
ADVANCED

ANALYTICS

Analysis Results of Zeus.Variant.Panda

Luca Ebach

Analysis Report. June 22, 2017

G DATA Advanced Analytics GmbH

G DATA Campus · Königsallee 178

D-44799 Bochum, Germany

Contents

1 Introduction 2

2 Overview 3
2.1 General Information . 3
2.2 Execution Flow . 4

3 Anti-Detection and Anti-Reverse-Engineering Techniques 6
3.1 Malware Startup Checks . 6

3.1.1 Debug support . 6
3.1.2 Language checks . 6
3.1.3 Anti analysis check . 6

3.2 Windows API Imports . 10
3.3 Crypted Strings . 10
3.4 Cryptography . 11

3.4.1 Random Numbers . 11
3.4.2 Cryptography . 11
3.4.3 Hashing . 12

4 Configuration 13
4.1 Bot ID . 13
4.2 Configuration . 13

4.2.1 Base Config . 13
4.2.2 Local Config (PeSettings) . 14
4.2.3 Dynamic Config . 15
4.2.4 Local Settings . 17

4.3 Bot Update . 18
4.4 Configuration Update . 18

5 Payload and Persistence 20
5.1 Persistence . 20
5.2 HTTP Grabber and Injector . 20
5.3 Process Injection . 22
5.4 API Hooking Technique . 22
5.5 Hooks and Browser Manipulation . 22

5.5.1 Internet Explorer . 23
5.5.2 Mozilla Firefox . 25
5.5.3 Google Chrome . 25
5.5.4 User Functions . 26

Contents 1

5.6 Plug-in ability . 26
5.7 Webfilters . 27
5.8 Remote Script . 27
5.9 System Report . 29

6 Conclusion 30

1 Introduction

Aside from ransomware attacks, banking trojans are also a very dangerous type of mal-
ware. They do not have destructive behaviour in the first place, so their presence on a
victim’s system might not be detected for quite an amount of time if the victim has no
proper antivirus product installed. Since Panda is possibly among the most dangerous
families of banking trojans, we decided to do a comprehensive analysis of a recent sample
of Panda.
In this paper we focus on the analysis of the binary part of a Zeus.Panda malware

sample. For a detailed analysis of the actual webinject behaviour and the communication
flow between infected machines and the automatic transfer system’s server, please refer
to our blogposts1 2 by Manuel Körber-Bilgard and Karsten Tellmann.

1https://cyber.wtf/2017/02/03/zeus-panda-webinjects-a-case-study/
2https://cyber.wtf/2017/03/13/zeus-panda-webinjects-dont-trust-your-eyes/

https://cyber.wtf/2017/02/03/zeus-panda-webinjects-a-case-study/
https://cyber.wtf/2017/03/13/zeus-panda-webinjects-dont-trust-your-eyes/

2 Overview

2.1 General Information

The original Zeus banking trojan’s source code was leaked in 2011 and since then several
independent threat actors have used the source code as a basis for new variants of the
malware. One of the most prolific and advanced of these variants is the Zeus.Panda
banking trojan which we will analyse in this white paper. Zeus.Panda targets Windows
operating systems from WinXP through Windows 10 and is typically spread through
phishing mail campaigns, but proliferation through drive-by exploits has been seen.
The sample analyzed in this whitepaper is:

MD5
Packed: e005c4009c22e0f73fcdaeba99bd0075
Unpacked: 655f65b1b08621dfcb2603b59fca05bc

SHA1
Packed: 6f5c186baa0d69799c250769052236b8bcfb13a1
Unpacked: 88782d3b74067d405e56f0a5e9b92e3fdb77dcd8

SHA256
Packed: d037723b90acb9d5a283d54b833e171e913f6fa7f44dd6d996d0cecae9595d0b
Unpacked: bd956b2e81731874995b9b92e20f75dbf67ac5f12f9daa194525e1b673c7f83c

Size
Packed: 252 KB
Unpacked: 140 KB

Number of Functions
538

IOCs (Filesystem)
Panda tries to find a directory underneath %APPDATA%\Roaming that

∙ is empty,

∙ has a path that is at least 140 characters long,

∙ does not contain either of microsoft or firefox, and

∙ is as deep in the directory tree as possible

In our analysis environment, Panda ended up in %APPDATA%\Roaming\Sun\Java.
In the directory, Panda creates four files with random file extensions. We discovered

2.2 Execution Flow 4

Desktop (create shortcut).exe (malware executable), Control Panel.cyd (dy-
namic config file, section 4.2.3), Desktop.ysq (report file, section 5.9), and Notepad.kix
(localconfig file, section 4.2.2).

IOCs (Registry)
Aside from writing some files to disk, Panda also uses some registry keys to store
data. All the registry keys used by Panda are located in the HKCU\Software\Microsoft
key. The names of the keys are random and in our system we observed Ivoc (reg-
DynamicConfig), Kounhu (regLocalConfig), and Useglugy (regLocalSettings). See
section 4.2.2 for a more detailed description of the configuration. Additionally,
Panda creates a new entry within the HKCU\Software\Microsoft\Windows\CurrentVersion\Run
registry key which is used to start the malware as soon as the infected user logs
into its account.

IOCs (other)
Internally, Panda uses several mutexes and events to synchronize between the
controlling process and the client instances in the browsers. The names of these
objects are fixed on the local system but are different for any other system. Al-
though, the names are 32-character hexadecimal strings in either case. Example:
4A0000002571569EA477E09F768C1A07

2.2 Execution Flow

Figure 2.1 gives an overview of the control flow of Zeus.Panda. Each step will be de-
scribed in detail in the coming chapters.

2.2 Execution Flow 5

Figure 2.1: Control flow of the malware executable.

3 Anti-Detection and

Anti-Reverse-Engineering Techniques

3.1 Malware Startup Checks

Before installing the malware executable in the victim’s system, Panda performs several
checks to verify that it runs in a sane environment.

3.1.1 Debug support

The first check verifies the integrity of a .dbg file. If the file is present on the file system,
it has the same name as the executable. The .dbg file contains encrypted JSON data 3.4
of the form

{

"data": "[data]",

"sign": "[signature]"

}

After reading the content of the file, Panda hashes the data part of the JSON object us-
ing SHA1 through the Windows Crypt API. Afterwards, it uses CryptVerifySignature
to check the calculated hash against the content of the sign field using a static public
key from the executable. If the signature is not valid, Panda removes itself from the
system. If the signature check is passed, Panda will bypass the subsequent anti-analysis
code.

3.1.2 Language checks

Once the debug support check is passed, Panda checks the current keyboard layout
against a predefined list of layouts. In the sample I analyzed, the list contained 0x419,
0x422, 0x423, 0x43f which stand for russian, ukrainian, belarusian, and kazakh, respec-
tively. If either of those matches the current keyboard layout, Panda removes itself from
the victim’s PC.

3.1.3 Anti analysis check

The last step of the pre-run checks is a rather long list of checks for debug and analysis
tools. Some of these tools are antiquated such as SoftIce where support stopped long
before Windows XP which is the least recent operating system supported by Panda.
Other of the tools such as IDA Pro and Immunity Debugger remain popular tools with

3.1 Malware Startup Checks 7

malware analysts. If any of these tools are present Panda aborts execution and removes
itself. To identify analysis tools Panda uses four different types of tests:

file
use CreateFile with OPEN_EXISTING flag to check if a file/device exists

mutex
use OpenMutex to try to open an existing mutex

running process
use CreateToolhelp32Snapshot to get the list of currently running processses and
check if any of them contains a given string

registry key
use RegOpenKey to check if a registry key exists or check a registry key if it contains
a given value

The full list contains checks for 23 tools and is shown in the table at the end of the section.
If either of those tests fails, Panda stops to installing and removes itself from the system.
Although, these checks can be skipped using -f as a command line parameter at the
start of the malware.

aut2exe
process aut2exe running

Bochs
registry key HKLM\HARDWARE\Description\System\SystemBiosVersion contains
BOCHS

Execute
file C:\\execute.exe exists

Frz
mutex with name Frz_State exists

IDA Pro
process idaq running

ImmunityDBG
process immunity running

Perl
process perl running

PopupKiller
file C:\popupkiller.exe exists

prl
One of:

3.1 Malware Startup Checks 8

∙ file \\.\prl_pv exists

∙ file \\.\prl_tg exists

∙ file \\.\prl_time exists

ProcessExplorer
process procexp running

ProcessMonitor
process procmon running

ProcessHacker
process processhacker running

Python
process python running

Regshot
process regshot running

Sandboxie
One of:

∙ SbieDll.dll can be loaded by LoadLibraryA

∙ mutex Sandboxie_SingleInstanceMutex_Control exists

SoftICE
One of:

∙ file \\.\SICE exists

∙ file \\.\SIWVID exists

∙ file \\.\SIWDEBUG exists

∙ file \\.\NTICE exists

∙ file \\.\REGVXG exists

∙ file \\.\FILEVXG exists

∙ file \\.\REGSYS exists

∙ file \\.\FILEM exists

∙ file \\.\TRW exists

∙ file \\.\ICEXT exists

Stimulator
file C:\stimulator.exe exists

VirtualBox
One of:

3.1 Malware Startup Checks 9

∙ file \\.\VBoxGuest exists

∙ file \\.\VBoxMouse exists

∙ file \\.\VBoxVideo exists

∙ file \\.\VBoxMiniRdrDN exists

∙ file \\.\VBoxMiniRdDN exists

∙ file \\.\VBoxTrayIPC exists

∙ registry key HKLM\SOFTWARE\Oracle\VirtualBox Guest Additions exists

∙ registry key HKLM\HARDWARE\ACPI\DSDT\VBOX__ exists

VirtualPC
One of:

∙ mutex MicrosoftVirtualPC7UserServiceMakeSureWe’reTheOnlyOneMutex

exists

∙ file \\.\VirtualMachineServices exists

VMware
One of:

∙ file \\.\HGFS exists

∙ file \\.\vmci exists

∙ registry key HKLM\SOFTWARE\VMware Inc.\VMware Tools exists

Wine
One of:

∙ kernel32.dll contains ”wine_get_unix_file_name" function

∙ registry key HKLM\Software\WINE exists

∙ registry key HKCU\Software\WINE exists

Wireshark
One of:

∙ file \\.\NPF_NdisWanIp exists

∙ process wireshark running

Hypervisor
One of:

∙ check if hypervisor bit of CPU is set

∙ file \\.\VmGenerationCounter exists

3.2 Windows API Imports 10

Function Resolve(Module, FunctionID)

{

For exportName in Module.Exports

{

If (CRC32(exportName) == FunctionID)

{

Return AddressOfFunction(exportName)

}

}

}

Function Import(ModuleID, FunctionID)

{

If (FunctionID not in cache)

{

Module := DecryptName(ModuleID)

If (Module is not loaded)

{

LoadLibrary(Module)

}

cache[functionID] := Resolve(Module, FunctionID)

}

Return cache[functionID]

}

Listing 3.1: Pseudocode describing the implementation of the Windows API import
function.

3.2 Windows API Imports

To harden itself against static analysis, Panda avoids importing Windows API functions
directly. Instead, it uses LoadLibrary and parses the export directory of libraries. It
creates a CRC32 hash of each export name and compares it to a hardcoded CRC32 of
the name of the desired import. If the two match, the function address from the export
directory of the library is used. In case of forwarded exports Panda reverts to import
the function by using the GetProcAddress API. A simplified pseudo code of the import
function is shown in listing 3.1. The actual implementation is a bit more complicated,
but this should give an overview of how it works.
There are exceptions however. It seems that some imports are, by accident, left in

the binary. Fortunately, this includes functions like LoadLibrary and GetProcAddress

which lowered the difficulty of the static analysis since we were able to determine the
import function shortly after the start of the analysis. Also, calls to the Heap* func-
tions (Alloc, Free, ReAlloc, Create, Destroy) and also a single call to Sleep are not
imported using the custom import functions.

3.3 Crypted Strings

Most strings an analyst might come across during the analysis process are encrypted.
This hinders an analyst from using strings to determine the purpose of some functions.

3.4 Cryptography 11

struct cryptEntry {

char key;

char unused;

short length;

const char* data;

}

Listing 3.2: The layout of an entry in the list of encrypted strings.

Panda decrypts the strings on the fly whenever a string is needed. The decryption
routine for the i-th string is rather simple:

𝑜𝑢𝑡𝑝𝑢𝑡[𝑝𝑜𝑠] = 𝑝𝑜𝑠⊕ 𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑆𝑡𝑟𝑖𝑛𝑔𝑠[𝑖].𝑑𝑎𝑡𝑎[𝑝𝑜𝑠]⊕∼𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑆𝑡𝑟𝑖𝑛𝑔𝑠[𝑖].𝑘𝑒𝑦

All encrypted strings are referenced in a large static array of structures in the read-
only section of the binary. Each entry is a structure of type cryptEntry (see listing 3.2)
which consists of the key character, the length of the encrpyted string, and a pointer to
the actual encrypted string. The decryption function then takes the index of the to-be-
decrypted string in the array of structs, extracts the key, length, and string pointer from
it and than decrypts the strings into a given buffer. Depending on how this function
is used, it either decrypts the strings onto the stack (if the function is directly called)
or the string is encrypted into the heap if any of the intermediate function is called.
During the analysis we used the IDAPython plugin idaemu (frontend for UnicornEngine
for use in IDA Pro) to emulate the encryption function for all possible string indexes
and annotated the IDA database accordingly.

3.4 Cryptography

3.4.1 Random Numbers

Instead of usingWinAPI functions to generate random numbers, Panda uses the Mersenne
Twister MT 19937 to generate random numbers. Panda provides internal API functions
to generate single numbers or buffers with support for upper and lower bounds for the
numbers.

3.4.2 Cryptography

Additionally, Panda uses a set of cryptographic algorithms to encrypt and hash sensitive
data to prevent analysis and manipulation of the data. For example, Panda encrypts
almost all settings and configuration values in memory. The algorithms used are AES
and RC4. Both of them are used either with a hardcoded or with a dynamic key (which
is generated during the first run of the malware). Interestingly, both AES and RC4 share
the same dynamic binary key material.

RC4 (static key)

∙ parts of the basic config that are double encrypted

3.4 Cryptography 12

∙ PeSettings in the extended file attributes of the malware executable (see sec-
tion 4.2.2)

∙ object name generation (RC4 is used for scrambling there, no cryptographic
purpose)

∙ encrypted data in dynamic config (e. g. backconnect IPs and ports for Vnc
and Socks)

RC4 (dynamic key)

∙ local settings (see section 4.2.4)

∙ report data that is temporarily stored on disk until it is submitted to the
command-and-control server

AES (static key)

∙ base config decryption (see section 4.2.1)

∙ internal public key decryption

∙ decryption of delay-loaded binary modules

∙ communication with command-and-control server

AES (dynamic key)

∙ registry data (dynamic config, local config; see section 4.2.3 and 4.2.2)

3.4.3 Hashing

Aside from encrypting data, Panda also uses some cryptographic hash functions.

SHA256

∙ DGA hostname generation (see section 4.4)

∙ bot ID (see section 4.1)

∙ object name generation

∙ integrity check of AES encrypted data sent by the command-and-control
server

SHA1

∙ signature verification of the binary module data sent by the command-and-
control server

4 Configuration

4.1 Bot ID

To be able to track and control each malware instance in the botnet, Panda generates a
unique bot id. The bot id is a 32-byte hex string that can be described as

𝐵𝑜𝑡𝐼𝐷 ← 𝐻𝑒𝑥𝑆𝑡𝑟𝑖𝑛𝑔(𝑆𝐻𝐴256(𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟𝑁𝑎𝑚𝑒||𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝐷𝑎𝑡𝑒||𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝐼𝑑||𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝐼𝑛𝑓𝑜))

where

computerName
local computer name, fallback to ”unknown” if error in GetComputerNameW

installDate
content of registry key HKLM\Software\Microsoft\Windows NT\Current Version\InstallDate

productId
CRC32 sum of the content of the registry key HKLM\Software\Microsoft\Windows
NT\Current Version\DigitalProductId; fallback to 0 if failed getting key value

versionInfo
CRC32 sum of OSVERSIONINFOEXW where everything from (and including) szCS-
DVersion is zeroed out (szCSDVersion, wServicePackMajor, wServicePackMinor,
wSuiteMask, wProductType, wReserved); fallback to CRC32 sum of sizeof(OSVERSIONINFOEXW)
zeroes

Apart from identifying the bot, the bot id is also used as part of the algorithm that
generates kernel object names (mutexes, window class names, event names, etc).

4.2 Configuration

Panda uses three different types of configurations: base, local, and dynamic. Each type
of config has its own special purpose and is not available through static analysis – except
for the base config.

4.2.1 Base Config

For the initial configuration and the first connections to the command-and-control server,
Panda contains a static base config with default settings for the most important confi-
guration values. This includes the following values:

4.2 Configuration 14

dwDelayConfig
delay in minutes how long to wait until malware starts to get the initial dynamic
config

dwRc4KeyLength
length of the binary RC4 key

szwDGAConfigUrls
list of URLs suffixes for the DGA (see section 4.4)

rc4Key
binary RC4 key, used to encrypt the PeSettings

dwDGAConfigUrlsLength
length of szwDGAConfigUrls

szwInitialCnCHosts
an encrypted, null-separated list of strings for initial command-and-control do-
mains

dwWaitAfterProcessInfection
delay in minutes how long to wait for the core process to be initialized

dwCnCUrlCount
number of command-and-control domains in szwInitialCncHosts

dwCheckConfigDelay
delay in minutes for next dynamic config check

4.2.2 Local Config (PeSettings)

The local config the data that is shared by all instances of the Panda malware on the
local system and is generated only once at the first start of the malware and is then
persisted in the malware executable using Extended File Attributes. The values of the
PeSettings structure are as follows:

dwStructSize
the size of the structure

szwBotId
the ID of the bot that is used to identify the client against the backend server (see
section 4.1)

guid
the GUID of the local system; if the malware is executed again after the first start, it
recalculates the guid and checks if it matches the one from the PeSettings. If this is
not the case, Panda aborts its execution. This can be used to check if the malware
was moved to another PC after it was started once (e.g. copying a persisted sample

4.2 Configuration 15

of the malware from a victim’s computer to an analysis environment of a malware
analyst)

rc4BinKey
this RC4 key is used to encrypt all data that goes to the registry keys (e.g. a
backup of the currently used dynamic config)

dwInfectionId
a random number identifying the current infection

szwCoreFile, szwReportFile, szwDynConfigFile, szwLocalConfigFile
files on the local filesystem; szwCoreFile is the name of the malware executable;
szwReportFile contains the path to the file where Panda temporarily stores the
report data until they are sent to the server; szwDynConfigFile points to the
file where the dynamic config is backed up on the filesystem; szwLocalConfigFile
contains the file where the local config is stored

regKey
a random registry key name

regDynamicConfig
the name of the registry key that contains the backup of the current dynamic config

regLocalConfig
the name of the registry key containing a backup of the local PeSettings

regLocalSettings
the name of the registry key that is used to store the local settings into (e.g. IDs
of socks and VNC modules)

4.2.3 Dynamic Config

The first thing Panda does after initializing and injecting into its run-time host process is
to download a dynamic config from its command-and-control server. This configuration
is created by the command-and-control server on demand and can change at any time.
This allows the malware operator to maintain his control capabillity even in the event
that the static configured command and control server is shut down. But especially the
dynamic configuration is interesting for malware analysts because it contains the URLs
and/or IP addresses of the ATS server(s).
Panda uses its built-in JSON parser to parse the dynamic configuration. The malware

makes use of the following values:

created
the creation date of the config; used to check if the downloaded one is newer than
the local one

botnet
the name of the botnet the client is part of

4.2 Configuration 16

check_config
time in seconds when to check for the next dynamic config

send_report
time in seconds when to send the next system report

check_update
time in seconds when to check for the next client update

url_config
the url from where to download the next dynamic config

url_webinjects
the url from where to download the webinjects

url_update
the url for the bot update

url_plugin_vnc32
the url for the VNC32 module

url_plugin_vnc64
the url for the VNC64 module

url_plugin_vnc_backserver
the URL/IP address where the VNC module should connect to

url_plugin_grabber
the url for the http grabber module

url_plugin_backsocks
the url for the backconnect socks proxy module

url_plugin_backsocks_backserver
the URL/IP address where the socks backconnect proxy should connect to

reserved
encrypted data, from the context of the use of the data it seems that this is a list
of fallback URLs for the download of the dynamic config (see section 4.4)

grabber_pause
time in minutes how long to wait until starting the grabber module

There are some additional configuration values that can be provided which are not
directly used by the sample, but probably used in one of the modules:

grab_softlist/grab_pass/grab_form/grab_cert/grab_cookie/grab_del_cookie/grab_del_cache
flags denoting whether the grabber module should grab specific data or to delete
some data (cookies, cache)

4.2 Configuration 17

dgaconfigs
the url for the DGA config file; the DGA config file contains a list of URL suffixes
which are appended to a generated string from where the bot will try to download
the next dynamic configuration

webfilters
a list of URL masks where Panda can take special actions (see section 5.7)

webinjects
URLs, payloads, and location descriptions for the webinjects

4.2.4 Local Settings

Additionally, Panda stores some run-time settings in a structure called LocalSettings by
the malware authors. These settings are not meant to control the behaviour of the bot, it
is more like a temporary data store of values that are client specific and need to be kept
even after the malware is restarted (e. g. because of a system reboot). The structure
contains the following values:

dwModuleStartFlags
bitmap denoting which of the modules has been started

dwGrabberFlags
bitmap denoting which of the http grabber features has been enabled

dwPandaAntivirusFound
set to 1 if Panda Antivirus was found, changes the behaviour of the bot update

dwHashSet
bitmap denoting which of the hashes has been set

szConfigId, szWebinjectsId, szUpdateId, szGrabberId, szVnc32Id, szVnc64Id, szBack-
socksId
65-byte buffers to store the hashes of the respective files/modules

dwCurrentUrlIdx
the index of the currently used update URL in the list fallback URLs

dwUrlRetryCount
the retry count of the URL specified by dwCurrentUrlIdx ; maximum value is set
in the base config

wBacksocksBackserverPort
the port of the server of the backconnect socks proxy

wVncBackserverPort
the port of the server of the backconnect vnc module

4.3 Bot Update 18

4.3 Bot Update

Once persisted in the victim’s system, Panda is able to update the malware executable by
its own. In the usual case, Panda therefore downloads the new executable to a temporary
file. The file is located in the directory returned by GetTempPathW. The name of the
file is of the form updXXXXXXXX.exe where XXXXXXXX is the hexadecimal representation
of a 4-byte random number. After writing the file and applying the PeSettings to the
Extended File Attributes, the ”update” is executed using CreateProcessW with -f as an
argument flag. This triggers the ”update” functionality of the bot so that all necessary
settings are copied over to the new executable.
In the case of having Panda Antivirus present in the system, Panda overwrites the

old malware executable in place and directly copies over the local settings instead of
creating and executing a temporary file.

4.4 Configuration Update

One of the first things Panda does after initializing itself and persisting in the system is
to download a dynamic configuration from the command-and-control server. To do so,
Panda’s base configuration (see section 4.2.1) contains a list of URLs from where to get
the initial dynamic configuration. If the command-and-control server is already taken
down at the time of checking, Panda cannot download a dynamic configuration and fails
to exfiltrate any information. It still hooks all functions and gathers data (keystrokes,
etc) but these information will never leave the system until the bot is able to download
a (new) dynamic configuration.
The download routine for the dynamic configuration uses three different ways to get a

dynamic configuration. First, it tries to get a dynamic configuration file from the URL
provided in url_config in the old dynamic config. Of course, this only works if Panda
already received a dynamic config once. If it did not receive a dynamic config at that
point, it tries to get a configuration file from each of the command-and-control domains
of the base config.
In case Panda is not able to download the dynamic config using the URL from the

url_config field and the fallback command-and-control hosts (the malware allows for 5
failed retries for each of the domains), Panda takes the encrypted data from the reserved
field, decrypts it, and tries to download a dynamic config from one of the URLs of that
data.
If Panda is still not able to get a dynamic config at that point, it uses a domain

generation algorithm to generate a possible hostname. Therefore, it takes the current
system timestamp and modifies it a way that it stays the same for three days (set msec,
sec, minute, hour to zero and subtract (𝑑𝑎𝑦𝑂𝑓𝑀𝑜𝑛𝑡ℎ mod 3) * 𝑠𝑒𝑐𝑠𝑃𝑒𝑟𝐷𝑎𝑦 seconds
from it). Then, Panda takes the built-in RC4 key to initialize a RC4 state and xores the
timestamp onto it (first 8 bytes xor with plain timestamp, second 8 bytes with binary
inverted timestamp) and calculates the SHA256 sum of the RC4 state. The result is
then converted to a hex string and is used as the first part of the generated domain. The

4.4 Configuration Update 19

second part of the domain is one of the domain suffixes from the base config and looks
like ”XX.tld/filename.ext” for the sample I analyzed. But the suffix can change and is
not bound to any special requirements except for that it needs to make a valid domain
from the generated name.

5 Payload and Persistence

5.1 Persistence

As part of the initialization procedure, Panda tries to persist in the following manner:
First, it finds a suitable folder for the malware executable to reside in. In our case, it
chose %APPDATA%\Sun\Java. It then moved the malware executable from the desktop
to that folder and renamed it to Desktop (Create Shortcut).exe. Panda also creates
three extra files with random file extensions which will be later used to temporarily store
data. After moving the malware executable to the new folder, Panda adds a new value
to the HKCU\Software\Microsoft\Windows\CurrentVersion\Run registry key.This en-
sures that the malware is executed each time the infected user logs into the system.
Additionally, it writes the initial PeSettings to Desktop (Create Shortcut).exe (see
section 4.2.2).

5.2 HTTP Grabber and Injector

Since Panda is a banking trojan, its main purpose is to steal money from a victim’s
bank account and to grab login credentials for the bank accounts (and possibly other
web services) wherever possible. A crucial part of its activity therefore is to intercept
the web traffic of the victim’s web browser(s) and to manipulate the content of the web
page that is displayed in the browser. In order to achieve these goals Panda uses process
injection (section 5.3) and API hooking (section 5.4). To know which web pages should
be manipulated, Panda receives a list of URL masks and corresponding inject data. The
inject data consist of the actual inject (script inclusion from attacker-controlled web
server) and a description of the position where the inject has to be placed in the website.
The included script is actually only a loader that loads the second stage of the inject
which then communicates with the Panda web backend and does further modifications
to the web page.
But there is a problem: today’s web browser implement a feature called content-

security policy. With (one of) the CSP header(s) sent by the web server, a website
owner can tell the browser in detail, from where to load e.g. additional JavaScript code.
Correctly configured, this hinders Panda to retrieve the second stage loader because it
is loaded from a different web server. But since Panda is a man-in-the-browser malware,
it can remove those headers from the server response and the browser will retrieve the
loader.
Additionally, Panda removes the TE and If-Modified-Since headers from the request

if the hijacked process is either Firefox or Chrome. This has two implications: web

5.2 HTTP Grabber and Injector 21

servers will never send responses that have another transfer encoding than chunked (or
no transfer encoding at all) and the server will always send a response that contains a
HTTP response body. If Panda would not remove the If-Modified-Since header, a
web server might send a response with a 304 status code and no response body content.
Usually, this instructs the browser to use a cached version of the web page because the
page content did not change since the last request (the time of the last request is specified
in the If-Modified-Since header field). But since Panda intercepts web traffic between
the raw socket and the handling of the browser, it cannot inject the malicious code into
the response body because the web server never sent some. So, Panda must ensure that
the web server sends a response body to be able to execute its injects. This can be
achieved by removing the If-Modified-Since header and thereby simulating a fresh
request to the web server.
Another thing Panda needs to take care of is Accept-Encodings. If the web server

sends encoded data (e.g. gzip’ed), Panda will need to decode it to be able to analyze
the response and maybe inject code. To avoid this, Panda simply changes (or adds) the
Accept-Encoding request header to contain only identity which tells the web server to
only send plain responses without any encoding at all.
Since Panda uses URL masks to detect which pages it should inject code into, it might

happen that the masks match pages that do not contain valid HTML data (e.g. pictures,
documents). In order to avoid those files, Panda checks the server response for specific
Content-Types. Only if a valid content type is specified in the response header Panda
tries to find injection points in the data. Valid content types are:

∙ text/

∙ application/x-javascript

∙ application/javascript

∙ application/xml

∙ application/xhtml+xml

∙ application/octet-stream

∙ application/json

Panda does not only inject data into web pages, it already grabs data at that point. If
Panda finds any Authentication headers in the request, it checks for basic authentication
and extracts username and password from it and adds it to the report. Additionally,
Panda can extract all request data from GET and POST requests and reports them to the
command-and-control server.
For a more detailed analysis on how the actual webinjects work and what the com-

munication with the ATS looks like, please see our blogposts by Manuel Körber-Bilgard
and Karsten Tellmann1 2

1https://cyber.wtf/2017/02/03/zeus-panda-webinjects-a-case-study/
2https://cyber.wtf/2017/03/13/zeus-panda-webinjects-dont-trust-your-eyes/

5.3 Process Injection 22

5.3 Process Injection

To apply its hooks, Panda needs to be part of each specific process space it wants to
hook the functions in. In order to inject itself into the right process, Panda checks if the
current targeted process fulfills some requirements:

∙ targeted process id ̸= current process id (→ avoid injecting into its own process)

∙ targeted process owner = current process owner (→ avoid permission violation)

∙ the targeted process name must be one of: firefox.exe, chrome.exe, iexplore.exe,
panda.exe, MicrosoftEdge.exe, or MicrosoftEdgeCP.exe

If all of those requirements are given, Panda injects itself into the process. This is
done by allocating a virtual memory buffer of sufficient size in the target process using
VirtualAllocEx. It then needs to relocate the copied binary because the old module
base is most probably not the same it is in the remote one. If the relocation succeeded,
Panda writes itself into that freshly allocated memory section. Afterwards, Panda copies
over run-time data that has been modified by the infecting process during initialization
and which is needed by the injected code.
After Panda successfully wrote all data into the address space of the targeted process,

it creates a thread in this process. The thread continues to install the hooks and all
execute all other necessary functions.

5.4 API Hooking Technique

As described in sections 5.5.1, 5.5.2, 5.5.3, and 5.5.4, Panda uses a hot-patch like function
overriding method to hook its desired functions. Therefore, Panda overwrites the first 5
bytes of the function to contain a jump to its hook function. Because Panda needs to call
the original function after doing its work in the hook function, it saves the overwritten
instructions in a temporary buffer. For this purpose Panda has a built-in instruction
length decoder. It then redirects the internal function resolver cache to point to that
area (a so-called trampoline). Probably Panda does this to prevent an infinite recursion
when the hook calls the hooked function. Interestingly, Panda searches it’s own IAT for
hooked functions. However, as Panda has replaced importing through the IAT with the
import resolver function (for most functions including all hooked functions) this has no
purpose.

5.5 Hooks and Browser Manipulation

After Panda successfully injected into its target processses (see section 5.3), it starts
hooking all necessary functions to provide banking trojan capabillities. The detailed
technique is described in section 5.4 so this section focuses on the individual browser
and how Panda implements its malicious activities.

5.5 Hooks and Browser Manipulation 23

Figure 5.1: Flowgraph of the process infection thread.

5.5.1 Internet Explorer

Since Internet Explorer is a browser made by Microsoft, it vastly depends on functions
from the Windows API and has no dependencies on third-party DLLs that need to be
considered when hooking Internet Explorer. The actual hooks are done by overwriting
some bytes in the function prologue (see section 5.4). The list of functions hooked by
Panda is as follows:

∙ wininet!HttpSendRequestW

∙ wininet!HttpSendRequestA

∙ wininet!HttpSendRequestExW

∙ wininet!HttpSendRequestExA

∙ wininet!InternetReadFile

∙ wininet!InternetReadFileExW

∙ wininet!InternetReadFileExA

5.5 Hooks and Browser Manipulation 24

∙ wininet!InternetQueryDataAvailabe

∙ wininet!InternetCloseHandle

∙ wininet!HttpOpenRequestW

∙ wininet!HttpOpenRequestA

∙ wininet!HttpQueryInfoA

∙ wininet!InternetConnectW

∙ wininet!InternetConnectA

∙ wininet!InternetWriteFile

Additionally, Panda disables the phishing filter to avoid triggering it with the web injects,
through modifying the following registry keys:

∙ HKCU\Software\Microsoft\Internet Explorer\PhishingFilter\Enabled

∙ HKCU\Software\Microsoft\Internet Explorer\PhishingFilter\EnabledV8

∙ HKCU\Software\Microsoft\Internet Explorer\PhishingFilter\EnabledV9

And it sets several internet zone policies to allow in order to get access to cookies and
enable cross site script includes:

∙ URLACTION_CROSS_DOMAIN_DATA

∙ URLACTION_HTML_MIXED_CONTENT

∙ URLACTION_COOKIES

∙ URLACTION_COOKIES_ENABLED

∙ URLACTION_COOKIES_SESSION

∙ URLACTION_COOKIES_THIRD_PARTY

∙ URLACTION_COOKIES_SESSION_THIRD_PARTY

And finally it disables the “bad certificate” warning by modifying the registry key
HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\WarnonBadCertRecving

5.5 Hooks and Browser Manipulation 25

5.5.2 Mozilla Firefox

As described in section 5.5.3, Firefox uses a dynamically linked NSPR4.dll. This lowers
the bounds for the malware to hook all necessary functions. Panda hooks the functions
PR_Close, PR_Read, PR_Write, and PR_Poll by overwriting some bytes in the function
prologue like it does for all Windows API hooks (see section 5.4).
Similarly to Internet Explorer, Panda modifies the user preferences the better fit the

needs of the malware. In the case of Firefox, it walks through the profiles directory of
Firefox’s settings directory (%APPDATA%\Mozilla\Firefox) and sets the following user
preferences to false:

∙ privacy.clearOnShutdown.cookies

∙ security.warn_viewing_mixed

∙ security.warn_viewing_mixed.show_once

∙ security.warn_submit_insecure

∙ security.warn_submit_insecure.show_once

∙ security.warn_entering_secure

∙ security.warn_entering_weak

∙ security.warn_leaving_secure

∙ network.http.spdy.enabled

∙ network.http.spdy.enabled.v2

∙ network.http.spdy.enabled.v3

5.5.3 Google Chrome

Hooking Google’s Chrome browser is different compared to Firefox or Internet Explorer,
because Chrome uses functions from both the Windows API and Mozilla’s NSPR4 li-
brary. The Windows API functions are as described in section 5.4. The difference
between hooking Firefox and Chrome is that Chrome has a statically linked nspr4.dll

instead of a dynamically linked one like Firefox has. Unfortunately, this has the conse-
quence that one is not able to use GetProcAddress to get the address of the function and
to overwrite some bytes at that address. However, Chrome internally uses a global struct
of function pointers pointing to the actual functions. A pointer to this struct is shipped
with each connection that is made by the browser. Panda tries to find the global struct
and overwrites the function pointers in that specific struct to hook Chrome’s NSPR4
functions. The list of hooked functions (including Window API function) is as follows:

∙ PR_Write (NSPR4 overwrite)

5.6 Plug-in ability 26

∙ PR_Read (NSPR4 overwrite)

∙ PR_Close (NSPR4 overwrite)

∙ closesocket (WinAPI-Hook)

∙ WSARecv (WinAPI-Hook)

∙ WSASend (WinAPI-Hook)

∙ recv (WinAPI-Hook)

5.5.4 User Functions

In addition to the MITB hooks, Panda can also take screenshots, logs keyboard input,
and watches for clipboard pastes.
To be able to log keyboard input, Panda hooks TranslateMessage for each process

it is injected into. It then checks each windows message for WM_KEYDOWN and logs the
(unicode) character representation of the pressed key. Additionally, Panda listens for
WM_MOUSEBUTTONDOWN events and triggers a screenshot for each of the next 100 mouse
clicks if a corresponding webfilter was triggered previously (see section 5.7 for a descrip-
tion of the webfilters).
Additionally, Panda hooks GetClipboardData. Hooking this specific function allows

the malware authors to capture passwords that are not typed by the user but instead
are pasted into the form fields in the browser (e. g. because the passwords are saved in
a file on disk or because the user uses a password manager).

5.6 Plug-in ability

The Panda malware has the ability to dynamically load malware modules from web
resources and to execute them in-place. This makes Panda a very flexible malware that
can be retrofitted for other purposes.
Technically, they re-implemented LoadLibrary without the need of having the actual

library on disk. First, the malware allocates enough space for the loaded DLL in the
virtual memory of its process using VirtualAlloc. Afterwards, Panda section-wise
copies the DLL into the previously allocated block of memory. Because DLLs are position
independent, the third step is to relocate the sections. To achieve that, Panda walks
through the relocation table (.reloc section) and resolves the required relocations by
applying the base of the corresponding section to it. Panda also needs to resolve the
imports of the module. The list of imports can be shortly described as a "what-where"
list. For each of the entries in the list, Panda uses LoadLibrary and GetProcAddress to
resolve the address of the imported function and writes it to the corresponding entry in
the list. Finally, it calls the DllMain function of the loaded library to hand over control
to the initialization function of the DLL.
Panda uses this technique to dynamically load its HttpGrabber, Socks proxy, and

VNC server modules into the current process space.

5.7 Webfilters 27

5.7 Webfilters

Panda implements a feature that is called “webfilters” by the malware authors. Although,
“filters” is not the correct term frommy point of view. Consider !http://*microsoft.com*
as an example for such a webfilter. The first character obviously does not belong to the
actual URL although it should be clear that the exclamation mark stands for something
like “not”. The position of the exclamation mark can be called “action” and is followed
by the actual URL which can contain asterisks as placeholders for “any characters”. The
full list of actions is as follows:

P
report request content if request type is POST

ˆ
block access to website and report the request content

| (pipe symbol)
during my analysis I was not yet able to determine what this is used for

@
takes a screenshot (500x500 pixels) on each of the next 100 mouse clicks (at max)

!
don’t write a report or analyze the data

#
takes a screenshot (fullscreen) on each of the next 100 mouse clicks (at max)

%
trigger the start of the VNC module (if not already started)

&
trigger the start of the socks proxy module (if not already started)

5.8 Remote Script

In addition to the automatic information gathering, Panda provides a script-like interface
where it can take several commands and performs actions on the victim’s PC accordingly.
Unfortunately, the script commands are hashed using CRC32 before comparing to the
list of handlers so that we were not able to tell the names of the commands. But
nevertheless we were able to determine the purpose of the commands by looking at their
respective handlers. The possible actions the remote script can trigger, are:

set shutdown flag
shutdown PC after the script finished

set maintenance shutdown flag
shutdown PC in “minor maintenance” mode

5.8 Remote Script 28

uninstall
removes the bot from the PC

update bot
(force) updates the binary executable of the bot

update config
(force) updates the bot’s dynamic configuration

block or unblock webinjects
allows for disabling or enabling certain webinjects

list files matching a given path pattern
searches the local file system for all files matching the pattern and adds the list to
the report

read files matching a given path pattern
searches the local file system for all files matching the pattern and adds the content
of the files to the report

remove a local file
deletes a file from the local file system

execute remote file
downloads and executes an arbitrary file

block or unblock a given URL
allows for blocking or unblocking a given URL so that the user can (or cannot)
open the page in the browser

enable HttpGrabber features
grab passwords, forms, certificates, cookies (1+2), delete cookies (1+2), softlist,
delete cache

start VNC module
(force) starts the VNC module

start VNC module and set a flag in the local settings
(force) start the VNC module and sets the appropriate flag in the local settings

start socks module
(force) starts the Socks proxy module

start socks module and set a flag in the local settings
(force) starts the Socks proxy module and sets the approriate flag in the local
settings

5.9 System Report 29

5.9 System Report

Each time Panda communicates with the command-and-control server, it sends status
information about the bot back to the command-and-control server. The exact informa-
tion depend on the type of the message sent to the server. But there are five groups of
information that can be sent:

SYSINFO_TIME

∙ current system time (UTC)

SYSINFO_USER

∙ the name of the process executable where the control process resides in

∙ the current system user

SYSINFO_BOTVERSION

∙ bot ID

∙ the botnet the client is part of

∙ the version of the bot

SYSINFO_OS

∙ system version (e. g. 6.1 for Windows 7)

∙ service pack number

∙ build id

∙ architecture (32/64 bit)

∙ server edition?

∙ default ui language

SYSINFO_MISC

∙ network latency

∙ localized time

∙ computer name

∙ installed antivirus, antispyware, and firewall products

6 Conclusion

Panda must be considered to be among the more advanced types of malware. The code
basis is large and sports a number of features not found in less sophisticated malware.
These features include extensive anti-analysis code and an advanced hooking framework
in which Panda brings, among other things, its own instruction length decoder. The
code seems to be mature and the quality of the code appears to be above the average
for malware.
The main purpose of Panda is to serve as a bankning trojan. Therefore its author

equipped the malware with sophisticated capabilities and supports all major browsers
in the Windows ecosystem. However, Panda shows significant flexibility allowing it to
be used for other malicous purposes. For example, Panda implements a modifiable
configuration that can be changed at any time by the attacker. Additionally, Panda is
able to spy on user activity, provides a remotely accessible scripting language, and has
the abillity to load a VNC server and a SOCKS proxy module to provide additional
remote access features to the attacker.
Thus, the Panda trojan family remains a considerable threat even six years after the

Zeus source was made public.

	Introduction
	Overview
	General Information
	Execution Flow

	Anti-Detection and Anti-Reverse-Engineering Techniques
	Malware Startup Checks
	Debug support
	Language checks
	Anti analysis check

	Windows API Imports
	Crypted Strings
	Cryptography
	Random Numbers
	Cryptography
	Hashing

	Configuration
	Bot ID
	Configuration
	Base Config
	Local Config (PeSettings)
	Dynamic Config
	Local Settings

	Bot Update
	Configuration Update

	Payload and Persistence
	Persistence
	HTTP Grabber and Injector
	Process Injection
	API Hooking Technique
	Hooks and Browser Manipulation
	Internet Explorer
	Mozilla Firefox
	Google Chrome
	User Functions

	Plug-in ability
	Webfilters
	Remote Script
	System Report

	Conclusion

