A Light Introduction to Code-based Cryptography

BRIDGES Problem Set 1

1 Background

Let $C(7, k, d)$ be the binary linear code with generator matrix

$$
G=\left[\begin{array}{lllllll}
1 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 0
\end{array}\right] .
$$

1. Find k.
2. Encode the message vector 1001 .
3. How many distinct elements are in C ?
4. For any generator matrix G in standard form $G=\left[I_{k} \mid A\right]$, one can use the formula $H=$ $\left[-A^{T} \mid I_{n-k}\right]$ to construct a parity check matrix for the code. Construct a parity check matrix for this code. Verify your answer.

2 Parity checks

Let $C(7,4)$ be a binary linear code described by parity check matrix

$$
H=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

1. Let $x=(0,0,0,1,1,1,1) \in \mathbb{F}_{2}^{7}$. Is $x \in C$?
2. Find four codewords of C.
3. Let $b=\left(b_{0}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right) \in \mathbb{F}_{2}^{7}$. If $b \in C$, what three equations in terms of $\left\{b_{i}\right\}_{i=0^{6}}$ must be satisfied?
4. Find a generator matrix for G. Verify your answer.
5. Suppose $H \cdot b^{T}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$. Find a codeword $b^{\prime} \in C$ by altering b.

3 Error correction capability

Let C be an $[n, k, d]$ linear code over \mathbb{F}_{q}. Prove that C is able to correct at most $t=\left\lfloor\frac{d-1}{2}\right\rfloor$ errors.

