Code-based Cryptography

Angela Robinson
BRIDGES Conference, June 7, 2022

Motivation

Cryptography sightings

Cryptography sightings

Secure websites are protected using cryptography

- Encryption - confidentiality of messages
- Digital signature - authentication
- Certificates - verify identity

Cryptography sightings

Secure websites are protected using cryptography

- Encryption - confidentiality of messages
- Digital signature - authentication
- Certificates - verify identity

Security is quantified by the resources it takes to break a cryptosystem

- Best known cryptanalysis
- Cost of implementing the cryptanalysis

Cryptography at NIST

Cryptographic Standards

- Hash functions
- Encryption schemes
- Digital signatures

Cryptography at NIST

National Institute of
Standards and Technology
U.S. Department of Commerce

Cryptographic Standards

Example

- Hash functions
- Encryption schemes
- Digital signatures

Present threat

Some current NIST standards are vulnerable to quantum threat.
Peter Shor (1994): polynomial-time quantum algorithm that breaks

- Integer factorization problem (RSA)
- Discrete logarithm problem (Diffie-Hellman Key Exchange, Elliptic Curve DH, ...)
- Impact: a full-scale quantum computer can break today's public key crypto

Options for mitigating the threat

- Stop using public key crypto not practical
- Find quantum-safe public key crypto

NIST POC Standardization effort

Call for public key cryptographic schemes believed to be quantum-resistant (2016)

- Received 80+ submissions (2017)
- Only 15 submissions are still under consideration (2022)
- Code-based algorithms
- Round 2: BIKE, Classic McEliece*, HOC, LEDAcrypt**, NTS-KEM*
- Round 3: BIKE, Classic McEliece, HOC
*merged during Round 2
** broken [APRS2020]

Background

Error-correcting codes

Noisy channels

Messages are sent over various channels (())

- Analog
- Compact disks, DVDs
- Radio
- Telephone
- Digital

Environmental noise can distort or alter the message before it is received

Error-correcting codes

Error-detecting and error-correcting codes are designed to locate and remove noise from messages received over noisy channels

$$
\text { Noisy channel } \longrightarrow u+e
$$

Error-correcting codes

Error-detecting and error-correcting codes are designed to locate and remove noise from messages
received over noisy channels

This is accomplished by adding some extra bits to the message before transmission that will enable error-detection and error-correction

Error-correcting codes

Error-detecting and error-correcting codes are designed to locate and remove noise from messages received over noisy channels

This is accomplished by adding some extra bits to the message before transmission that will enable error-detection and error-correction

Example: Repetition code. Consider message 1001001

Repetition code

Example: Repetition code. Consider message 1001001

```
Noisy channel \longrightarrow 100110110010010001001
```

1. Sender sends 3 copies of the message
2. Receiver decodes by taking most frequent bit for each position

Repetition code

Example: Repetition code. Consider message 1001001

100100110010011001001

Noisy channel

- 100110110010010001001

1. Sender sends 3 copies of the message
2. Receiver decodes by taking most frequent bit for each position 1001101 1001001
0001001

Repetition code

Example: Repetition code. Consider message 1001001

100100110010011001001

Noisy channel
100110110010010001001

1. Sender sends 3 copies of the message
2. Receiver decodes by taking most frequent bit for each position
3. Receiver recovers 1001001

Disadvantages?

Error-correcting codes

Error-detecting and error-correcting codes are designed to locate and remove noise from messages
received over noisy channels
u \qquad Noisy channel $\longrightarrow u+e$

This is accomplished by adding some extra bits to the message before transmission that will enable error-detection and error-correction

Encode u

Decode
Noisy channel

Error-correction

Recover
message
$c \longrightarrow u$

Definitions

Definition: a vector space over a field \mathbb{F} consists of a set V (of vectors) and a set \mathbb{F} (of scalars) along with operations + and \cdot such that

- If $x, y \in V$, then $x+y \in V$
- If $x \in V$ and $\alpha \in \mathbb{F}$, then $\alpha \cdot x \in V$

Definitions

Definition: a vector space over a field \mathbb{F} consists of a set V (of vectors) and a set \mathbb{F} (of scalars) along with operations + and \cdot such that

- If $x, y \in V$, then $x+y \in V$
- If $x \in V$ and $\alpha \in \mathbb{F}$, then $\alpha \cdot x \in V$

Definition: Let V be a vector space. A linearly independent spanning set B for V is called a basis.
Definition: The dimension of a vector space is the cardinality of its bases

Definitions

Definition: a vector space over a field \mathbb{F} consists of a set V (of vectors) and a set \mathbb{F} (of scalars) along with operations + and \cdot such that

- If $x, y \in V$, then $x+y \in V$
- If $x \in V$ and $\alpha \in \mathbb{F}$, then $\alpha \cdot x \in V$

Definition: Let V be a vector space. A linearly independent spanning set B for V is called a basis.
Definition: The dimension of a vector space is the cardinality of its bases

```
Example: \(\mathbb{R}^{3}\) is a vector space, \(B=\left\{\begin{array}{lllllllll}1 & 0 & 0, & 0 & 1 & 0, & 0 & 0 & 1\end{array}\right\}\) is the standard basis for \(\mathbb{R}^{3}\)
    \(\operatorname{dim}\left(\mathbb{R}^{3}\right)=3\).
```


Definitions

\mathbb{F}_{2} - finite field of two elements
denote the additive identity by 0
denote the multiplicative identity by 1
\mathbb{F}_{2}^{n} - vector space over \mathbb{F}_{2}
elements are vectors of length n whose components are from \mathbb{F}_{2}
standard basis: $\left\{\begin{array}{cccccc}1 & 0 & 0 & 0 & \ldots & 0 \\ 0 & 1 & 0 & 0 & \ldots & 0 \\ & & \vdots & & \\ 0 & & 0 & 0 & \ldots & 1\end{array}\right.$
scalars $\{0,1\}$

Binary linear code

Definition: a binary linear code $C(n, k)$ is u

Redundancy
a k-dimensional subspace of \mathbb{F}_{2}^{n}.
The code $C: \mathbb{F}_{2}^{k} \rightarrow \mathbb{F}_{2}^{n}$ maps information vectors to codewords

Binary linear code

Definition: a binary linear code $C(n, k)$ is
a k-dimensional subspace of \mathbb{F}_{2}^{n}.
The code $C: \mathbb{F}_{2}^{k} \rightarrow \mathbb{F}_{2}^{n}$ maps information vectors to codewords

How do we describe a code?

Binary linear code

Definition: a binary linear code $C(n, k)$ is a k-dimensional subspace of \mathbb{F}_{2}^{n}.

The code $C: \mathbb{F}_{2}^{k} \rightarrow \mathbb{F}_{2}^{n}$ maps information vectors to codewords

How do we describe a code?

1. Select a basis of the k-dim vector space $\left\{g_{0}, g_{1}, \ldots, g_{k-1}\right\}$
2. Basis forms a generator matrix $\boldsymbol{G}_{\boldsymbol{k} \times \boldsymbol{n}}$ of the code

Descriptions of a code $C(n, k)$

Two equivalent descriptions of $C(n, k)$

- Generator matrix

Encode u
$u \longrightarrow u G$ is codeword c

- Encoding: multiply \boldsymbol{k}-bit information word \boldsymbol{u} by G
- codewords are x such that there's a solution u to $u G=x$

Descriptions of a code $C(n, k)$

Two equivalent descriptions of $C(n, k)$

- Generator matrix
- Encoding: multiply \boldsymbol{k}-bit information word \boldsymbol{u} by G

Encode u
$u \longrightarrow u G$ is codeword c

- codewords are x such that there's a solution u to $u G=x$
- Parity-check matrix H (dimension $(n-k) x n$)
- $G H^{T}=0$
- codewords are x such that $H x^{T}=0$
- Product of generic n-bit vector with H^{T} is called a syndrome

Descriptions of a code $C(n, k)$

Parity-check matrix H (dimension $(n-k) x n$)

- $G H^{T}=0$
- codewords are x such that $H x^{T}=0$
- Product of generic n-bit vector with H^{T} is called a syndrome

Example: Let H, x_{1}, x_{2} be as follows.

$$
H=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& x_{1}=\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \\
& x_{2}=\left[\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Descriptions of a code $C(n, k)$

Parity-check matrix H (dimension $(n-k) x n$)

- $G H^{T}=0$
- codewords are x such that $H x^{T}=0$
- Product of generic n-bit vector with H^{T} is called a syndrome

Example: Let H, x_{1}, x_{2} be as follows.

$$
H=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& x_{1}=\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \\
& x_{2}=\left[\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

$$
H x_{1}^{T}=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Descriptions of a code $C(n, k)$

Parity-check matrix H (dimension $(n-k) x n$)

- $G H^{T}=0$
- codewords are x such that $H x^{T}=0$
- Product of generic n-bit vector with H^{T} is called a syndrome

Example: Let H, x_{1}, x_{2} be as follows.

$$
H=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right] \quad \begin{aligned}
& x_{1}=\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \\
& x_{2}=\left[\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

$$
H x_{1}^{T}=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad \begin{aligned}
& \text { Syndrome is nonzero, so } x_{1} \text { is not in } \\
& \text { the code defined by } H .
\end{aligned}
$$

Error correction

Definition: A linear (n, k, d)-code C over a finite field \mathbb{F} is a k-dimensional subspace of \mathbb{F}^{n} with minimum distance $d=\min _{x \neq y \epsilon C} \operatorname{dist}(x, y)$, where dist is the Hamming distance.

Error correction

Definition: A linear (n, k, d)-code C over a finite field \mathbb{F} is a k-dimensional subspace of \mathbb{F}^{n} with minimum distance $d=\min _{x \neq y \epsilon C} \operatorname{dist}(x, y)$, where dist is the Hamming distance.

Theorem.
A linear (n, k, d)-code C can correct up to $t=\left\lfloor\frac{d-1}{2}\right\rfloor$ errors.

Please excuse visual imperfections

Visual recap

Generator matrix formed by basis vectors
Code is closed under addition, scalar multiplication

Hard problems

Decoding problems

General Decoding Problem
Given $x \in \mathbb{F}^{n}$, find $c \epsilon C$ such that $\operatorname{dist}(x, c)$ is minimal.

Decoding problems

General Decoding Problem: Given an $[n, k, d]$ linear code $C, t=\left\lfloor\frac{d-1}{2}\right\rfloor$, and a vector $x \in \mathbb{F}^{n}$, find a codeword $c \epsilon C$ such that $\operatorname{dist}(x, c) \leq t$.

Note: If $x=c+e$, and e is a vector with $|e| \leq t$, then x is uniquely determined.

Shown to be NP-complete for general linear codes in 1978 (Berlekamp, McEliece,

Ball of radius t

Please excuse visual imperfections Tilborg) by reducing the three-dimensional matching problem to these problems.

Decoding problems

General Decoding Problem: Given an $[n, k, d]$ linear code $C, t=\left\lfloor\frac{d-1}{2}\right\rfloor$, and a vector $x \in \mathbb{F}^{n}$, find a codeword $c \in C$ such that $\operatorname{dist}(x, c) \leq t$.

Note: Not all codes have a minimum distance d. Rewrite problems in terms of linear (n, k) codes.

Shown to be NP-complete for general linear codes in 1978 (Berlekamp, McEliece,

Ball of radius t

Please excuse visual imperfections

Tilborg) by reducing the three-dimensional matching problem to these problems.

Decoding problems

Let $C(n, k)$ be a linear code over finite field \mathbb{F}.
General decoding problem
Given a vector $\mathrm{x} \in \mathbb{F}^{n}$, a target weight $t>0$, find a codeword $\mathrm{c} \in \mathbb{F}^{n}$ such that $\operatorname{dist}(x, c) \leq t$.

Decoding problems

Let $C(n, k)$ be a linear code over finite field \mathbb{F}.
General decoding problem
Given a vector $\mathrm{x} \in \mathbb{F}^{n}$, a target weight $t>0$,
find a codeword $\mathrm{c} \in \mathbb{F}^{n}$ such that $\operatorname{dist}(x, c) \leq t$.
Syndrome-decoding problem.
Given a parity check matrix $\mathrm{H} \in \mathbb{F}^{(n-k) \times n}$, a syndrome $\mathrm{s} \in \mathbb{F}^{n-k}$, a target weight $t>0$, find a vector e $\in \mathbb{F}^{n}$ such that $w t(e)=t$ and $H \cdot e^{T}=s$
Codeword-finding problem
Given a parity check matrix $\mathrm{H} \in \mathbb{F}^{(n-k) \times n}$ and a target weight $\mathrm{w}>0$
find a vector $\mathrm{e} \in G F_{2}^{n}$ such that $w t(e)=w$ and $H \cdot e^{T}=0$.

Relevance

In general, code-based cryptosystems rely upon this property:

- Encryption (some sort of matrix-vector product) is easy to compute
- Decryption is difficult without the trapdoor (the secret key which enables efficient decoding)

McEliece Cryptosystem

McEliece cryptosystem

First code-based cryptosystem.
Designed by Robert McEliece, presented in 1978.

McEliece cryptosystem

First code-based cryptosystem.
Designed by Robert McEliece, presented in 1978.
Idea: "hide" a message by converting it into a codeword, then add as many errors as the code is capable of correcting
Let $C[n, k, d]$ be a linear code with a fast decoding algorithm that can correct t or fewer errors

- Let G^{\prime} be a generator matrix for C
- Let S be a $k \times k$ invertible matrix
- Let P be an $n \times n$ permutation matrix

McEliece cryptosystem

Let $C[n, k, d]$ be a linear code with a fast decoding algorithm that can correct t or fewer errors

- Let G^{\prime} be a generator matrix for C
- Let S be a $k \times k$ invertible matrix
- Let P be an $n \times n$ permutation matrix

Define public key $G=S G^{\prime} P$ with private key S, G^{\prime}, P

- Encrypt: $m \rightarrow m G+e, w t(e) \leq t$
- Decrypt:

1. Multiply $(m G+e) P^{-1}=m S G^{\prime}+e^{\prime}$

McEliece cryptosystem

Let $C[n, k, d]$ be a linear code with a fast decoding algorithm that can correct t or fewer errors

- Let G^{\prime} be a generator matrix for C
- Let S be a $k \times k$ invertible matrix
- Let P be an $n \times n$ permutation matrix

Define public key $G=S G^{\prime} P$ with private key S, G^{\prime}, P
Encrypt: $m \rightarrow m G+e, w t(e) \leq t$
Decrypt:

1. Multiply $(m G+e) P^{-1}=m S G^{\prime}+e^{\prime}$
2. $m S G^{\prime}+e^{\prime}$

Fast decoding algorithm $m S G^{\prime}$
3. Multiply on the right by $G^{\prime-1}$, then by S^{-1} to recover m

Example

McEliece using $(7,4)$ Hamming Code

$$
G=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Illustrate McEliece cryptosystem using $(7,4)$ Hamming Code

$$
G=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Secret scrambler and permutation matrices S, P chosen as

$$
S=\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0
\end{array}\right] \text { and } P=\left[\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Illustrate McEliece cryptosystem using $(7,4)$ Hamming Code
$G=\left[\begin{array}{lllllll}1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right]$
Secret scrambler and permutation matrices S, P chosen as
$S=\left[\begin{array}{llll}1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0\end{array}\right]$ and $P=\left[\begin{array}{ccccccc}0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0\end{array}\right]$
Then the public generator matrix $G^{\prime}=S G P=\left[\begin{array}{lllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0\end{array}\right]$

Encrypt

Suppose Alice wishes to send message $u=1101$ to Bob

1. Alice constructs a weight 1 error vector, say $e=0000100$
2. Alice computes $u G^{\prime}+e=0110010+0000100$

$$
=0110110
$$

Alice sends ciphertext 0110110 to Bob

Decrypt

1. Bob multiplies the ciphertext on the right by $\left.P^{-1}: \mathbf{0} 111 \mathbf{1} 1110 \left\lvert\, \begin{array}{lllllll}1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0\end{array}\right.\right]$
2. Bob takes the result 1000111 and uses fast decoding algorithm to remove the single bit of error
3. Bob takes the resulting codeword 1000110

- Knows that there is some x that satisfies $\mathrm{x} G=x\left[\begin{array}{llllllll}1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right]=\begin{array}{llll}1 & 0 & 0 & 0\end{array} 110$
- Equivalently knows that x $S=1000$, so multiplying on the right by S^{-1} yields 1101

McEliece cryptosystem

Idea: "hide" a message by converting it into a codeword, then adding as many errors as the code is capable of correcting

Underlying code: McEliece used Goppa codes

- Efficient decoding
- Scrambled public key $G=S G^{\prime} P$ is indistinguishable from random codes
- Public key \approx a few megabits

McEliece cryptosystem

Idea: "hide" a message by converting it into a codeword, then adding as many errors as the code is capable of correcting
Underlying code: McEliece used Goppa codes

- Efficient decoding
- Scrambled public key $G=S G^{\prime} P$ is indistinguishable from random codes
- Public key \approx a few megabits $\left(2^{19}\right)$
- Typical RSA key sizes are 1,024 or 2,048 or 4,096 bits
- ECDH key sizes are roughly 256 or 512 bits

Trapdoor

NP-completeness of decoding problem does not indicate cryptographic security for concrete instances
Private key S, G^{\prime}, P turn out to be trapdoors ($G=S G^{\prime} P$)
Encryption: $m G+e$ easy to compute
Decryption difficult without S, G^{\prime}, P

Best known algorithm to solve decoding problems: Information Set Decoding (Prange, 1962)

