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Control Hazards

The nub of the problem:
• In what pipeline stage does the processor fetch the next 

instruction?
• If that instruction is a conditional branch, when does the processor 

know whether the conditional branch is taken (execute code at the 
target address) or not taken (execute the sequential code)?

• What is the difference in cycles between them?
The cost of stalling until you know whether to branch

• number of cycles in between * branch frequency = the contribution 
to CPI due to branches

Predict the branch outcome to avoid stalling
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Branch Prediction

Branch prediction:
• Resolve a branch hazard by predicting which path will be taken
• Execute under that assumption
• Flush the wrong-path instructions from the pipeline & fetch the right 

path if wrong

Performance improvement depends on:
• whether the prediction is correct

(here’s most of the innovation)
• how soon you can check the prediction
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Branch Prediction

Dynamic branch prediction:
• the prediction changes as program behavior changes
• branch prediction implemented in hardware
• common algorithm based on branch history

• predict the branch taken if branched the last time
• predict the branch not-taken if didn’t branch the last time

Alternative: static branch prediction
• compiler-determined prediction
• fixed for the life of the program
• an algorithm?
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Branch Prediction Buffer

Branch prediction buffer
• small memory indexed by the lower bits of the address of a branch 

instruction during the fetch stage
• contains a prediction

(which path the last branch to index to this BPB location took)
• do what the prediction says to do
• if the prediction is taken & it is correct

• only incur a one-cycle penalty − why?
• if the prediction is not taken & it is correct

• incur no penalty − why?
• if the prediction is incorrect

• change the prediction
• also flush the pipeline − why?
• penalty is the same as if there were no branch prediction − why?
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Two-bit Prediction

A single prediction bit does not work well with loops
• mispredicts the first & last iterations of a nested loop

Two-bit branch prediction for loops
• Algorithm: have to be wrong twice before the prediction is changed
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Two-bit Prediction

Works well when branches predominantly go in one direction
• Why? A second check is made to make sure that a short & 

temporary change of direction does not change the prediction 
away from the dominant direction

What pattern is bad for two-bit branch prediction?
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Is Branch Prediction More Important Today?

Think about:
• Is the number of branches in code changing?
• Is it getting harder to predict branch outcomes?
• Is the misprediction penalty changing?
• Is modern hardware design changing the dynamic frequency of 

branches?
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Branch Prediction is More Important Today

Conditional branches still comprise about 20% of instructions
Correct predictions are more important today − why?

• pipelines deeper
branch not resolved until more cycles from fetching
therefore the misprediction penalty greater

• cycle times smaller: more emphasis on throughput 
(performance)

• more functionality between fetch & execute
• multiple instruction issue (superscalars & VLIW)

branch occurs almost every cycle
• flushing & refetching more instructions

• object-oriented programming
more indirect branches which harder to predict

• dual of Amdahl’s Law
other forms of pipeline stalling are being addressed so the portion 
of CPI due to branch delays is relatively larger

All this means that the potential stalling due to branches is greater
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Branch Prediction is More Important Today

On the other hand,
• chips are denser so we can consider sophisticated HW solutions
• hardware cost is small compared to the performance gain
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Directions in Branch Prediction

1: Improve the prediction
• correlated (2-level) predictor (Pentiums)
• hybrid local/global predictor (Alpha)

2: Determine the target earlier
• branch target buffer (Pentium, Itanium)
• next address in I-cache (Alpha, UltraSPARC)
• return address stack (everybody)

3: Reduce misprediction penalty
• fetch both instruction streams (IBM mainframes)

4: Eliminate the branch
• predicated execution (Itanium)
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1: Correlated Predictor

The rationale:
• having the prediction depend on the outcome of only 1 branch 

might produce bad predictions
• some branch outcomes are correlated

example: same condition variable
if (d==0)

... 

if (d!=0) 

example: related condition variable
if (d==0)

b=1;

if (b==1)
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1: Correlated Predictor

another example: related condition variables
if (x==2) /* branch 1 */

x=0;

if (y==2) /* branch 2 */

y=0;

if (x!=y) /* branch 3 */

do this; else do that;

• if branches 1 & 2 are taken, branch 3 is not taken

⇒ use a history of the past m branches
represents a path through the program

(but still n bits of prediction)
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1: Correlated Predictor
General idea of correlated branch prediction:

• put the global branch history in a global history register
• global history is a shift register: shift left in the new branch 

outcome
• use its value to access a pattern history table (PHT) of 2-bit 

saturating counters
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1: Correlating Predictor

Performance-intuitive rganization:

• Access a row in the “partitioned” PHT with the low-order bits of branch 
address

• Choose which PHT with the global branch history
• Contents is the prediction

partitioned
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1: Correlated Predictor

Many implementation variations
• number of history registers

• 1 history register for all branches (global)
• table of history registers, 1 for each branch (private)
• table of history registers, each shared by several branches 

(shared)
• history length (size of history registers)
• number of PHTs
• What is the trade-off?
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1: Tournament Predictor

Combine branch predictors
• local, per-branch prediction, accessed by the PC
• correlated prediction based on the last m branches, assessed by 

the global history
• indicator of which had been the best predictor for this branch

• 2-bit counter: increase for one, decrease for the other
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2: Branch Target Buffer (BTB)

Cache that stores:   the PCs of branches
the predicted target address
branch prediction bits

Accessed by PC address in fetch stage
if hit: address was for this branch instruction

fetch the target instruction if prediction bits say taken

No branch delay if:  branch found in BTB 
prediction is correct

(assume BTB update is done in the next cycles)
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2: Return Address Stack

The bad news:
• indirect jumps are hard to predict
• registers are accessed several stages after fetch

The good news: most indirect jumps (85%) are returns from function 
• optimize for this common case

Return address stack
• provides the return target early
• return address pushed on a call, popped on a return
• best for procedures that are called from multiple call sites

• BTB would predict address of the return from the last call
• if “big enough”, can predict returns perfectly

• these days 1-32 entries
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3: Fetch Both Targets

Fetch target & fall-through code
• reduces the misprediction penalty
• but requires lots of I-cache bandwidth

• a dual-ported instruction cache
• requires independent bank accessing
• wide cache-to-pipeline buses
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4: Predicated Execution

Predicated instructions execute conditionally
• some other (previous) instruction sets a condition
• predicated instruction tests the condition & executes if the condition 

is true
• if the condition is false, predicated instruction isn’t executed
• i.e., instruction execution is predicated on the condition

Eliminates conditional branch (expensive if mispredicted)
• changes a control hazard to a data hazard

Fetch both true & false paths
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4 Predicated Execution

Example:

without predicated execution
add R10, R4, R5
beqz R10, Label
sub R2, R1, R6 

Label: or R3, R2, R7

with predicated execution
add R10, R4, R5 
sub R2, R1, R6, R10
or R3, R2, R7
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4 Predicated Execution

Is predicated execution a good idea?

Advantages of predicated execution
+ no branch hazard

especially good for hard to predict branches & deep pipelines on
superscalars

+ creates straightline code; therefore better prefetching of instructions
prefetching = fetch instructions before you need them to hide 
instruction cache miss latency

+ more independent instructions, therefore better code scheduling
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4 Predicated Execution

Disadvantages of predicated execution
- instructions on both paths are executed, overusing hardware 

resources if they are not idle
- best for short code sequences

- hard to add predicated instructions to an existing instruction set
- additional register pressure
- complex conditions if nested loops (predicated instructions may 

depend on multiple conditions)
- good branch prediction might get the same effect
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Real Branch Prediction Strategy

Static and dynamic branch prediction work together

Predicting
• correlated branch prediction

• Pentium 4 (4K entries, 2-bit)
• Pentium 3 (4 history bits)

• gshare
• MIPS R12000 (2K entries, 11 bits of PC, 8 bits of history)
• UltraSPARC-3 (16K entries, 14 bits of PC, 12 bits of history)

• tournament branch prediction
• Alpha 21264 has a combination of local (1K entries, 10 history 

bits) & global (4K entries) predictors
• Power5

• 2 bits/every 2 instructions in the I-cache (UltraSPARC-1)
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Today’s Branch Prediction Strategy

BTB
• 4K entries (Pentium 4)
• no BTB; target address is calculated (MIPS R10000, UltraSPARC-

3)
• next address every 4 instructions in the I-cache (Alpha 21264)

• “address” = I-cache entry & set

Return address stack
• all architectures
• 16 entries on P4

Predicated execution
• Alpha 21264 (conditional move)
• IA-64: Itanium (full predication)
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Calculating the Cost of Branches

Factors to consider:
• branch frequency (every 4-6 instructions)
• correct prediction rate

• 1 bit: ~ 80% to 85%
• 2 bit: ~ high 80s to 90%
• correlated branch prediction: ~ 95%

• misprediction penalty
Alpha 21164: 5 cycles; 21264: 7 cycles
UltraSPARC 1: 4 cycles
Pentium Pro: at least 9 cycles, 15 on average
• then have to multiply by the instruction width

• or misfetch penalty
have the correct prediction but not know the target address yet 
(may also apply to unconditional branches)
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Calculating the Cost of Branches

What is the probability that a branch is taken?
Given:

• 20% of branches are unconditional branches
• of conditional branches,

• 66% branch forward & are evenly split between taken & not 
taken

• the rest branch backwards & are always taken
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Calculating the Cost of Branches

What is the contribution to CPI of conditional branch stalls, given:
• 15% branch frequency
• a BTB for conditional branches only with a

• 10% miss rate
• 3-cycle miss penalty
• 92% prediction accuracy
• 7 cycle misprediction penalty

• base CPI is 1

BTB result Prediction Frequency  (per instruction) Penalty (cycles) Stalls

miss -- .15 * .10 = .015 3 .045
hit correct .15 * .90 * .92 = .124 0 0
hit incorrect .15 * .90 * .08 = .011 7 .076
Total contribution to CPI .121
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Dynamic Branch Prediction, in Summary

Stepping back & looking forward,
how do you figure out whether branch prediction (or any other aspect of a 

processor) is still important to pursue?
• Look at technology trends
• How do the trends affect different aspects of prediction performance (or 

hardware cost or power consumption, etc.)?
• Given these affects, which factors become bottlenecks?
• What techniques can we devise to eliminate the bottlenecks?
• Empirically evaluate those techniques
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Prediction Research

Predicting variable values
Predicting load addresses
Predicting which thread will hold a lock next
Predicting which thread should execute on a multithreaded processor
Predicting power consumption  & when we can power-down processor 

components
Predicting when a fault might occur
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