
Rope: Bypassing Behavioral Detection
of Malware with Distributed

ROP-Driven Execution
Daniele Cono D’Elia, Lorenzo Invidia

#BHUSA @BlackHatEvents

WHO ARE WE

Post-doc @ Sapienza

@dcdelia

Software and systems security

A few Black Hat talks on malware

MSc graduate @ Sapienza

Windows internals and reversing

@mattless_

MALWARE DETECTION

Flag untrusted software as malicious on end machines

AV/EDR solutions rely on behavioral analyses to forestall new
threats. What are the limits of current approaches?

Workflow
• monitor execution units
• match actions against «dynamic» signatures
• raise an alert

IN THIS TALK

WHAT WE DID

ROPE CONCEPT

PROTOTYPE (+ NEW BYPASSES)

OUTLOOK

RESULTS

BEHAVIORAL 101

Approach
• attempt initial controlled execution
• monitor once running unleashed

HOW? -> user-space hooks, mini-filters

WHO? -> process (w/ children)

DISTRIBUTED MALWARE

IDEA
• dilute temporal and spatial footprint
• multiple cooperating entities

• and no single entity alerts AV/EDRs!

DISTRIBUTED MALWARE

Create ad-hoc processes?
✗ very high number required

✗ correlation is easy

Abuse existing processes?
✗ injecting code is noisy

✗ conspicuous regions

HARDENING MITIGATIONS

WINDOWS DEFENDER EXPLOIT GUARD

• Arbitrary Code Guard (ACG)
• Code Integrity Guard (CIG)
• Export & Import Address Filtering (EAF, IAF)
• and more...

Windows now offers means for applications to
«reduce the attack surface against next-generation malware»

DESIRED PROPERTIES

✓ flexible delivery of payload

✓ small footprint of distributed runtime

✓ comply with hardening mitigations

✓ keep code and data hidden as much as possible

WHAT WE DID

Victim1

Victim2

Payload

= Gadget1
..

GadgetN1

Gadget1
..

GadgetN2

Gadget1
..

GadgetN3

Chunk1 Chunk2 Chunk3

ROP-TxF

Chunk1

Chunk2

Chunk3

AV/EDR

IoCs

WDEG
mitigations

Loader
component Bootstrap

component

Program data
(global, heap)

Rope Header

WHAT WE DID

ROPE: distributed,
ROP-driven Execution

Key #1: Return-Oriented
Programming
• encode distributed payload
• get around WDEG mitigations

Key #2: Transactional NTFS
• non-inspectable covert channel
• payload sharing + communications

DESIGN OF ROPE

Goals
• encode distributed payload
• get around WDEG mitigations

With code reuse we avoid any RWX memory! We borrow ROP
gadgets from a shared library that all victims have loaded...

DESIGN OF ROPE

Goals
• non-inspectable covert channel
• payload sharing + communications

Thanks to TxF, only processes with the TxF handle can see the
transient contents of the shared file. And ROP code is data!

Victim1

Victim2

Payload

= Gadget1
..

GadgetN1

Gadget1
..

GadgetN2

Gadget1
..

GadgetN3

Chunk1 Chunk2 Chunk3

ROP-TxF

Chunk1

Chunk2

Chunk3

AV/EDR

IoCs

WDEG
mitigations

Loader
component Bootstrap

component

Program data
(global, heap)

Rope Header

ROPE: LOADER

TASKS
• pick victim processes
• create ROP-TxF on some file
• clear it, then fill with chains & metadata
• duplicate TxF handle for victims
• inject bootstrap component

Victim1

Victim2

Payload

= Gadget1
..

GadgetN1

Gadget1
..

GadgetN2

Gadget1
..

GadgetN3

Chunk1 Chunk2 Chunk3

ROP-TxF

Chunk1

Chunk2

Chunk3

AV/EDR

IoCs

WDEG
mitigations

Loader
component Bootstrap

component

Program data
(global, heap)

Rope Header

ROPE: BOOTSTRAP

Victim1

Victim2

Payload

= Gadget1
..

GadgetN1

Gadget1
..

GadgetN2

Gadget1
..

GadgetN3

Chunk1 Chunk2 Chunk3

ROP-TxF

Chunk1

Chunk2

Chunk3

AV/EDR

IoCs

WDEG
mitigations

Loader
component Bootstrap

component

Program data
(global, heap)

Rope Header

TASKS
• make victim load ROP-TxF
• schedule execution of ROP code
• solve needed APIs covertly
• coordinate with other victims (if needed)

ROPE: ROP-TXF

Victim1

Victim2

Payload

= Gadget1
..

GadgetN1

Gadget1
..

GadgetN2

Gadget1
..

GadgetN3

Chunk1 Chunk2 Chunk3

ROP-TxF

Chunk1

Chunk2

Chunk3

AV/EDR

IoCs

WDEG
mitigations

Loader
component Bootstrap

component

Program data
(global, heap)

Rope Header

STRUCTURE & CONTENTS

• ROP payload arranged in chunks
• a victim executes one or more chunks
• ROP-TxF hosts:

Ø chunks + program memory
Ø metadata for runtime (e.g., APIs, handles)

ROPE: EXECUTION

Mode 1: continuous
• any victim can execute any chunk
• Rope brings explicit coordination for chunks

Mode 2: staged
• sequences of chunks run by specific victims
• coordination may be also external

ADVANTAGES OF ROPE

✓ no need to allocate/modify executable memory

✓ in-memory inspection harder for AV/EDRs (ROP adds indirection)

✓ single shared medium for code and data

✓ compliance with ACG & CIG

CHALLENGES

❏ inject the bootstrap component

❏ find suitable gadget source

❏ comply with ROP mitigations

❏ encode the payload

❏ look up APIs in hardened victim

CHALLENGES

❏ inject the bootstrap component (bypass #1)

❏ find suitable gadget source

❏ comply with ROP mitigations

❏ encode the payload

❏ look up APIs in hardened victim (bypass #2)

INJECTION STAGE

We have to deliver the bootstrap component to victims

And Rope also needs a shared source of gadgets...

Restrictions
• can only use/load signed modules
• cannot use RWX memory
• Rope runtime should not spook AV/EDRs

PHANTOM DLL HOLLOWING

HANDLE hSection, hFile, hTransaction;

NtCreateTransaction(&hTransaction)

hFile = CreateFileTransactedW(dllPath, ..., hTransaction)

< parse file for suitable insertion region >

WriteFile(hFile);

NtCreateSection(&hSection, ..., SEC_IMAGE, hFile);

NtMapViewOfSection(hSection, hVictimProcess, ...); Alerts AV/EDRs!

PHANTOM DLL HOLLOWING

0xC0000428
(STATUS_INVALID_IMAGE_HASH) for
NtCreateSection when CIG enabled...

BYPASS #1: ACG/CIG

1. create DLL-TxF with a Windows DLL
2. create Section on it
3. duplicate TxF-ed Section for victims
4. inject ROP chain on victim’s stack

Ø map view of Section handle
Ø yield control to desired address

BYPASS #1: ACG/CIG

THE ROP CHAIN

• host CONTEXT for resuming victim’s activities
• set up arguments for NtMapViewOfSection
• add RVA of entrypoint to base address from loading
• run the desired code
• upon return, call NtContinue with CONTEXT

INJECTION STAGE

The bypass just brought multiple advantages:
✓ we can add gadgets to DLL-TxF

✓ bootstrap component in DLL-TxF (as ROP chain or shellcode)

✓ victim will spawn payload with own means (no remote threads)

Rope can work with other injection primitives. Our bypass
just offers an implementation shortcut...

CHALLENGES

✓ inject the bootstrap component (bypass #1)

✓ find suitable gadget source

❏ comply with ROP mitigations

❏ encode the payload

❏ look up APIs in hardened victim (bypass #2)

ROP MITIGATIONS

Rope chunks use standard means against WDEG
Ø StackPivot => make API calls from native stack

Ø CallerCheck & SimExec (32-bit)
§ gadgets that break analyses (Németh’15, Borrello’19)

§ Rite of Passage (Yair @ DEF CON 27)

§ issue calls from shellcode

As for the injection, WDEG ignores NtMapViewOfSection...

ROP ENCODING

Some automation?
✗ manual writing doesn’t scale
✗ ROP tools meant for exploits

Victim1

Victim2

Payload

= Gadget1
..

GadgetN1

Gadget1
..

GadgetN2

Gadget1
..

GadgetN3

Chunk1 Chunk2 Chunk3

ROP-TxF

Chunk1

Chunk2

Chunk3

AV/EDR

IoCs

WDEG
mitigations

Loader
component Bootstrap

component

Program data
(global, heap)

Rope Header

ROP ENCODING

Some automation!
1. promote stack variables to globals
2. globals as fields of a single struct
3. MSVC with optimization/canaries off

Output resembles a shellcode. Delimit
chunks as basic blocks, look up gadgets,
produce a chain skeleton...

Future work: use raindrop (DSN’21) for fully automated ROP binary rewriting
(«Hiding in the particles: When return-oriented programming meets program obfuscation»)

Victim1

Victim2

Payload

= Gadget1
..

GadgetN1

Gadget1
..

GadgetN2

Gadget1
..

GadgetN3

Chunk1 Chunk2 Chunk3

ROP-TxF

Chunk1

Chunk2

Chunk3

AV/EDR

IoCs

WDEG
mitigations

Loader
component Bootstrap

component

Program data
(global, heap)

Rope Header

CHALLENGES

✓ inject the bootstrap component (bypass #1)

✓ find suitable gadget source

✓ comply with ROP mitigations

✓ encode the payload

❏ look up APIs in hardened victim (bypass #2)

API LOOKUP

Locate APIs needed for boostrap & chunks
Ø GetProcAddress spooks AV/EDRs

Ø as imports of Rope loader would be suspicious

Ø manual search conflicts with WDEG defenses
q Export Address Filtering

q Import Address Filtering

EAF/IAF POLICY

EAF and IAF implement a simple policy:
Ø monitor Export/Import Address Table of PE modules

Ø guard page handler shepherds offending access

Ø allowed if instruction is from legit module...

// 8b 00 mov eax, dword ptr [eax]
// c3 ret

BYPASS #2: EAF/IAF

1. Locate .text of any loaded Windows DLL

2. Find gadget to make an arbitrary read

3. Adapt your GetProcAddress-like code
Ø list of loaded PE modules is not guarded by EAF/IAF

Ø wrap accesses to guarded regions so as to use the
gadget when dereferencing memory

Legit module
to WDEG

We may also use JOP gadgets, or a write gadget for IAT hijacking...

kernel32.dll

BYPASS #2: EAF/IAF

DWORD readp(LPBYTE target, DWORD GADGET_read){
DWORD res = NULL;
__asm { mov eax, target ;

call GADGET_read ;
mov res, eax ; }

return res;
}

PDWORD pNames = (PDWORD)((LPBYTE)hModule + readp((LPBYTE)pExportDirectory +
FIELD_OFFSET(IMAGE_EXPORT_DIRECTORY, AddressOfNames), GADGET_read));

Legit module
to WDEG

EVALUATION

SETUP
• ACG, CIG, EAF, IAF, ROP mitigations + OS defaults
• victim applications running with medium integrity level
• write in Rope payloads that alert AV/EDRs when run standalone
• compare with D-TIME (WOOT’19)

We evaluated Rope on 10 commercial solutions (6 AVs, 4 EDRs)

EVALUATION

DETAILS OF SETUP
• WDEG mitigations: audit mode, different combinations (incompatibilities)
• two victims (from: Chrome, Skype, Telegram, Dropbox, Reader DC, ...)
• one PoC payload per execution mode

Ø Mode 1: modify registry for persistence / play with bcdedit
Ø Mode 2: download PS script, make another victim execute it

We evaluated Rope on 10 commercial solutions (6 AVs, 4 EDRs)

EVALUATION

RESULTS
✓ no WDEG mitigation triggered
✓ Rope completely deceived 8 out of 10 products

Ø two products block OpenProcess (Access Denied)
and provide rogue outputs also to DuplicateHandle
=> not a real detection, may be evaded...

✗ D-TIME detected by 7 products

We evaluated Rope on 10 commercial solutions (6 AVs, 4 EDRs)

AFTERMATH

Rope looked like a blind-side hit to AV/EDRs

Evading user-mode API hooks useful only for injection
(unnecessary for 7 products, 1 deceived with WOW64 APIs)

EAF/IAF promising but gullible

OPPORTUNITIES

The architecture of Rope is extensible
Ø other code reuse flavors

Ø other covert medium than TxF

Ø other self-dispatch methods
(e.g., APC, IAT hijacking)

Ø fileless paradigms

We may need defenses that see Rope & distributed malware as a whole....

DEFENSES

(we followed a responsible disclosure process for our bypasses)

Behavioral analyses that correlate execution units
✗ tracking execution units faces scalability issues

✗ new injection techniques keep appearing

✓ suggestion: follow duplication and sharing of objects

Code reuse-aware analyses for in-memory contents
Ø ROPDissector, ROPMEMU

Reliable means to intercept sensitive APIs

BLACK HAT SOUND BYTES

Distributed malware poses a tough challenge to AV/EDRs

ROP is a Swiss-army knife. Also, it helps in many bypasses

Legit OS features (TxF, handle duplication) need close monitoring

@dcdelia
There is a White Paper available!
(and an upcoming ESORICS’21 paper)

REFERENCES
❏ Rope: Covert multi-process malware execution with return-oriented programming (to

appear in ESORICS 2021)

❏ malWASH: Washing malware to evade dynamic analysis (WOOT 2016)

❏ D-TIME: Distributed threadless independent malware execution for runtime obfuscation
(WOOT 2019)

❏ The Naked Sun: Malicious cooperation between benign-looking processes (ACNS 2020)

❏ ROPInjector: Using return oriented programming for polymorphism and antivirus evasion
(Black Hat USA 2015)

❏ ROPMEMU: A framework for the analysis of complex code-reuse attacks (ASIACCS 2016)

❏ Static analysis of ROP code (EUROSEC 2019)

❏ Hiding in the particles: When return-oriented programming meets program obfuscation
(DSN 2021)

