dublin January 2007 16

Generalization
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3.1 Cyclotron frequency

2. Magnetic Field Effects   

Lorentz force:  F = -ev x B

F = mev
2/r = evB

Cyclotron frequency fc = v/2!r = eB/ 2!me

The cyclotron frequency fc is 28 MHz T-1

Electrons in cyclotron orbits radiate at the cyclotron frequency

Examples: The microwave oven

   The research synchrotron source 
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3.2 Larmor frequency

   m =  #l

  &  = m x B

  &  = dl/dt

  dm/dt = -# m x B

 

B  

µ  

Bµ!= "  

Torque ! cause µ to precess about B with the Larmor frequency
e

eB

m
# =  

 

m

& = m x B

Solution is m(t) = m ( sin- cos0Lt, sin- sin0Lt, cos- )      where 0L = #B

Magnetic moment precesses at the Larmor precession frequency  fL = #B/2!

The Larmor precession is half the cyclotron frequency for orbital moment, but #
= -e/2me equal to it for spin moment. # = -e/me
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3.3 Orbital diamagnetism

Semi-classical expression for diamagnetic susceptibility is deduced from Larmor precession.

Induced angular momentum (magnetic moment) is induced by the applied field.

Angular momentum: me'L<(
2> where <(2> = <x2> + <y2>

Since 0L = #B, the induced moment is - #2me<(
2>B

Susceptibility  ) =  µ0M/B

       ) =  -µ0ne2<r2>/6me

The order of magnitude deduced from n !  6 1028 m3 and (<r2>)1/2 
! 0.2 nm  is 10 -5

Orbital diamagnetism is the dominant contribution for atoms and molecules with filled orbits

Larger values are seen in samples with separated benzene rings

BUT Bohr - van Leuven theorem, At any finite temperature and in all finite electric or magnetic fields

the net magnetization of any collection of electrons in thermal equilibrium vanishes identically!

The magnetic force F = -evxB is perpendicular to the electron velocity. No work is done, and so no

change of magnetization.
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Zeeman splitting is observed even for atoms with s state outer electrons with l = 0, ml = 0.

The electron possesses intrinsic spin angular momentum, which arises naturally from the Dirac
equation - relativistically-invariant quantum mechanics.

The spin angular momentum is s = 1/2, i.e. eigenvalues of sz are  ± !/2

The spin hamiltonian is Hspin = - m.B = (µB/!)2s.B  = -2 (µB/!)szBz

Here g is the electronic g-factor 2.0023 (g ! 2)       %               ms= 1/2
The eigenvalues are Ei = gµBmsB;  ms = ±1/2       µBB

      &                ms=-1/2

3.4 Curie law paramagnetism

Generally, the magnetic moment of the electron is represented by the operator

m  =  (µB/!)[l + 2s]

The Zeeman Hamiltonian  Hzeeman = -m.B = (µB/!)[lz + 2sz]B
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The electrons have only two eigenstates, ‘spin up’(%, ms = 1/2) and ‘spin down’ (&, ms = -

1/2), which correspond to two possible orientations of the spin moment relative to the
applied field. The population of an energy level is given by Boltzmann statistics; it is

proportional to  exp{-Ei/k1T}. The thermodynamic average 2m3 is evaluated from these

Boltzmann populations.

2m3 = [(1/2)gµBexp(x) - (1/2)gµBexp(-x)]/[exp(x) + exp(-x)]

2m3 = m tanh(x) where x = µBB/kBT.

In small fields, tanh(x) ! x, hence the susceptibility 4 = N 2m3 /H is

4Curie = µ0nµB
2/kBT

This is the famous Curie law for the susceptibility, which varies as T-1.

In other terms 4 = C/T, where C = µ0nµB
2/kB is a constant with dimensions of

temperature; Assuming an electron density n of 6 1028 m-3 gives C ! 0.5 K. The Curie law
susceptibility at room temperature is of order 10-3.

Many ‘two-level systems’ in physics are treated by assigning them a ‘pseudospin’ s = 1/2.

-1/2

 1/2

ms

z

g ,[S(S+1)]µ

B 1/2

-1/2
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3.5 Free electron model

                       H = p2/2me + V(r)

const

Schrodinger’s equation  -(!2/2me)(
2) = E)

Solutions are free-electron waves ) = L-3/2exp (ik.r)

Allowed values  ki = ±2!ni/L,    ni is an integer  2 electrons/state

lattice of points in k-space

Momentum:  p = -i!( p = !k

Energy: H = p2/2me    E = !2 k2/2m

Occupied states fill a sphere; Since (4/3) !kF
3 = 2N (2!/L)3

kF = (3!2n)1/3

k

E

o o o o o o o o o

o o o o o o o o o

o o o o o o o o o

o o o o o o o o o

o o o o o o o o o

o o o o o o o o o

o o o o o o o o o

kx

ky
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Fermi function
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The calculation for metals proceeds on a quite different
basis. The electrons are indistinguishable particles which
obey Fermi-Dirac statistics. They are not localized, so
Boltzmann statistics cannot be  applied. The electrons

have s = 1/2, m = µB. They partly-fill some energy band

up to the Fermi level EF.

A rough calculation gives the susceptibility as follows:

  4 = (N% - N&)µB/H

    ! 2[D(EF)µ0gµBH]µB/H where D(EF) is the density of states at the Fermi level for one

spin direction.

   4Pauli ! 2µ0 D(EF)µB
2  4pauli = 3µ0nµB

2/2kBTF
 

This is known as the Pauli susceptibility. Unlike the Curie susceptibility, it is very small, and
temperature independent.

The density of states D(EF) in a band is approximately N/2W, where W is the bandwidth (which is

typically a few eV). Comparing the expression for the Pauli susceptibility with that for the Curie
susceptibility 4curie = µ0nµB

2/kBT, we see that the Pauli susceptibility is a factor kBT/W smaller than
the Curie susceptibility . The factor is of order 100 at room temperature. 4Pauli is of order 10-5.

B = 0

B

±µBB

E

&    %      &    %

E

EF

Pauli paramagnetism
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Some metals have narrow bands and a large density of states at the Fermi
level; In this case it is possible for the band to split spontaneously, and for
ferromagnetism or antiferromagnetism to appear.

Ni

0.6ferriNi

1.7ferroCo

2.2ferroFe

1.0afMn

0.6afCr

m(µB)ordermetal

Strong ferromagnets like Co or Ni have all the states in the % d-band filled (5

per atom).

Weak ferromagnets like Fe have both % and & d-electrons at the EF.
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3.6 Landau diamagnetism

Free electron model was used by Landau to calculate the orbital diamagnetism

of conduction electrons. The result is:

exactly one third of the Pauli susceptibility, and opposite in sign.

The real band structure is taken into account in an approximate way by renormalizing

the electron mass. Replace me by an effective mass m*

Then 4L = -(1/3)(me/m*) 4P

In some semimetals such as graphite or bismuth, m* can be   ! 0.01 me, hence the

diamagnetism of the conduction electrons may sometimes be the dominant
contribution to the susceptibility. (4L = -4 10-4 for graphite)
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paramagnets

diamagnets

Susceptibility of the elements
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3. Theory of electronic magnetism
    

Maxwell’s equations  and the Lorentz force are the basic equations of electrodynamics.

F = q(E + v x B)

The separation of magnetic and electric fields depends on the reference frame.

When charged particles move in a magnetic field, the momentum and energy are sus of kinetic

and potential terms

P = pkin + qA  H  = (1/2me) p
2

kin + q/e

The total, canonical momentum is represented by -i!(     B = ( x A and E = - (/e

Hence  H  = (1/2me) (p + eA)2
  + V( r)

where V( r)  = -e/e
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3.1 Orbital moment and susceptibility of the electron

Consider an electron in a central potential V(r) subject to a uniform B field along ez.

The vector potential A  = (1/2)B5r = (1/2)Bez5r  = (1/2)B    = (1/2)B [-y, x, 0]

Hence B = (5A = (1/2)B    = Bez

The Hamiltonian for the electron in a central potential is

H = p2/2me + V(r)

         ke           pe
In the presence of a magnetic field this becomes

H = (p + eA)2/2me + V(r)

zyx

100

e
z

eye
x

0x-y

6/6z6/6y6/6x

ezeyex
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H = p2/2me + ep.A/me + e2A2/2me + V(r)

Note that [p,A] = p.A - A.p  = 0 if (.A = 0.

H = [p2/2me + V(r)] + ep.Bez5r/2me + e2B2(x2 + y2)/8me

 H0                            Hpara                           Hdia

The first term is the Hamiltonian for an electron in a potential with no field.

The second term gives the paramagnetic response of the orbital moment (Zeeman splitting)

 Hpara = elzB/2me  where l = r 5 p is the angular momentum

The third term gives the diamagnetic response of the electrons (Lenz’s law)

  Hdia = e2B2(x2 + y2)/8me
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Diamagnetic term
H   = H0    +   Hpara +   Hdia

Take H0    +   Hpara = H’    as the unperturbed Hamiltonian and    Hdia as the perturbation.

E’
n,l,ml = En,l - µBmlB

Perturbation theory:

  En,l,ml = E’
n,l,ml + 2)n,l,ml| Hdia |)n,l,ml3

 2)n,l,ml| Hdia |)n,l,ml3 = (e2B2/8me)7 |)n,l,ml|
2 (x2 + y2) d3r

      = (e2B2/8me) [2x
23 + 2y23]

For a central potential, 2x23 = 2y23 = 2z23 = 2r23/3
Hence the energy shift is e22r23B2/12me

 mdia = -6(8E)/6B = -e
22r23B/6me

  Mdia =  Nmdia = 4diaH

  4dia  = -µ0Ne22r23/6me

Note: All electron shells contribute to 4dia = -µ0e
2/6me 9i 2ri

23. 4dia  = 10-6
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3.2 Quantum oscillations

Let B = Bz,  A = (0, xB, 0), V(r) = 0 and m = m*

Schrodinger’s equation

0c =  eB/m*,   x0 = -!ky/eB   E’ = E - (!
2/2m)kz

2

The motion is a plane wave along Oz, plus a simple harmonic

oscillation at fc in the plane.
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3.2 Quantum oscillations

 

When a magnetic field is applied, the states in the Fermi sphere collapse onto a

series of tubes. Each tube corresponds to one Landaue level (n - value). As the

field increases, the tubes expand and the outer one empties periodically as

field increases. An oscillatory variation in 1/B2 of magnetization (de Haas - van

Alphen effect) or of conductivity (Shubnikov - de Haas effect) appears.

From the period, it is possible to deduce the

cross section area of the Fermi surface normal

to the tubes.
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The time-dependent Schrödinger equation
-(!2/2m)(2) + V) = i!")/"t

is not relativistically invariant because the operators "/"t and "/"x do not appear to the same power.
We need to use a 4-vector X = (ct, x, y, z) with derivatives "/"X.
Dirac discovered the relativistic quantum mechanical theory of the electron, which involves the Pauli
spin operators#:I, with coupled equations for electrons and positrons. The nonrelativistic limit of the
theory, including the interaction with a magnetic field B represented by  a vector potential A  can be
written as
    H  = [(1/2m)(p +eA)2 +V(r)] - p4/8m3c2 + (e/m)B.s + (1/2m2c2r)(dV/dr) - (1/4m2c2)(dV/dr) "/"r

•The second term is a higher-order correction to the kinetic energy
•The third term is the interaction of the electron spin with the magnetic field, so that the complete
expression for the Zeeman interaction of the electron is

HZ = (µB/!)B.(l + 2s)
The factor 2 is not quite exact. The expression is 2(1 + */2$ - .....)  ! 2.0023, where * = e2/4$$0hc!
1/137 is the fine-structure constant.
•The fourth term is the spin-orbit ineteraction., which for a central potential V(r) = -Ze2/4$$0r with Ze
as the nuclear charge becomes -Ze2µ0l.s/8$m

2r3 since µ0$0 = 1/c2. In an atom <1/r3> ! (0.1 nm)3 so the
magnitude of the spin-orbit coupling . is 2.5 K for hydrogen (Z = 1), 60 K for 3d elements (Z ! 25),
and 160 K for actinides (Z ! 65).
In a non-central potential, the spin-orbit interaction is (s5(V).p
•The final term just shifts the levels when l = 0.

3.3 Spin moment
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3.3 Magnetism and relativity

The classification of interactions according to their relativistic character is based on the kinetic energy

E = mc2,[1 + (v2/c2)]

The order of magnitude of the velocity of electrons in solids is *c. * is the f *ne st r uct ur e cons+
ant  1/137.  Expanding the equation in powers of c gives

E = mc2 + (1/2)*2mc2 - (1/8)*4mc2

Here the rest mass of the electron, mc2= 511 keV; the second and third terms, which represent the
order of magnitude of electrostatic and magnetostatic energies are respectively 13.6 eV and 0.18 meV.
Magnetic dipolar interactions are therefore of order 2 K.
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4. Magnetism of electrons in solids
    
Magnetism of free atoms
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3.4 Localized and delocalized electrons

LOCALIZED MAGNETISM DELOCALIZED MAGNETISM
Integral number of 3d or 4f electrons Nonintegral number of unpaired spins
on the ion core; Integral number of unpaired spins; per atom.
Discreet energy levels. Spin-polarized energy bands
with strong correlations.
Ni2+ 3d8 m  = 2 µB Ni  3d9.44s0.6   m = 0.6 µB

                        

y! exp(-r/a0)              ) ! exp(-ik.r)

Boltzmann statistics Fermi-Dirac statistics

4f metals 
#

localized electrons
4f compounds  localized electrons
3d compounds localized/delocalized electrons
3d metals delocalized electrons.

Above the Curie temperature, neither localized nor delocalized moments disappear, they just
become disordered in the paramagnetic state, T > TC.

3d

3d
9

8

r

!

!


