
To appear in 8th Int’l Workshop on Web-Oriented Software Technologies (IWWOST 2009)

 1

Design Features for the Social Web:
The Architecture of Deme

Todd R. Davies and Mike D. Mintz

Symbolic Systems Program, Stanford University, Stanford, California, 94305-2150 USA
Davies@CSLI.Stanford.edu, MikeMintz@CS.Stanford.edu

Abstract. We characterize the “social Web” and argue for several features that are
desirable for users of socially oriented web applications. We describe the architec-
ture of Deme, a web content management system (WCMS) and extensible frame-
work, and show how it implements these desired features. We then compare Deme
on our desiderata with other web technologies: traditional HTML, previous open
source WCMSs (illustrated by Drupal), commercial Web 2.0 applications, and
open-source, object-oriented web application frameworks. The analysis suggests
that a WCMS can be well suited to building social websites if it makes more of the
features of object-oriented programming, such as polymorphism, and class inheri-
tance, available to nonprogrammers in an accessible vocabulary.

Keywords: content management systems, content management frameworks, social
web applications, user controlled data

1 Introduction

In early February of 2009, the social networking website Facebook.com changed its
Terms of Service (ToS) agreement, apparently taking away users’ right to remove, and
thereby to revoke Facebook’s license to, their content [16]. The move by Facebook
caused considerable controversy, leading to a threatened lawsuit by privacy advocates,
headline stories in major media, and an online revolt within Facebook by groups of its us-
ers. After several press communiqués and blog posts by Facebook representatives defend-
ing the new ToS failed to convince skeptics, the company changed course and reverted to
its previous Terms of Service agreement [10].

The controversy over Facebook’s ToS showed both the growing importance of the
Web’s social functions, as evidenced by the widespread media coverage it received, and
also the widespread sensitivity of users to questions about who controls their data. This
paper explores how the architecture of a web application can reflect these and other goals
in the emerging, more socially oriented Web. After discussing use characteristics that
distinguish social web applications, we define concepts and desired features for the social
Web, and then describe the architecture of a new, socially oriented web content manage-
ment system (WCMS) and extensible framework we call Deme (pronounced “deem”),
which implements our approach to the challenges posed by our desiderata.

Todd R. Davies and Mike D. Mintz

 2

The unusual characteristics of the Web that pose engineering challenges were enumer-
ated by Murugesan and Ginige [11]. There are various possible approaches to web engi-
neering, including model-driven approaches [e.g. 5,15], principle-based approaches such
as representational state transfer (REST)[8], and programming techniques such as agile
programming [4]. Within specific programming language families, a notable development
has been the widespread use of web application frameworks such as Ruby on Rails. A
WCMS is a tool for building web applications without requiring website builders to have
a background in computer programming.1 Our approach combines the user experience
goals of WCMSs with concepts and principles from object-oriented web application
frameworks in an architecture built for the social Web.

2 Web 2.0 and the Social Web

The set of trends often referred to as “Web 2.0” – the second generation of web design
and development – comprise roughly the following [cf 9,14]:
− websites that act as rich Internet applications (RIAs), with substantial and complex

processing of HTTP requests;
− heavier use of client-side processing, i.e. more code loaded into the browser and less

need for full page requests;
− larger websites supporting many interacting users, such as Wikipedia, Youtube, and

Facebook; and
− availability and use of new, higher-level programming tools such as web application

frameworks and rich Internet application frameworks.
In contrast to Web 2.0, the earlier generation (“Web 1.0”) was based on the browser/client
requesting full HTML pages or media files from a server directory, thin clients, relatively
little interactivity with users, and little server-side code. The transition between the two
was gradual, with some features of Web 2.0 being present even on some early websites.

Web content management systems pre-dated the introduction of the term “Web 2.0” in
2004 [14], and their development has lagged behind the phenomena cited above. The
most popular general-purpose WCMSs today (Joomla/Mambo, Drupal, and Plone) were
all first released in 2001-’02, and since then site administrators have gravitated toward
newer versions of these tools rather than to newer WCMSs.2 The greater emphasis on
large (usually commercial) sites available to end users, on one hand, and developer tools
requiring programming skills, on the other, has made nonprogrammers who administer
websites less represented in the growth of the Web than both end users and programmers.
But, as we will see, the characteristics of WCMSs are especially appropriate for the social
Web.

While “Web 2.0” refers to a generation of technologies and trends that emerged in the
second decade of the Web’s existence, the term “social Web” refers to characteristics of

1 See http://www.contentmanager.eu.com/history.htm.
2 See http://mameou.wordpress.com/2008/05/31/dries-buytaert-vision-of-drupal/. Wordpress, which

is more specific to blog management, was introduced a few years later and also been very suc-
cessful. It could also be classified as a CMS, but is less general purpose than the other three tools
cited.

To appear in 8th Int’l Workshop on Web-Oriented Software Technologies (IWWOST 2009)

 3

web applications that pre-dated and will outlast the Web 2.0 era. The following use char-
acteristics distinguish social web applications from non-social ones [2,12]:

User-generated social content. Social web applications enable site visitors to submit
content that others can access, such as photos, their own profile data, links to other web-
sites, and comments on other users’ content.

Social networking. Users of social web applications join together in online groups and
relationships (e.g. friends), which allow them to see identity-related information about the
people to whom they are connected.

Collaboration. Users engage in conversations, co-creation of content (e.g. on wikis),
collaborative filtering, and collective action.

Cross-platform data sharing. Increasingly, sharing content requires that a user be
able to transfer data across sites, implying that the site on which the remote content is to
be shared can interface correctly with the other site’s data. When the remote data need to
be processed locally, the two sites must agree on its meaning, which is a defining charac-
teristic of the semantic Web [1,12].

A website need not exhibit all of the above characteristics in order to be considered so-
cial. For example, a newspaper blog may enable users to make comments, but with no
support for networking through member profiles or collaboration. For our purposes, the
main thing that defines the social Web is that it enables visitors, not just site administra-
tors, to contribute some form of content that other users can access.

3 Content Management Concepts

We aim to show that our approach to content management provides advantages for the
social Web over other approaches. To do this, we will define a set of dimensions through
which content technologies can be compared. Consider the following concepts, with ex-
amples drawn primarily from traditional web concepts :

Unit. A chunk of content that can be referenced independently of other chunks, e.g. an
HTML file/webpage.

Subsegment. A content segment or portion of a unit; for example, a semantic element
in an HTML file.

Unit type. The classification of a unit of content that defines its subsegment structure
and constrains what viewer code can be executed in order to display it, e.g. a MIME type.

Behaviors. A set of actions available to a user with respect to a given unit of content,
e.g. the GET, POST, PUT, and DELETE methods of HTTP.

Container. A data structure for grouping multiple units together, e.g. a directory on a
file server.

Type structure. The relationships between unit types, e.g. XHTML is a subtype of
XML.

Type-viewer matching. A system for specifying which view code to invoke for a
given unit type, e.g. the preferences-applications table in the Firefox browser.

Relation specifier. A way to represent and display a relationship between units, e.g. a
hyperlink.

Access control. The system for specifying a user’s abilities to perform actions, such as
read and write, on a unit of content, e.g. through file system permissions.

Todd R. Davies and Mike D. Mintz

 4

Addressing. The means of specifying a particular unit, e.g. the URL of a page.
Versioning. A system for storing previous versions of a unit, e.g. an archive of old

files.
Deletion method(s). A behavior of a unit that results in it becoming hidden or re-

moved from use, e.g. the rm command in Unix and the DELETE method of HTTP.
Software license. A legal agreement with users specifying the rights and responsibili-

ties of both the user and the provider of a site’s software.
In the next section, we will argue for specific features along these dimensions that are

most compatible with the social Web.

4 Guiding Features for Social Web Content Management

The use characteristics of the social Web suggest preferred features from the perspective
of users (i.e. what users themselves are likely to want). These guiding features can be de-
fined with respect to the content management concepts defined in section 3.

Units should be page independent. A web page may contain many pieces of data to
which a user might want independent access. For example, the comments at the bottom of
a blog posting should, logically, each be addressable and includable individually, as
should any subset of them. Under HTML, by contrast, the page is the unit of reference.
References to individual elements are possible through anchors or the DOM, but these are
still tied to a particular page. Database tables are page-independent, but users do not gen-
erally have page-independent access to them. WCMSs generally allow users or adminis-
trators to define page independent units, such as the “nodes” of Drupal,3 but commercial
Web 2.0 sites such as Youtube do not permit end users this capability for each content
unit, e.g. a particular comment. They require a user to refer to a unit through a URL.

Subsegments should be fully pointable. Units themselves can be made up of parts or
subsegments. But a user or content manager in a social web application may want a sub-
segment to be a reference to another unit, or to a subsegment within a unit. We call this
feature “full pointability”. The “creator” subsegment of a content unit might point, for ex-
ample, to a unit representing a particular person. If the unit describing a person is divided
into their name, email address, telephone number, etc., one of their friends might want to
place their email address, without any of the other information about that person, in a list
that will dynamically update whenever the email address changes. Although database-
driven web applications generally allow references to other units, and the WCMS Drupal
supports pointing to subsegments (node fields) in its Content Constructor Kit module,4 in
general commercial Web 2.0 sites do not allow the user to refer directly to content fields
or subsegments.

Unit types should be polymorphic. Polymorphism refers to the ability of a unit of data
of one type to be treated as having a different type [3]. This is important for the social
Web because, as noted in section 2, when one person shares content with another person,
they may not be on the same platform, and so the code necessary to view a specific type
may not be available to every user. Polymorphism exists for a unit when its type is a sub-

3 See http://drupal.org/node/19828.
4 See http://drupal.org/project/fieldreference.

To appear in 8th Int’l Workshop on Web-Oriented Software Technologies (IWWOST 2009)

 5

type of an understood supertype (e.g. an HTML file with microformat markup can be
rendered by any HTML interpreter). The Web 2.0 emphasis on both server- and client-
side processing can break polymorphism for social web applications, because a given
user’s browser may not be compatible with a specific type of content. Cross-platform data
sharing may also be impossible between different applications or even different installa-
tions of the same application.

Behaviors should be extensible. In general, a designer of a website will not anticipate
all the possible actions and sequences of actions a user may want to do. For example, a
user of a search engine may want to sort the results by a criterion for which there is no
widget on the site, or a reader of a message board might want to view all the posts by
people from a certain city. Extensibility implies that the user can create new behaviors for
a given unit type. But this depends on an ability to modify either the data model or the
view code. WCMSs such as Drupal provide this ability by allowing modifications of the
open source code, and through optional contributed modules. Commercial Web 2.0 sites,
by contrast, often leave the user without a way to add a desired behavior when the code is
not available for modification. For example, users of many video sharing sites cannot sort
videos by date.

Containers should be referential. In a tree-structured file system paradigm, the con-
tainer (a folder or directory) stores a copy of each unit (a file), and every file must be
stored in a folder. As Ted Nelson has pointed out [13], thinking this way results in unnec-
essary file duplication that can cause incompatibilities. Referential containers, by con-
trast, store only the addresses of content units, and units are stored separately. This form
of container is better suited to the Web than value containers are, because different people
have different ways of categorizing content, and with reference-based categories, they
need not interfere with each other. Referential containers allow for a single point of stor-
age, rather than copies that can be updated differentially and become inconsistent. Social
web applications emphasize practices such as the sharing of tags or labels, which are ref-
erence containers.

Type structure should be inheritance hierarchical. In Drupal, content types such as
“article” and “event” are defined in a flat hierarchy, with configurable options, but with-
out inheritance of structure from other types.5 A site developer who uses Drupal ex-
pressed the need for type inheritance in the following blog comment in December 20086:

“…the structure of most of our content types is similar, or close enough that much of
the template is the same for all of them. Most of the code in each template is repeated
from one to the next. I really wish there was some kind of content type hierarchy or in-
heritance so those types of properties could be passed on to "children" content types.”

The traditional structure of web pages is very nonhierarchical. Internet media types can
associate different actions to different types of content in the browser, but they do not ex-
ist in an inheritance hierarchy. Content type inheritance, which is found in only a few en-
terprise CMSs such as Alfresco and Documentum (and not, to our knowledge, in general
use Web CMSs) has been called by one blogger “the holy grail of content management”.7

Type-viewer matching should be server-side specialized. The advantage of content typ-
ing is only fully realized if each content type is associated with view code that is tailored

5 See http://drupal.org/project/inherit regarding experimental content type inheritance in Drupal.
6 See http://www.yelvington.com/node/517.
7 See http://gadgetopia.com/post/6360.

Todd R. Davies and Mike D. Mintz

 6

to that type. This makes it possible to tailor the user interface experience to the content
type. WCMSs that allow content typing generally specialize the view by type to some ex-
tent, but when, as in Drupal, a user can create new content types by filling out a form, the
view code must be generic enough across content types to allow the definition of a new
type without writing code for an associated viewer. This limits the extent to which the
viewer can be specialized. Again, web browsers traditionally render all content as pages
of HTML, and Internet media/MIME types are handled differently by each browser. If a
site administrator wants all (or nearly all) end users to be able to view content in a spe-
cialized way, the view code must be defined at the server level.

Relation specifiers should be integrally unitizable. Relations between content units
such as hyperlinks have traditionally been specified within one unit, pointing to another
unit. This leads to a basic structure for links that is one-way, which can make it difficult
to detect incoming links. Moreover, specifying relations within a unit usually requires that
the user specifying the relation have write privileges for the target unit, and that these re-
lations be visible to all users viewing the target unit, such as a web page. In social web
applications, on the other hand, users may wish to specify relations between units in a
way that is external to the related units. For example, a user may wish to insert a com-
ment at a particular location in a document, which will have different associated permis-
sions from those of the document itself. This is especially useful when referring to docu-
ments on other websites. Although even basic HTML supports linking to an external
page, this kind of reference specifier is not integrated within the application, because it is
not visible when viewing the referenced pages. A solution is to allow relations between
specific locations in content units to be specified as units themselves, with their own per-
missions, and an integrated tool for displaying references when viewing an item. WCMSs
such as Drupal generally support this8 but not for the general case of relationships be-
tween locations within units,9

Access control should be fluid-granular. Web applications generally provide much
coarser control over who can view, edit, and delete content than does an operating sys-
tem. But this type of control is what users typically want, because each piece of content is
different. Moreover, the ideal privilege definitions are even more complex than in operat-
ing systems, since they can be defined for an arbitrary number of groups, with compli-
cated rules of precedence, and for each subsegment (field) of each content unit. Commer-
cial websites generally give limited control to the user to define these permissions,
although social networking sites such as Facebook have evolved to be fairly granular.10
Drupal embodies fluidity through the ability to define an indefinite number of roles, or
packages of privileges, and its Content Creator Kit module makes field-level permissions
available as well.11 But the combination of fluidity (many distinctions between adminis-
trator and user) and granularity (control over each field of a unit) is very difficult to
achieve and generally not found in commercial Web 2.0 sites.

Addressing should be domain independent. As much as possible, content should be
addressable independently of its path, so that links will not break if the content moves.

8 See http://drupal.org/node/414018.
9 A well-known advocate of more flexible reference specifiers, with support for two-way links and

deep transclusion, has been Ted Nelson [13].
10 See http://www.allfacebook.com/2009/04/facebook-privacy-limitations/.
11 See http://drupal.org/node/310 and http://drupal.org/project/cck_field_perms.

To appear in 8th Int’l Workshop on Web-Oriented Software Technologies (IWWOST 2009)

 7

This can be implemented through redirects, but that depends on the content owner’s con-
trol over a domain, since URLs are tied to domain names. Commercial web applications
generally do not support domain-independent addressing, but Drupal does support a lim-
ited version of it, internally to a site, through the node ID combined with the ability to
move the database to another domain.

Versioning should be comprehensive. Since, on a social web site users are providing
content, they may need access to earlier versions of a unit. This is built into Drupal12 as
well as wiki sites, but is generally not available on commercial Web 2.0 sites.

Deletion methods should be user controlled. In a social web application, a user
uploads content to the host site in lieu of placing it on their own site. For commercial
Web 2.0 sites, this means that the user’s ability to remove content is limited by the tools
provided to users, and by the ToS agreement. As in the Facebook ToS controversy, this
can lead users to feel that they have lost control over their own data, and may pose pri-
vacy risks. A site should not unduly limit users’ ability to delete their own data, e.g. by
making true deletion impossible (as opposed to flagging the data as hidden in a database).
Drupal makes true deletion available to users,13 but commercial sites generally do not.

Software licenses should be free/open source. Another aspect of user control is the
ability to inspect and modify the code. Although this generally requires moving data to
one’s own server space, and most users will not want to do it, a free/open source platform
gives all users flexibility by enabling others to provide alternative hosting environments
for their data.

5 The Deme Architecture

In this section, we describe the architecture of Deme,14 our new WCMS and framework
written in Django/Python, with a PostgreSQL database, licensed under the Affero GPLv3
license.15 Recently, the term “content management framework” has been used, somewhat
controversially, to denote “an application programming interface for creating a custom-
ized content management system”.16 We use the term “framework” to indicate that the
system is designed to facilitate custom code development. Deme attempts to make avail-
able the concepts of object-oriented programming (OOP) to end users and nonprogram-
mer website administrators, using language that we believe will be more understandable
to nonprogrammers. We define the terminology of Deme below with respect to concepts
familiar to a technical audience. Desired features from section 4 are noted in bold italics.

Items and item types. Units of content in Deme are stored in “items”. An item is an
instance of a particular “item type”. The Deme item types are inheritance hierarchical. If
the Person item type inherits from the Agent item type, then any item that is a Per-
son is also an Agent. Every item type ultimately inherits from the Item item type

12 See http://drupal.org/node/70591.
13 See http://agaric.com/note/disable-delete-regular-users.
14 See http://deme.stanford.edu.
15 See http://www.gnu.org/licenses/agpl-3.0.html.
16 See for example

http://en.wikipedia.org/w/index.php?title=List_of_content_management_frameworks&oldid=282
731961

Todd R. Davies and Mike D. Mintz

 8

(which corresponds to the Object class in many programming languages). We allow mul-
tiple inheritance, and use it occasionally (e.g., TextComment inherits from both Com-
ment and TextDocument). Deme items are stored in a database using object relational
mapping (ORM)17 with multi-table inheritance. For example, if our item type hierarchy is
Item -> Agent -> Person, and our items are Mike[Person] and Robot[Agent],
then there will be one row in the Person table (for Mike), two rows in the Agent table
(for Mike and Robot), and two rows in the Item table (for Mike and Robot). An
abridged basic view of the Deme item type hierarchy is shown in Figure 1.

Fig. 1. The Deme item type hierarchy (abridged basic view).

Pieces. Every item type defines the “pieces” (mapped to fields/columns in the data-

base) relevant for that type’s items, and item types inherit pieces from their supertypes. If
Item defines the description piece, Agent defines no new pieces, and Person de-
fines the first_name piece, then every person has a description and a
first_name.

17 See Scott W. Ambler’s explanation ORM at

http://www.agiledata.org/essays/mappingObjects.html.

To appear in 8th Int’l Workshop on Web-Oriented Software Technologies (IWWOST 2009)

 9

Piece types. Every piece of an item has a type (e.g. String, Integer, and Boo-
lean). Pieces can point to other items (foreign keys in the database), and can addition-
ally specify which piece of another item is being pointed to (fully pointable). Pointing
pieces are useful for defining relationships between items. For example, the Item item
type has a creator piece pointing to the Agent that created it. Multiple items can
point to a common item. Pieces cannot store data structures like lists. So rather than stor-
ing different contact methods as pieces of each Agent, we make ContactMethod an
item type, and give it an agent_pointer piece. The contact methods for agent 123
are represented by all of the ContactMethods that have agent_pointer equal to
123.

Item IDs. The most important piece of an item is the id (a page-independent primary
key). Every item has a unique, immutable id. Items share the same id with their su-
pertype versions (so Mike’s row in the Person table has the same id as Mike’s row in
the Agent and Item tables). Pointing pieces are references to the id of the pointed-to
item. Although not implemented yet, we plan to make available (optionally) “universal
item id’s” through a reserved namespace approach like URNs or i-names, for domain-
independent addressability across installations of Deme. Relations between items and
pieces are shown for a portion of the item type hierarchy in Figure 2.

Other highlights of the Deme architecture include the following.
Versioning. For every item type, there is a comprehensive “old versions” table.
Deleting items. There are two ways to delete items: deactivate and destroy.

Decativating is recoverable (through reactivate), but destroy is not (user control).
The user interface ensures that deactivating happens before destroying.

Collection. An item type that represents an unordered referential set of other items,
Collections use pointers from Memberships (which are items in their own right; in-
tegral unitizability) to represent their contents, so multiple Collections can point to
the same contained items. Collections “directly” contain items via Memberships,
but they also “indirectly” contain items via chained Memberships.

Transclusion. An embedded reference from a location in a specific version of a
TextDocument to another Item. A Transclusion [13] is a separate item (integral
unitizability).

Comment. A unit of discussion about an item. Each Comment specifies the com-
mented item and item_version_number. Comments can be associated with spe-
cific locations in a TextDocument via Transclusions.

Excerpt. An item that refers to a portion of another item or (in a planned future ver-
sion) an external resource, such as a webpage (full pointability).

Permissions. Permissions define what actions an arbitrary group of Agents (fluidity)
can and cannot do to each item and its pieces (granularity).

Viewer types. Deme takes advantage of the model-view-template architecture of
Django. A viewer is a Python class that processes browser or API requests. Each viewer
defines the item type it can accept (server side specialization), and multiple viewers can
accept the same item type. Viewers that accept an item type will also accept subtypes of
that item (polymorphism). Each viewer type defines a set of actions, e.g. item_show.
Custom viewers and item types can define new actions (extensibility).18

18 There are many other item types and architectural features not discussed above. For a full de-

scription, see http://deme.stanford.edu/static/docs/index.html.

Todd R. Davies and Mike D. Mintz

 10

Fig. 2. A detailed partial view of the Deme item type hierarchy. Solid connectors denote supertype-
subtype inheritance. Dotted connectors denote pointers from pieces to items.

6 Comparing Deme With Other Technologies for the Social Web

Table 1 summarizes how Deme achieves the desired features for the social Web, by com-
parison with other web technologies: (a) file system-based “Web 1.0” sites (basic
HTML); (b) the widely used WCMS Drupal; (c) commercial Web 2.0 sites such as You-
tube, Facebook, and Myspace; and (d) object-oriented web application frameworks such
as Ruby on Rails and Django.

On three dimensions (unit type, type structure, and addressing), the only other technol-
ogy besides Deme that achieves the desired feature is OOP/web applicaton frameworks,
which require programming skill. On eight dimensions (unit, subsegment, behaviors, rela-
tion specifiers, access control, versioning, deletion methods, and software license), all of
the open-source approaches (Drupal, web frameworks, and Deme) achieve the desired
features, but commercial Web 2.0 sites do not. The remaining two dimensions (container
and type-viewer) are ones for which all of the technologies beyond basic HTML achieve
the desired feature.

The social Web is especially associated with commercial Web 2.0 sites. But our analy-
sis suggests that these sites do not meet users’ needs as well as open-source technologies
that give more control to users. Previous WCMSs, represented here by Drupal, generally
exhibit more of the desired features than large commercial sites do, and they do not re-
quire a programming background to administer them. But they do not meet the desired
social web criteria quite as well as OOP web frameworks do. The frameworks, on the

To appear in 8th Int’l Workshop on Web-Oriented Software Technologies (IWWOST 2009)

 11

other hand, require more programming skill. Deme makes available powerful OOP con-
cepts from web frameworks to nonprogrammers for managing content, in a code base that
is built for modification. We also believe that the terminology used in Deme will make it
easier for nonprogrammers to learn than Drupal, but that remains to be tested empirically.

Table 1. Comparison of web technologies by content management concept. Approaches that make
available the desired feature for each content concept are highlighted in bold.

Content
managment
concept

Desired
social
feature

(a) File sys-
tem/Web
1.0 HTML

(b) Web
CMS
(Drupal)

(c)Commer-
cial Web
2.0 sites

(d) OOP
/Web app
frameworks

(e) Deme
v0.9 WCMS

unit page
independent

file/page node photo,
video, etc.

object/row item

subsegment fully
pointable

semantic
element

field custom
fields

attribute/
field

piece,
excerpt

unit type polymor-
phism

Internet
media type

content type custom
types

class item type

behaviors extensible HTTP
methods

menus widgets methods actions

container referential directory categories tags/labels container
classes

collection

type
structure

inheritance
hierarchy

MIME type
/subtype

(flat) (flat) class
inheritance

item type
hierarchy

type-viewer
matching

server-side
specialized

browser
application
preferences

views and
modules

site-defined
viewer

model-view
separation

viewer
types

relation
specifiers

integrally
unitizable

one-way
hyperlinks

relation
nodes

limited
bidirectional
links

relation
objects

transclu-
sions,
member-
ships

access
control

fluid-
granular

restricted
directories

admins and
roles

custom
permissions

customiza-
ble

permissions

addressing domain
independent

URL node ID permalink object
identiy

(universal)
item id

versioning comprehen-
sive

old files content
versioning

none or
wiki diffs

version
control sys-
tem

old ver-
sions table

deletion
methods

user
controlled

file system
delete

node delete limited data
removal

file edit and
delete

deactivate,
destroy

software
license

free/open-
source

default
copyright

GPLv2 usually
proprietary

open
source

Affero
GPLv3

The version of Deme presented here is the latest step in a multi-year project aimed at

creating a platform for deliberative interactions, e.g. document-centered discussion [6].
Future work will involve refining the interface to enable easier collaboration and com-
menting. The social Web is ultimately about fostering conversation. In the words of Cory
Doctorow [7], “Conversation is king. Content is just something to talk about.” Users are
likely to continue to want this conversation to extend to an open dialogue about the social
web platform itself. Even the most technically minded of tool providers should be pre-

Todd R. Davies and Mike D. Mintz

 12

pared to justify their design and licensing choices to end users in relation to their needs
and desires, and to provide technology that is responsive to user demands.

Acknowledgments

We wish to thank Leo Perry, Ben Newman, Brendan O’Connor, Joseph Marrama, Jane
Huang, and Ivan Sag for helpful contributions to this version of Deme.

References

1. Berners-Lee, T., Hendler, J., Lassila, O. The Semantic Web. Sci. Am. 284(5), 34-43 (2001)
2. Boulos, M.N., Wheelert, S. The Emerging Web 2.0 Social Software: An Enabling Suite of So-

ciable Technologies in Health and Health Care Education. Health Information and Libraries
Journal. 24, 2-23 (2007)

3. Cardelli, L, Wegner, P. On Understanding Types, Data Abstraction, and Polymorphism. Com-
puting Surveys. 17(4), 471-522 (1985)

4. Cohen, D., Lindvall, M., Costa, P. An Introduction to Agile Methods. In Advances in Comput-
ers. pp. 1-66. Elsevier Science (2004)

5. Constantine, L.L., Lockwood, L.A.D. Usage-Centered Engineering for Web Applications.
IEEE Software. 19(2), 42-50 (2002)

6. Davies, T., Newman, B., O'Connor, B. Tam, A, Perry, L. Document Centered Discussion: A
Design Pattern for Online Deliberation. In Schuler, D. (ed.). Liberating Voices: A Pattern Lan-
guage for Communication Revolution. pp. 384-386. MIT Press (2008)

7. Doctorow, C. Disney Exec: Piracy Is Just a Business Model. October 10 (2006),
http://www.boingboing.net/2006/10/10/disney-exec-piracy-i.html, quoted in Shirky, C. Here
Comes Everybody. Penguin (2008)

8. Fielding, R.T.; Taylor, R.N.. Principled Design of the Modern Web Architecture. ACM Trans-
actions on Internet Technology. 2(2), 115–150 (2002)

9. MacManus, R., Porter, J. Web 2.0 for Designers. Digital Web Magazine, May 4 (2005)
10. Milian, M., Facebook Backtracks on Terms of Use Update. Los Angeles Times. February 18

(2009). , http://latimesblogs.latimes.com/technology/2009/02/facebook-tos.html
11. Murugesan, S., Ginige, A. Web Engineering: Introduction and Perspectives. Idea Group (2005)
12. Mikroyannidis, A. Toward a Semantic Social Web. Computer. 40(11), 113-115 (2007)
13. Nelson, T.H. Xanalogical Structure, Needed Now More than Ever: Parallel Documents, Deep

Links to Content, Deep Versioning, and Deep Re-Use. ACM Computing Surveys. 31(4)
(1999)

14. O’Reilly, T. What Is Web 2.0? September 30 (2005),
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

15. Rossi, G. Urbieta, M., Ginzburg, J., Distante, D., Garrido, A. Refactoring to Rich Internet Ap-
plications: A Model-Driven Approach. In 8th International Conference on Web Engineering.
pp. 1-12. IEEE (2008)

16. Walters, C. Facebook’s New Terms of Service: We Can Do Whatever We Want With Your
Content, Forever. The Consumerist. February 15 (2009).
http://consumerist.com/5150175/facebooks-new-terms-of-service-we-can-do-anything-we-
want-with-your-content-forever

