
A SophosLabs technical paper - June 2014

By Gabor Szappanos, Principal Researcher

PlugX –
The Next
Generation

1A SophosLabs technical paper - June 2014

PlugX – The Next Generation

Contents
Overview 2

Deployment 3

Payload 3

Final payload 6

Conclusion 10

Appendix 10

References 11

2A SophosLabs technical paper - June 2014

PlugX – The Next Generation

Overview
The ominous PlugX backdoor has been covered by numerous security blogs in the past1,2. There
were a few variations in the distribution and the deployment of this backdoor, but the end result
was always the same.

Three files are dropped on the infected computer3:

 Ì A clean and digitally signed application, registered for startup as a service in the
registry (e.g., in HKLM\SYSTEM\CurrentControlSet\Services\WS\ImagePath)

 Ì A dynamically linked malicious library, loaded by the above application by DLL
search order hijacking, and serves as the loader of the final payload

 Ì The final payload, loaded by the above library, an encrypted data file

Figure 1. PlugX loading scheme

At the end of 2013, a brand new generation of the PlugX backdoor appeared on the scene. Our
first encounter with it was in a distribution campaign which focused on exploiting the popular
Japanese word processor Ichitaro4, but other researchers observed the new generation from
different campaigns5.

What we didn’t mention in our report back then was that we saw a single sample that broke the
usual scheme described in Figure 1. This one did not use a signed executable for cover, and did
not drop the payload into the infected system as a separate file. Instead, it decrypted and loaded
it into the memory, without hitting the disk. At that point we couldn’t be sure whether it was a
single experiment or a development that was going to be consistently used.

As time passed, we found a handful of other samples that use the very same technique. We
could therefore be sure that it was not just a one-time mistake, and thus, it makes sense to write
about it. As the overall operation of the PlugX backdoor has already been documented in great
detail1,6, in this analysis we focus only on the differences in the new generation.

Gadget.exe
(trusted process)

Sidebar.dll
(loads and jumps in)

Sidebar.dll.doc
(final payload)

3A SophosLabs technical paper - June 2014

PlugX – The Next Generation

Deployment
The malware uses the traditional scheme in the sense that it is distributed in exploited Rich Text
Format Word documents.

Other than that, it is rather widespread in its methods. We have seen the diskless PlugX in the
following scenarios:

 Ì Dropped by an exploited Ichitaro document

 Ì Downloaded by a Word DOCX document exploiting the CVE-2013-3906 vulnerability

 Ì Dropped by an Word Rich Text Format document exploiting CVE-
2012-0158, using a fake ZIP object as storage

The shellcode activated by the exploit decrypts and unpacks the embedded dropper the same
way the earlier variations of the same family2 or closely related cousins7 did.

Payload
The payload is bytewise XOR encrypted and LZNT compressed, but unlike the classic PlugX, the
LCG algorithm is missing on top of it8.

Decompressor shell code

4A SophosLabs technical paper - June 2014

PlugX – The Next Generation

The decompressed content is a sort of DLL file. The magic bytes, marking the start of the
executable header (‘MZ’) and the start of the Portable Executable header (‘PE’) are both
overwritten with ‘XV’. It makes the unpacked image unexecutable for the operating system (and
unsuitable for static analysis). Note that this is only a transient, short-lived form of the payload in
the memory. It is created after unpacking, and will be erased when the loading process is finished
and the execution is transferred to the backdoor code.

Decompressed payload DLL

Fixing the missing marker bytes, it makes proper looking PE files (though a bit odd as the
sections have no names).

Decompressed and fixed payload DLL

5A SophosLabs technical paper - June 2014

PlugX – The Next Generation

The lack of the markers and inability of the OS loading the DLL does not bother the malware
loader. It does the PE loading by itself, including the following operations:

 Ì Allocates the memory areas for the PE section, sets the access
rights for the regions and copies the section content there

 Ì Performs the relocation of the absolute data offsets—an
action needed for dynamically linked libraries

 Ì Resolves the required API function addresses from the import table

It then overwrites the beginning of the file (including the PE header) with zeros. As a result, the
dumped executable will be very difficult to analyze. (This step existed in older PlugX variants
as well, but then it was done by the payload DLL itself during its bootload process.) Finally, the
loader jumps to the entry point of the payload file and executes it.

This is already a deflection from the classic scheme, where the beginning of the unpacked PE
image was overwritten with the ‘GULP’ marker.

Classis PlugX DLL memory image

6A SophosLabs technical paper - June 2014

PlugX – The Next Generation

Final payload
The final payload is a backdoor that connects to a remote server.

The backdoor collects system information and sends it to the command and control server. This
information includes:

 Ì Computer name

 Ì Username

 Ì CPU

 Ì User token

 Ì User group

 Ì Total/free memory

 Ì OS version

 Ì System time

Functionalities are implemented in plugins, which are registered the following way in the classic
version:

seg000:00951C8C 8B 00 mov eax, [eax]

seg000:00951C8E 56 push esi

seg000:00951C8F 68 10 53 96 00 push offset aScreen ; “Screen”

seg000:00951C94 68 F0 1C 95 00 push offset Screen

seg000:00951C99 68 20 02 12 20 push 20120220h

seg000:00951C9E 6A 08 push 8

seg000:00951CA0 6A FF push 0FFFFFFFFh

seg000:00951CA2 FF D0 call eax

This registration call connects the plugin name with the implementing function. In the case
above, the Screen() function implements the screenshot capture functionality. This functionality
is performed by a couple of subfunctions, and the Screen() procedure performs the registration
of these subfunctions.

7A SophosLabs technical paper - June 2014

PlugX – The Next Generation

Using the information about the plugin names, it was possible to compile a table that contains
the functionality implemented by each plugin.

Function name Functionaity

Disk Get drive information (type, free space)

Enumerate files

Create directory

Create/modify file

Copy/delete/move/rename files

Execute files

KeyLog Log keystrokes to file %ALLUSERSPROFILE%\
SxS\NvSmart.hlp

Nethood Enumerate shared network resources

Enumerate Set TCP connection state

Enumerate UDP and TCP connections

Option Lock workstation

Logoff/reboot/shutdown workstation

Display messagebox

PortMap Perform port map

Process Terminate process

Enumerate processes and modules

Get process and module information

RegEdit Enumerate/create/delete registry entries

Screen Capture screenshot

Service Get service information

Change service configuration

Start service

Control service

Delete service

Shell Create remote shell

SQL List SQL drivers

List SQL data sources

Execute SQL command

Telnet Create telnet connection

The above call makes an easily recognizable structure for the backdoor. This was changed with
v2, where the plugin registration call was removed, and the subfunctions are directly registered
from the bootloader code.

The code of the payload shows a very high similarity with the classic PlugX backdoors—at least
at the functionality level. But on the underlying code level, there are many differences. It looks as
if the code was refactored using the specification of the original backdoor. At first, it looked like a
completely different malware family. Further comparison revealed the similarities between the
code of the old and the new PlugX generation.

The most characteristic similarity can be found at the initialization of plugins (public functions
that provide backdoor functionality available to use remotely on an infected computer)1.

8A SophosLabs technical paper - June 2014

PlugX – The Next Generation

Each public plugin can contain one or more internal functions that implement the functionality,
and are started as separate threads. The plugin modules are begun using a function call, pairing
the internal name of the function (bootproc in this case) with the address of the plugin functions.
It then starts the new thread. This call look like this in the classic PlugX variants:

seg000:00941786 6A 00 push 0

seg000:00941788 68 70 18 94 00 push offset bootProc

seg000:0094178D 68 90 46 96 00 push offset aBootproc ; “bootProc”

seg000:00941792 BB 68 BF 96 00 mov ebx, offset hThread

seg000:00941797 E8 44 D7 01 00 call call_CreateThread

The diskless new variants follow much the same scheme, with the minor difference that the
internal plugin names are abbreviated:

seg000:008E16CC 57 push edi

seg000:008E16CD 68 E6 16 8E 00 push offset bootproc

seg000:008E16D2 68 3C 11 8F 00 push offset aBp ; “BP”

seg000:008E16D7 BB 50 83 8F 00 mov ebx, offset hThread

seg000:008E16DC E8 96 A7 00 00 call call_CreateThread

Following that, the subfunctions of the particular plugin are also registered, using a call that
takes a couple of numeric parameters. One of them is the unique numeric ID of the subfunction.
The other looks like a date that is likely to be the date when the particular functionality was
added to the PlugX arsenal.

In the classic PlugX it looks like this:

.text:1000C3C6 C7 06 23 01 12 20 mov dword ptr [esi], 20120123h ; date

added

.text:1000C3CC C7 46 04 04 30 00 00 mov dword ptr [esi+4], 3004h ;

function + subfunction

.text:1000C3D3 C7 46 08 2E 00 00 00 mov dword ptr [esi+8], 2Eh

.text:1000C3DA C7 46 0C 00 00 00 00 mov dword ptr [esi+0Ch], 0

.text:1000C3E1 E8 4A F3 FF FF call sub_1000B730

The new version uses almost exactly the same structure, both in code and parameters, but the
date is modified:

seg000:1000806D C7 06 10 08 13 20 mov dword ptr [esi], 20130810h ; date

added

seg000:10008073 C7 46 04 04 30 00 00 mov dword ptr [esi+4], 3004h ;

function + subfunction

seg000:1000807A C7 46 08 2E 00 00 00 mov dword ptr [esi+8], 2Eh

seg000:10008081 FF 15 14 21 02 10 call ds:dword_10022114

9A SophosLabs technical paper - June 2014

PlugX – The Next Generation

Analyzing a lot of variants that arrived to our lab in 2013, the latest date we could observe was
20120325h. This indicates that nothing much was happening in the PlugX development since
that time. That is, until the next-generation samples started to show up.

Now I have to assume, that a major refactoring went on, and finished at the end of the summer
(10th August), resulting in this new variant. The parameter value was the same in all four of the
diskless PlugX variants.

As it was mentioned, the names of the subfunctions changed in the v2 samples. This is
summarized in the following table, along with the basic functionality of the subfunctions.

Functionality Procedure (6.0 classic) Disk-less set 1 Disk-less set 2

Initialize variables bootProc,DoImpUserProc BP, DIUP BP, DIUP

JoProc, JoProcAccept,
JoProcBroadcast,
JoProcBroadcatRecv,
JoProcListen

JP, JPL, PBB, PBBR, JPA

Injects into services.exe OlProc, OlProcNotify,
OlProcManager

OP, OPM, OPN OP, OPN, OPM

Shellcode to unpack
and install main code
in an injected process

LdrLoadShellCode

Log keystrokes to file KLProc KP KP

Capture screenshot ScreenT1, ScreenT2 ST1, ST2 SC, ST1, ST2

Create remote shell ShellT1, ShellT2

Create a command
shell to establish telnet
connection, relay input/
output with the C&C
server (Telnet)

TelnetT1, TelnetT2 TT1, TT2 TT1, TT2

Create elevated process
and inject code

SiProc

SxWorkProc SWP SWP

PlugProc PP PP

Display Message box RtlMessageBoxProc RMBP

Function sets in PlugX

It’s worth noting that two basic plugin sets were observed, which represents two slightly
different sets of functionalities. This is not a surprise when talking about a backdoor with
modular plugin architecture. These two configurations existed already, among the classic
samples as well as in the next-generation samples.

10A SophosLabs technical paper - June 2014

PlugX – The Next Generation

Conclusion
A year ago, PlugX development seemed to be stuck with only minor facelifts to the code. It
appeared that the focus shifted to affiliate projects like Smoaler7.

Now, it is clear that the development efforts continue and we can’t expect the disappearance of
this general purpose malware family.

Appendix
The following droppers were identified to belong to the diskless PlugX variation:

Dropper SHA1: e6281d74a8d874c5a46ec2c1c9c145aa60a4c886
Distribution method: Ichitaro exploit
C&C server: msn.catalogipdate.com

Dropper SHA1: ce60e8f27031126a680c90a664443f5cd85bb1e8
Distribution method: CVE-2013-3906
C&C server: av4.microsoftsp3.com
Loader SHA1: f0c0975f349f12cdbd39e00b151df07cd82ecf7d

Dropper SHA1: 3710eded0bc5bc5b3bf792834ac21f1452d4bc7b
Distribution method: CVE-2012-0158
C&C server: scqf.bacguarp.com, scqf.zuesinfo.com
Loader SHA1: 19957f4cc33d8676736756f81899a2fbd0586c1e

Dropper SHA1: ac321b556020061fae7bb35a79a692d7509c1bb8
Distribution method: CVE-2012-0158
C&C server: scqf.bacguarp.com, scqf.zuesinfo.com
Loader SHA1: 896f3711c4beca592127ace7615574e2b6024d07

PlugX – The Next Generation

More than 100 million users in 150 countries rely on Sophos as the best protection against complex threats and data loss. Sophos is committed to
providing complete security solutions that are simple to deploy, manage, and use that deliver the industry’s lowest total cost of ownership. Sophos
offers award winning encryption, endpoint security, web, email, mobile, server and network security backed by SophosLabs—a global network of
threat intelligence centers. Read more at www.sophos.com/products.

References
1. http://lastline.com/an-analysis-of-Plugx.php

2. http://nakedsecurity.sophos.com/2013/05/20/inside-the-Plugx-malware-
with-sophoslabs-a-fascinating-journey-into-a-malware-factory/

3. http://nakedsecurity.sophos.com/2013/02/27/targeted-attack-nvidia-digital-signature/

4. http://nakedsecurity.sophos.com/2013/12/04/new-Plugx-
malware-variant-takes-aim-at-japan/

5. http://blog.cassidiancybersecurity.com/post/2014/01/Plugx-v2%3A-meet-SController

6. https://www.circl.lu/files/tr-12/tr-12-circl-Plugx-analysis-v1.pdf

7. http://nakedsecurity.sophos.com/2013/07/15/the-Plugx-
malware-factory-revisited-introducing-smoaler

8. http://www.contextis.com/files/Plugx_-_Payload_Extraction_March_2013_1.pdf

United Kingdom and Worldwide Sales
Tel: +44 (0)8447 671131
Email: sales@sophos.com

North American Sales
Toll Free: 1-866-866-2802
Email: nasales@sophos.com

Australia and New Zealand Sales
Tel: +61 2 9409 9100
Email: sales@sophos.com.au

Asia Sales
Tel: +65 62244168
Email: salesasia@sophos.com

Oxford, UK | Boston, USA
© Copyright 2014. Sophos Ltd. All rights reserved.
Registered in England and Wales No. 2096520, The Pentagon, Abingdon Science Park, Abingdon, OX14 3YP, UK
Sophos is the registered trademark of Sophos Ltd. All other product and company names mentioned are
trademarks or registered trademarks of their respective owners.

1180-06.14DD.tpna.simple

http://www.sophos.com/products
http://lastline.com/an-analysis-of-plugx.php
http://nakedsecurity.sophos.com/2013/05/20/inside-the-plugx-malware-with-sophoslabs-a-fascinating-jo
http://nakedsecurity.sophos.com/2013/05/20/inside-the-plugx-malware-with-sophoslabs-a-fascinating-jo
http://nakedsecurity.sophos.com/2013/05/20/inside-the-plugx-malware-with-sophoslabs-a-fascinating-jo
http://nakedsecurity.sophos.com/2013/05/20/inside-the-plugx-malware-with-sophoslabs-a-fascinating-jo
http://nakedsecurity.sophos.com/2013/05/20/inside-the-plugx-malware-with-sophoslabs-a-fascinating-jo
http://nakedsecurity.sophos.com/2013/05/20/inside-the-plugx-malware-with-sophoslabs-a-fascinating-jo
http://nakedsecurity.sophos.com/2013/05/20/inside-the-plugx-malware-with-sophoslabs-a-fascinating-jo
http://nakedsecurity.sophos.com/2013/07/15/the-plugx-malware-factory-revisited-introducing-smoaler
http://nakedsecurity.sophos.com/2013/07/15/the-plugx-malware-factory-revisited-introducing-smoaler

	Overview
	Deployment
	Payload
	Final payload
	Conclusion
	Appendix
	References

