Code-based Cryptography

Angela Robinson

BRIDGES Conference, June 7, 2022

Motivation

Cryptography sightings

Cryptography sightings

Secure websites are protected using cryptography

- Encryption confidentiality of messages
- Digital signature authentication
- Certificates verify identity

 Amazon.com.com.com.ine Shopping fe > ← → (t								
Deliver to	ul ▼ day's Deals Your Amazon.com	Gift Cards Help						
g Certificate		×						
General Details Certification I	Path							
<u>S</u> how <all></all>	~							
Field	Value	^						
🔄 Signature algorithm	sha256RSA							
📴 Signature hash algorithm	sha256							
📴 Issuer	DigiCert Global CA G2, Di							
📴 Valid from	Tuesday, March 26, 2019							
📴 Valid to	Thursday, February 27, 2							
🛅 Subject	www.amazon.com, Amaz							
Public key	RSA (2048 Bits)							
Public key parameters	05 00	~						
the second se								

Cryptography sightings

Secure websites are protected using cryptography

- Encryption confidentiality of messages
- Digital signature authentication
- Certificates verify identity

Security is quantified by the resources it takes to break a cryptosystem

- Best known cryptanalysis
- Cost of implementing the cryptanalysis

a Amazon.com.com/ine Shopping for >	+	
← → C ● https://www.ar	nazon.com	
Deliver to	ul ✔ day's Deals Your Amazon.com Gift Car	ds Help
		Fi
Certificate		×
		^
General Details Certification I	Path	
<u>S</u> how <all></all>	~	
Field	Value	^
Signature algorithm	sha256RSA	
📴 Signature hash algorithm	sha256	
📴 Issuer	DigiCert Global CA G2, Di	
📴 Valid from	Tuesday, March 26, 2019	
Valid to	Thursday, February 27, 2	
📴 Subject	www.amazon.com, Amaz	
Public key	RSA (2048 Bits)	
Public key parameters	05 00	~

Cryptography at NIST

Cryptographic Standards

- Hash functions
- Encryption schemes
- Digital signatures
- ...

Cryptography at NIST

Cryptographic Standards

- Hash functions _
- Encryption schemes
- Digital signatures

۲

. . .

Example

Present threat

Some current NIST standards are vulnerable to quantum threat.

Peter Shor (1994): polynomial-time quantum algorithm that breaks

- Integer factorization problem (RSA)
- Discrete logarithm problem (Diffie-Hellman Key Exchange, Elliptic Curve DH, ...)
- Impact: a full-scale quantum computer can break today's public key crypto

Options for mitigating the threat

- Stop using public key crypto not practical
- Find quantum-safe public key crypto

NIST PQC Standardization effort

Call for public key cryptographic schemes believed to be quantum-resistant (2016)

- Received 80+ submissions (2017)
- Only 15 submissions are still under consideration (2022)
- Code-based algorithms
 - Round 2: BIKE, Classic McEliece*, HQC, LEDAcrypt**, NTS-KEM*
 - Round 3: BIKE, Classic McEliece, HQC

*merged during Round 2

** broken [APRS2020]

Background

Error-correcting codes

Noisy channels

Messages are sent over various channels ((())

- Analog
 - Compact disks, DVDs
 - Radio
 - Telephone
- Digital

Environmental noise can distort or alter the message before it is received

Error-detecting and error-correcting codes are designed to locate and remove noise from messages received over noisy channels

Error-detecting and error-correcting codes are designed to locate and remove noise from messages received over noisy channels

This is accomplished by adding some **extra bits** to the message before transmission that will enable error-detection and error-correction

Error-detecting and error-correcting codes are designed to locate and remove noise from messages received over noisy channels

This is accomplished by adding some **extra bits** to the message before transmission that will enable error-detection and error-correction

Example: Repetition code. Consider message 1001001

Example: Repetition code. Consider message 1001001

1001001 1001001 1001001 ------ Noisy channel ------ 1001101 1001001 0001001

- 1. Sender sends 3 copies of the message
- 2. Receiver decodes by taking most frequent bit for each position

- 1. Sender sends 3 copies of the message
- 2. Receiver decodes by taking most frequent bit for each position
- 3. Receiver recovers 1001001

Disadvantages?

Error-detecting and error-correcting codes are designed to locate and remove noise from messages received over noisy channels

This is accomplished by adding some **extra bits** to the message before transmission that will enable error-detection and error-correction

Definition: a **vector space** over a field \mathbb{F} consists of a set V (of vectors) and a set \mathbb{F} (of scalars) along with operations + and \cdot such that

- If $x, y \in V$, then $x + y \in V$
- If $x \in V$ and $\alpha \in \mathbb{F}$, then $\alpha \cdot x \in V$

Definition: a **vector space** over a field \mathbb{F} consists of a set V (of vectors) and a set \mathbb{F} (of scalars) along with operations + and \cdot such that

- If $x, y \in V$, then $x + y \in V$
- If $x \in V$ and $\alpha \in \mathbb{F}$, then $\alpha \cdot x \in V$

Definition: Let *V* be a vector space. A linearly independent spanning set *B* for *V* is called a **basis**. Definition: The **dimension** of a vector space is the cardinality of its bases

Definition: a **vector space** over a field \mathbb{F} consists of a set V (of vectors) and a set \mathbb{F} (of scalars) along with operations + and \cdot such that

- If $x, y \in V$, then $x + y \in V$
- If $x \in V$ and $\alpha \in \mathbb{F}$, then $\alpha \cdot x \in V$

Definition: Let *V* be a vector space. A linearly independent spanning set *B* for *V* is called a **basis**. Definition: The **dimension** of a vector space is the cardinality of its bases

Example: \mathbb{R}^3 is a vector space, $B = \{1 \ 0 \ 0, \ 0 \ 1 \ 0, \ 0 \ 0 \ 1\}$ is the standard basis for \mathbb{R}^3 dim $(\mathbb{R}^3) = 3$.

 \mathbb{F}_2 - finite field of two elements

denote the additive identity by ${f 0}$

```
denote the multiplicative identity by 1
```

 \mathbb{F}_2^n - vector space over \mathbb{F}_2

elements are vectors of length n whose components are from \mathbb{F}_2

```
standard basis: \begin{cases} 1 \ 0 \ 0 \ 0 \ \dots \ 0 \\ 0 \ 1 \ 0 \ 0 \ \dots \ 0 \\ \vdots \\ 0 \ 0 \ 0 \ 0 \ \dots \ 1 \end{cases}scalars \{0, 1\}
```

Binary linear code

Definition: a **binary linear code** C(n, k) is a *k*-dimensional subspace of \mathbb{F}_2^n .

The code $C: \mathbb{F}_2^k \to \mathbb{F}_2^n$ maps information vectors to codewords

Binary linear code

Definition: a **binary linear code** C(n, k) is a *k*-dimensional subspace of \mathbb{F}_2^n .

The code $C: \mathbb{F}_2^k \to \mathbb{F}_2^n$ maps information vectors to codewords

How do we describe a code?

Binary linear code

Definition: a **binary linear code** C(n, k) is a *k*-dimensional subspace of \mathbb{F}_2^n .

The code $C: \mathbb{F}_2^k \to \mathbb{F}_2^n$ maps information vectors to codewords

How do we describe a code?

- 1. Select a basis of the k-dim vector space $\{g_0, g_1, \dots, g_{k-1}\}$
- 2. Basis forms a **generator matrix** $G_{k \times n}$ of the code

Two equivalent descriptions of C(n, k)

- Generator matrix
 - Encoding: multiply *k*-bit information word *u* by *G*
 - codewords are x such that there's a solution u to uG = x

Two equivalent descriptions of C(n, k)

- Generator matrix
 - Encoding: multiply k-bit information word u by G
 - codewords are x such that there's a solution u to uG = x
- Parity-check matrix H (dimension (n k) x n)
 - $GH^T = 0$
 - codewords are x such that $Hx^T = 0$
 - Product of generic n-bit vector with H^T is called a syndrome

Parity-check matrix H (dimension (n - k) x n)

- $GH^T = 0$
- codewords are x such that $Hx^T = 0$
- Product of generic n-bit vector with H^T is called a syndrome

Example: Let H , x_1 , x_2 be as follows.	[1	0	0	1	1	[0	$x_1 = [0]$ $x_2 = [1]$	0	1	0	0	1]
	H = 0	1	0	1	0	1						_
	Lo	0	1	0	1	1	$x_2 = [1]$	0	1	0	1	0]

Parity-check matrix H (dimension (n - k) x n)

- $GH^T = 0$
- codewords are x such that $Hx^T = 0$
- Product of generic n-bit vector with H^T is called a syndrome

Example: Let H , x_1 , x_2 be as follows.	$H = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0 1	0	1 1	1	0 1	$x_1 = [0]$	0	1	0	0	1]
	$m = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	1	0	1	$\begin{bmatrix} 1\\1\end{bmatrix}$	$x_2 = [1$	0	1	0	1	0]
-0-												

$$Hx_{1}^{T} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

Parity-check matrix H (dimension (n - k) x n)

- $GH^T = 0$
- codewords are x such that $Hx^T = 0$
- Product of generic n-bit vector with H^T is called a syndrome

Example: Let H, x_1, x_2 be as follows. $H = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix} \qquad \begin{array}{c} x_1 = \begin{bmatrix} x_1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix} \qquad \begin{array}{c} x_2 = \begin{bmatrix} x_1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$

$$x_1 = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$
$$x_2 = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

$$Hx_{1}^{T} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

Syndrome is nonzero, so x_1 is not in the code defined by H.

Error correction

Definition: A linear (n, k, d)-code C over a finite field \mathbb{F} is a k-dimensional subspace of \mathbb{F}^n with **minimum distance** $d = min_{x \neq y \in C} dist(x, y)$, where *dist* is the Hamming distance.

Error correction

Definition: A linear (n, k, d)-code C over a finite field \mathbb{F} is a k-dimensional subspace of \mathbb{F}^n with **minimum distance** $d = min_{x \neq y \in C} dist(x, y)$, where *dist* is the Hamming distance.

Theorem.

A linear (n, k, d)-code *C* can correct up to $t = \left\lfloor \frac{d-1}{2} \right\rfloor$ errors.

Please excuse visual imperfections

Visual recap

Generator matrix formed by basis vectors

Code is closed under addition, scalar multiplication

Hard problems

Decoding problems

General Decoding Problem

Given $x \in \mathbb{F}^n$, find $c \in C$ such that dist(x, c) is minimal.

Decoding problems

General Decoding Problem: Given an [n, k, d] linear code $C, t = \lfloor \frac{d-1}{2} \rfloor$, and a vector $x \in \mathbb{F}^n$, find a codeword $c \in C$ such that $dist(x, c) \leq t$.

Note: If x = c + e, and e is a vector with $|e| \le t$, then x is uniquely determined.

Shown to be NP-complete for **general linear codes** in 1978 (Berlekamp, McEliece, Tilborg) by reducing the three-dimensional matching problem to these problems.

Please excuse visual imperfections

Decoding problems

General Decoding Problem: Given an [n, k, d] linear code $C, t = \lfloor \frac{d-1}{2} \rfloor$, and a vector $x \in \mathbb{F}^n$, find a codeword $c \in C$ such that $dist(x, c) \leq t$.

Note: Not all codes have a minimum distance d. Rewrite problems in terms of linear (n, k) codes.

Shown to be NP-complete for **general linear codes** in 1978 (Berlekamp, McEliece, Tilborg) by reducing the three-dimensional matching problem to these problems.

Ball of radius t

Please excuse visual imperfections

Decoding problems

Let C(n, k) be a linear code over finite field \mathbb{F} .

General decoding problem

Given a vector $\mathbf{x} \in \mathbb{F}^n$, a target weight t > 0,

find a codeword $c \in \mathbb{F}^n$ such that $dist(x, c) \leq t$.

Decoding problems

Let C(n, k) be a linear code over finite field \mathbb{F} .

General decoding problem

- Given a vector $\mathbf{x} \in \mathbb{F}^n$, a target weight t > 0,
- find a codeword $c \in \mathbb{F}^n$ such that $dist(x, c) \leq t$.

Syndrome-decoding problem.

Given a parity check matrix $H \in \mathbb{F}^{(n-k) \times n}$, a syndrome $s \in \mathbb{F}^{n-k}$, a target weight t > 0, find a vector $e \in \mathbb{F}^n$ such that wt(e) = t and $H \cdot e^T = s$.

Codeword-finding problem

Given a parity check matrix $\mathbf{H} \in \mathbb{F}^{(n-k) \times n}$ and a target weight $\mathbf{w} > 0$ find a vector $\mathbf{e} \in GF_2^n$ such that wt(e) = w and $H \cdot e^T = 0$.

Relevance

In general, code-based cryptosystems rely upon this property:

- Encryption (some sort of matrix-vector product) is easy to compute
- Decryption is difficult without the trapdoor (the secret key which enables efficient decoding)

First code-based cryptosystem.

Designed by Robert McEliece, presented in 1978.

First code-based cryptosystem.

Designed by Robert McEliece, presented in 1978.

Idea: "hide" a message by converting it into a codeword, then add as many errors as the code is capable of correcting

Let C[n, k, d] be a linear code with a fast decoding algorithm that can correct t or fewer errors

- Let *G*' be a generator matrix for *C*
- Let S be a $k \times k$ invertible matrix
- Let P be an $n \times n$ permutation matrix

Let *C*[*n*, *k*, *d*] be a linear code with a fast decoding algorithm that can correct *t* or fewer errors

- Let G' be a generator matrix for C
- Let S be a $k \times k$ invertible matrix
- Let *P* be an $n \times n$ permutation matrix

Define public key G = SG'P with private key S, G', P

- Encrypt: $m \rightarrow mG + e, wt(e) \leq t$
- Decrypt:
- 1. Multiply $(mG + e)P^{-1} = mSG' + e'$

Let *C*[*n*, *k*, *d*] be a linear code with a fast decoding algorithm that can correct *t* or fewer errors

- Let *G*' be a generator matrix for *C*
- Let S be a $k \times k$ invertible matrix
- Let P be an $n \times n$ permutation matrix

```
Define public key G = SG'P with private key S, G', P
```

```
Encrypt: m \rightarrow mG + e, wt(e) \le t
Decrypt:
```

1. Multiply $(mG + e)P^{-1} = mSG' + e'$

$$wt(e) = wt(e')$$

- 2. $mSG' + e' \longrightarrow$ Fast decoding algorithm mSG'
- 3. Multiply on the right by G'^{-1} , then by S^{-1} to recover m

Example

McEliece using (7,4) Hamming Code

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Illustrate McEliece cryptosystem using (7,4) Hamming Code

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

Secret scrambler and permutation matrices *S*, *P* chosen as

$$S = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix} \text{ and } P = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

Illustrate McEliece cryptosystem using (7,4) Hamming Code

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Secret scrambler and permutation matrices *S*, *P* chosen as

BRIDGES Conference - June 7, 2022

Encrypt

Suppose Alice wishes to send message $u = 1 \ 1 \ 0 \ 1$ to Bob

- 1. Alice constructs a weight 1 error vector, say e = 0.000100

Alice sends ciphertext **0 1 1 0 1 1 0** to Bob

Decrypt

- 2. Bob takes the result 1 0 0 0 1 1 1 and uses fast decoding algorithm to remove the single bit of error
- 3. Bob takes the resulting codeword 1000110
 - Knows that there is some x that satisfies $xG = x \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = 1000110$
 - Equivalently knows that xS = 1000, so multiplying on the right by S^{-1} yields 1101

Idea: "hide" a message by converting it into a codeword, then adding as many errors as the code is capable of correcting

Underlying code: McEliece used Goppa codes

- Efficient decoding
- Scrambled public key G = SG'P is indistinguishable from random codes
- Public key ≈ a few megabits

Idea: "hide" a message by converting it into a codeword, then adding as many errors as the code is capable of correcting

Underlying code: McEliece used Goppa codes

- Efficient decoding
- Scrambled public key G = SG'P is indistinguishable from random codes
- Public key \approx a few megabits (2¹⁹)
 - Typical RSA key sizes are 1,024 or 2,048 or 4,096 bits
 - ECDH key sizes are roughly 256 or 512 bits

Trapdoor

NP-completeness of decoding problem does not indicate cryptographic security for concrete instances

Private key S, G', P turn out to be trapdoors (G = SG'P)

Encryption: mG + e easy to compute

Decryption difficult without *S*, *G*', *P*

Best known algorithm to solve decoding problems: **Information Set Decoding (Prange, 1962)**