
1

Autumn 2006 CSE P548 - Dynamic Branch
Prediction

1

Control Hazards

The nub of the problem:
• In what pipeline stage does the processor fetch the next

instruction?
• If that instruction is a conditional branch, when does the processor

know whether the conditional branch is taken (execute code at the
target address) or not taken (execute the sequential code)?

• What is the difference in cycles between them?
The cost of stalling until you know whether to branch

• number of cycles in between * branch frequency = the contribution
to CPI due to branches

Predict the branch outcome to avoid stalling

Autumn 2006 CSE P548 - Dynamic Branch
Prediction

2

Branch Prediction

Branch prediction:
• Resolve a branch hazard by predicting which path will be taken
• Execute under that assumption
• Flush the wrong-path instructions from the pipeline & fetch the right

path if wrong

Performance improvement depends on:
• whether the prediction is correct

(here’s most of the innovation)
• how soon you can check the prediction

2

Autumn 2006 CSE P548 - Dynamic Branch
Prediction

3

Branch Prediction

Dynamic branch prediction:
• the prediction changes as program behavior changes
• branch prediction implemented in hardware
• common algorithm based on branch history

• predict the branch taken if branched the last time
• predict the branch not-taken if didn’t branch the last time

Alternative: static branch prediction
• compiler-determined prediction
• fixed for the life of the program
• an algorithm?

Autumn 2006 CSE P548 - Dynamic Branch
Prediction

4

Branch Prediction Buffer

Branch prediction buffer
• small memory indexed by the lower bits of the address of a branch

instruction during the fetch stage
• contains a prediction

(which path the last branch to index to this BPB location took)
• do what the prediction says to do
• if the prediction is taken & it is correct

• only incur a one-cycle penalty − why?
• if the prediction is not taken & it is correct

• incur no penalty − why?
• if the prediction is incorrect

• change the prediction
• also flush the pipeline − why?
• penalty is the same as if there were no branch prediction − why?

3

Autumn 2006 CSE P548 - Dynamic Branch
Prediction

5

Two-bit Prediction

A single prediction bit does not work well with loops
• mispredicts the first & last iterations of a nested loop

Two-bit branch prediction for loops
• Algorithm: have to be wrong twice before the prediction is changed

Autumn 2006 CSE P548 - Dynamic Branch
Prediction

6

Two-bit Prediction

Works well when branches predominantly go in one direction
• Why? A second check is made to make sure that a short &

temporary change of direction does not change the prediction
away from the dominant direction

What pattern is bad for two-bit branch prediction?

4

Autumn 2006 CSE P548 - Dynamic Branch
Prediction

7

Is Branch Prediction More Important Today?

Think about:
• Is the number of branches in code changing?
• Is it getting harder to predict branch outcomes?
• Is the misprediction penalty changing?
• Is modern hardware design changing the dynamic frequency of

branches?

Autumn 2006 CSE P548 - Dynamic Branch
Prediction

8

Branch Prediction is More Important Today

Conditional branches still comprise about 20% of instructions
Correct predictions are more important today − why?

• pipelines deeper
branch not resolved until more cycles from fetching
therefore the misprediction penalty greater

• cycle times smaller: more emphasis on throughput
(performance)

• more functionality between fetch & execute
• multiple instruction issue (superscalars & VLIW)

branch occurs almost every cycle
• flushing & refetching more instructions

• object-oriented programming
more indirect branches which harder to predict

• dual of Amdahl’s Law
other forms of pipeline stalling are being addressed so the portion
of CPI due to branch delays is relatively larger

All this means that the potential stalling due to branches is greater

5

Autumn 2006 CSE P548 - Dynamic Branch
Prediction

9

Branch Prediction is More Important Today

On the other hand,
• chips are denser so we can consider sophisticated HW solutions
• hardware cost is small compared to the performance gain

Autumn 2006 CSE P548 - Dynamic Branch
Prediction

10

Directions in Branch Prediction

1: Improve the prediction
• correlated (2-level) predictor (Pentiums)
• hybrid local/global predictor (Alpha)

2: Determine the target earlier
• branch target buffer (Pentium, Itanium)
• next address in I-cache (Alpha, UltraSPARC)
• return address stack (everybody)

3: Reduce misprediction penalty
• fetch both instruction streams (IBM mainframes)

4: Eliminate the branch
• predicated execution (Itanium)

6

Autumn 2006 CSE P548 - Dynamic Branch
Prediction

11

1: Correlated Predictor

The rationale:
• having the prediction depend on the outcome of only 1 branch

might produce bad predictions
• some branch outcomes are correlated

example: same condition variable
if (d==0)

...

if (d!=0)

example: related condition variable
if (d==0)

b=1;

if (b==1)

Autumn 2006 CSE P548 - Dynamic Branch
Prediction

12

1: Correlated Predictor

another example: related condition variables
if (x==2) /* branch 1 */

x=0;

if (y==2) /* branch 2 */

y=0;

if (x!=y) /* branch 3 */

do this; else do that;

• if branches 1 & 2 are taken, branch 3 is not taken

⇒ use a history of the past m branches
represents a path through the program

(but still n bits of prediction)

7

Autumn 2006 CSE P548 - Dynamic Branch
Prediction

13

1: Correlated Predictor
General idea of correlated branch prediction:

• put the global branch history in a global history register
• global history is a shift register: shift left in the new branch

outcome
• use its value to access a pattern history table (PHT) of 2-bit

saturating counters

Autumn 2006 CSE P548 - Dynamic Branch
Prediction

14

1: Correlating Predictor

Performance-intuitive rganization:

• Access a row in the “partitioned” PHT with the low-order bits of branch
address

• Choose which PHT with the global branch history
• Contents is the prediction

partitioned

8

Autumn 2006 CSE P548 - Dynamic Branch
Prediction

15

1: Correlated Predictor

Many implementation variations
• number of history registers

• 1 history register for all branches (global)
• table of history registers, 1 for each branch (private)
• table of history registers, each shared by several branches

(shared)
• history length (size of history registers)
• number of PHTs
• What is the trade-off?

Autumn 2006 CSE P548 - Dynamic Branch
Prediction

16

1: Tournament Predictor

Combine branch predictors
• local, per-branch prediction, accessed by the PC
• correlated prediction based on the last m branches, assessed by

the global history
• indicator of which had been the best predictor for this branch

• 2-bit counter: increase for one, decrease for the other

9

Autumn 2006 CSE P548 - Dynamic Branch
Prediction

17

2: Branch Target Buffer (BTB)

Cache that stores: the PCs of branches
the predicted target address
branch prediction bits

Accessed by PC address in fetch stage
if hit: address was for this branch instruction

fetch the target instruction if prediction bits say taken

No branch delay if: branch found in BTB
prediction is correct

(assume BTB update is done in the next cycles)

Autumn 2006 CSE P548 - Dynamic Branch
Prediction

18

2: Return Address Stack

The bad news:
• indirect jumps are hard to predict
• registers are accessed several stages after fetch

The good news: most indirect jumps (85%) are returns from function
• optimize for this common case

Return address stack
• provides the return target early
• return address pushed on a call, popped on a return
• best for procedures that are called from multiple call sites

• BTB would predict address of the return from the last call
• if “big enough”, can predict returns perfectly

• these days 1-32 entries

10

Autumn 2006 CSE P548 - Dynamic Branch
Prediction

19

3: Fetch Both Targets

Fetch target & fall-through code
• reduces the misprediction penalty
• but requires lots of I-cache bandwidth

• a dual-ported instruction cache
• requires independent bank accessing
• wide cache-to-pipeline buses

Autumn 2006 CSE P548 - Dynamic Branch
Prediction

20

4: Predicated Execution

Predicated instructions execute conditionally
• some other (previous) instruction sets a condition
• predicated instruction tests the condition & executes if the condition

is true
• if the condition is false, predicated instruction isn’t executed
• i.e., instruction execution is predicated on the condition

Eliminates conditional branch (expensive if mispredicted)
• changes a control hazard to a data hazard

Fetch both true & false paths

11

Autumn 2006 CSE P548 - Dynamic Branch
Prediction

21

4 Predicated Execution

Example:

without predicated execution
add R10, R4, R5
beqz R10, Label
sub R2, R1, R6

Label: or R3, R2, R7

with predicated execution
add R10, R4, R5
sub R2, R1, R6, R10
or R3, R2, R7

Autumn 2006 CSE P548 - Dynamic Branch
Prediction

22

4 Predicated Execution

Is predicated execution a good idea?

Advantages of predicated execution
+ no branch hazard

especially good for hard to predict branches & deep pipelines on
superscalars

+ creates straightline code; therefore better prefetching of instructions
prefetching = fetch instructions before you need them to hide
instruction cache miss latency

+ more independent instructions, therefore better code scheduling

12

Autumn 2006 CSE P548 - Dynamic Branch
Prediction

23

4 Predicated Execution

Disadvantages of predicated execution
- instructions on both paths are executed, overusing hardware

resources if they are not idle
- best for short code sequences

- hard to add predicated instructions to an existing instruction set
- additional register pressure
- complex conditions if nested loops (predicated instructions may

depend on multiple conditions)
- good branch prediction might get the same effect

Autumn 2006 CSE P548 - Dynamic Branch
Prediction

24

Real Branch Prediction Strategy

Static and dynamic branch prediction work together

Predicting
• correlated branch prediction

• Pentium 4 (4K entries, 2-bit)
• Pentium 3 (4 history bits)

• gshare
• MIPS R12000 (2K entries, 11 bits of PC, 8 bits of history)
• UltraSPARC-3 (16K entries, 14 bits of PC, 12 bits of history)

• tournament branch prediction
• Alpha 21264 has a combination of local (1K entries, 10 history

bits) & global (4K entries) predictors
• Power5

• 2 bits/every 2 instructions in the I-cache (UltraSPARC-1)

13

Autumn 2006 CSE P548 - Dynamic Branch
Prediction

25

Today’s Branch Prediction Strategy

BTB
• 4K entries (Pentium 4)
• no BTB; target address is calculated (MIPS R10000, UltraSPARC-

3)
• next address every 4 instructions in the I-cache (Alpha 21264)

• “address” = I-cache entry & set

Return address stack
• all architectures
• 16 entries on P4

Predicated execution
• Alpha 21264 (conditional move)
• IA-64: Itanium (full predication)

Autumn 2006 CSE P548 - Dynamic Branch
Prediction

26

Calculating the Cost of Branches

Factors to consider:
• branch frequency (every 4-6 instructions)
• correct prediction rate

• 1 bit: ~ 80% to 85%
• 2 bit: ~ high 80s to 90%
• correlated branch prediction: ~ 95%

• misprediction penalty
Alpha 21164: 5 cycles; 21264: 7 cycles
UltraSPARC 1: 4 cycles
Pentium Pro: at least 9 cycles, 15 on average
• then have to multiply by the instruction width

• or misfetch penalty
have the correct prediction but not know the target address yet
(may also apply to unconditional branches)

14

Autumn 2006 CSE P548 - Dynamic Branch
Prediction

27

Calculating the Cost of Branches

What is the probability that a branch is taken?
Given:

• 20% of branches are unconditional branches
• of conditional branches,

• 66% branch forward & are evenly split between taken & not
taken

• the rest branch backwards & are always taken

Autumn 2006 CSE P548 - Dynamic Branch
Prediction

28

Calculating the Cost of Branches

What is the contribution to CPI of conditional branch stalls, given:
• 15% branch frequency
• a BTB for conditional branches only with a

• 10% miss rate
• 3-cycle miss penalty
• 92% prediction accuracy
• 7 cycle misprediction penalty

• base CPI is 1

BTB result Prediction Frequency (per instruction) Penalty (cycles) Stalls

miss -- .15 * .10 = .015 3 .045
hit correct .15 * .90 * .92 = .124 0 0
hit incorrect .15 * .90 * .08 = .011 7 .076
Total contribution to CPI .121

15

Autumn 2006 CSE P548 - Dynamic Branch
Prediction

29

Dynamic Branch Prediction, in Summary

Stepping back & looking forward,
how do you figure out whether branch prediction (or any other aspect of a

processor) is still important to pursue?
• Look at technology trends
• How do the trends affect different aspects of prediction performance (or

hardware cost or power consumption, etc.)?
• Given these affects, which factors become bottlenecks?
• What techniques can we devise to eliminate the bottlenecks?
• Empirically evaluate those techniques

Autumn 2006 CSE P548 - Dynamic Branch
Prediction

30

Prediction Research

Predicting variable values
Predicting load addresses
Predicting which thread will hold a lock next
Predicting which thread should execute on a multithreaded processor
Predicting power consumption & when we can power-down processor

components
Predicting when a fault might occur

	Control Hazards
	Branch Prediction
	Branch Prediction
	Branch Prediction Buffer
	Two-bit Prediction
	Two-bit Prediction
	Is Branch Prediction More Important Today?
	Branch Prediction is More Important Today
	Branch Prediction is More Important Today
	Directions in Branch Prediction
	1: Correlated Predictor
	1: Correlated Predictor
	1: Correlated Predictor
	1: Correlating Predictor
	1: Correlated Predictor
	1: Tournament Predictor
	2: Branch Target Buffer (BTB)
	2: Return Address Stack
	3: Fetch Both Targets
	4: Predicated Execution
	4 Predicated Execution
	4 Predicated Execution
	4 Predicated Execution
	Real Branch Prediction Strategy
	Today’s Branch Prediction Strategy
	Calculating the Cost of Branches
	Calculating the Cost of Branches
	Calculating the Cost of Branches
	Dynamic Branch Prediction, in Summary
	Prediction Research

