A Light Introduction to Code-based Cryptography

BRIDGES Problem Set 1

1 Background

Let C(7, k, d) be the binary linear code with generator matrix

G =	[1	1	0	0	1	0	[0
	0	1	0	0	0	1	1
	1	1	1	0	0	1	0
	0	1	0	1	1	1	0

1. Find k.

- 2. Encode the message vector 1001.
- 3. How many distinct elements are in C?
- 4. For any generator matrix G in standard form $G = [I_k|A]$, one can use the formula $H = [-A^T|I_{n-k}]$ to construct a parity check matrix for the code. Construct a parity check matrix for this code. Verify your answer.

2 Parity checks

Let C(7,4) be a binary linear code described by parity check matrix

$$H = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}.$$

- 1. Let $x = (0, 0, 0, 1, 1, 1, 1) \in \mathbb{F}_2^7$. Is $x \in C$?
- 2. Find four codewords of C.
- 3. Let $b = (b_0, b_1, b_2, b_3, b_4, b_5, b_6) \in \mathbb{F}_2^7$. If $b \in C$, what three equations in terms of $\{b_i\}_{i=0^6}$ must be satisfied?
- 4. Find a generator matrix for G. Verify your answer.
- 5. Suppose $H \cdot b^T = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$. Find a codeword $b' \in C$ by altering b.

3 Error correction capability

Let C be an [n, k, d] linear code over \mathbb{F}_q . Prove that C is able to correct at most $t = \lfloor \frac{d-1}{2} \rfloor$ errors.