
2022-09-16

Unflattening ConfuserEx .NET
Code in IDA

NCSC • GovCERT.ch

Eidgenössisches Finanzdepartement EFD

Nationales Zentrum für Cybersicherheit NCSC

GovCERT.ch

Schweizerische Eidgenossenschaft

Confédération suisse

Confederazione Svizzera

Confederaziun svizra



Unflattening ConfuserEx .NET Code in IDA 2022-09-16

Contents

Initial Unpacking and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Code Flattening After Decompilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Analysis of Code Flattening in CIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Caveat: Fragmentation of State Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Caveat: Non-Linear Code Fragments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Caveat: More Than One switch in a Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Caveat: Shared Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Caveat: Inconsistent State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Parsing and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Main Parsing Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Detection of the Suffix Code Type and Extraction of the Constants (find_suffix function) 15

Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Patching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

CIL Branch Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Avoiding Overwriting Real Code When Patching . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Results and Lookout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

NCSC • GovCERT.ch 1



Unflattening ConfuserEx .NET Code in IDA 2022-09-16

This paper refers to a Ginzo sample, which can be downloaded from MalwareBazaar using MD5
5009e04920d5fb95f8a02265f89d25a5. Ginzo is an information stealer written in .NET, known to also
steal cryptocurrency keys. However, we are not focusing on the malware itself, but instead have a closer
look on one of it’s ConfuserEx1 obfuscation technique.

Initial Unpacking and Motivation

The sample has a first simple encryption layer that can be unwrapped by using dnSpy as a debugger,
dumping the decrypted code to disk (e.g. using x64dbg), and patching the new code section back into the
original sample. The resulting code still has long class/function names and flattened code, so the next
usual step to try in such situations is to run de4dot2 on it:

de4dot v3.1.41592.3405 Copyright (C) 2011-2015 de4dot@gmail.com
Latest version and source code: https://github.com/0xd4d/de4dot

Detected Unknown Obfuscator (.../ginzo-patched.exe)
Cleaning .../ginzo-patched.exe
Renaming all obfuscated symbols
Saving .../ginzo-patched-cleaned.exe
ERROR: Error calculating max stack value. ...
Ignored 8 warnings/errors
Use -v/-vv option or set environment variable SHOWALLMESSAGES=1
to see all messages

The resulting .NET binary ginzo-patched-cleaned.exe now has readable symbol names, but un-
fortunately the ConfuserEx obfuscated code has not been unflattened; de4dot can actually unflatten
some ConfuserEx samples, but not all of them. For these situations, there is an additional tool Con-
fuserExSwitchKiller3, which can reorder the switch structures of our sample in its original way. However,
such obfuscation schemes can change quickly, and it is very well possible to come across samples,
where no ready-to-use unpacker tool exists. E.g., more than 10 years ago a banking trojan known as
Torpig4 made heavy use of a similar, if not even more advanced technique on x86 assembly level. That’s
why we’ll study how to deal with such a switch obfuscator by writing our own Python script in IDA Pro5 to
unflatten code like this. Of course, the script needs to be modified for changed requirements. The main
goal is to be able to decompile the unflattened code using dnspy, or at least produce enough information
to follow the switch statements ourselves, without the need to do all tedious calculations manually.

Unfortunately, the tools available for .NET assembly reverse engineering are not as good as for native
binaries (unmanaged code). The most widely used tool - dnspy - is no longer maintained for several years
and does not allow to actually disassemble CIL - it only offers decompiled code. There are several .NET
libraries that can disassemble .NET6, which basically is what the famous de4dot deobfuscator tool is
doing. This however forces reversere engineers to write such code in C# itself. Most reversers prefer to

1https://mkaring.github.io/ConfuserEx/ and https://github.com/yck1509/ConfuserEx
2https://github.com/de4dot/de4dot
3https://github.com/VAllens/ConfuserExSwitchKiller
4https://de.wikipedia.org/wiki/Torpig
5Interactive Disassembler, a well known reverse engineering tool, see https://hex-rays.com/
6E.g. https://github.com/0xd4d/dnlib or https://www.mono-project.com/docs/tools+libraries/libraries/Mono.Cecil/

NCSC • GovCERT.ch 2

https://malpedia.caad.fkie.fraunhofer.de/details/win.ginzo
https://bazaar.abuse.ch/sample/3fd0837381babda7ef617b810457f0db32bd7c1f7e345480e6c525050ca818fa/


Unflattening ConfuserEx .NET Code in IDA 2022-09-16

write Python code, and many are familiar with IDA, which offers a Python scripting interface. Also, IDA
can disassemble CIL just fine, but does not offer a decompiler for it. More seriously, IDA can’t directly
assemble/patch/modify CIL code. So, the .NET support in IDA is not (yet?) where we’d like it to be, but it
nevertheless offers the required features for our job. We had to use some workarounds to deal with the
lacking .NET support in IDA. But as .NET becomesmore andmore popular in malware - similar to malware
written in the Go language - we need to find a way to deal with IDAs shortcomings.

Code Flattening After Decompilation

If we just export the binary to a project using dnspy and study at the decompiled code, it looks as follows
in a simple situation - we often see dozens of case blocks instead:

internal void method_0()
{

uint num = 1U;
for (;;)
{

IL_91:
uint num2 = 2666110116U;
for (;;)
{

uint num3;
switch ((num3 = (num2 ^ 2708435411U)) % 6U)
{
case 0U:

goto IL_91;
case 1U:

num2 = (num3 * 1468221071U ^ 3530660000U);
continue;

case 2U:
this.struct0_0[(int)num].method_0();
num2 = 2183023298U;
continue;

case 4U:
num2 = (((ulong)num < (ulong)(1L << (this.int_0 & 31))) ? \

3536790039U : 2440591868U);
continue;

case 5U:
num += 1U;
num2 = (num3 * 2529799854U ^ 3879142487U);
continue;

}
return;

}
}

}

The basic algorithm works like this:

• One state variable is created (num2with an alias num3, created by the decompiler). In a more generic
scenario, several, if not dozens such variables can be used as state variables, declared and initialized
step by step at different locations, spread all over the case blocks. An example for this is the afore-
mentioned Torpig trojan. This introduces the additional problem for a deobfuscator to differ between
state variables and normal variables. But fortunately, ConfuserEx only uses one state variable.

NCSC • GovCERT.ch 3



Unflattening ConfuserEx .NET Code in IDA 2022-09-16

• At the start of every loop iteration, the next state is calculated using this variable (e.g. (num2 ^
2708435411U))% 6U), always using the same operation: the state variable is updated using an
XOR operation with a constant, and then a modulo operation with the total number of states tells
us which state to go to next. Because this calculation happens during runtime, it is not trivial to
find out which state follows one given state, without actually running or emulating the code. So, the
code structure (different kind of loops, conditional statements, etc) disappears and is replaced as
one single loop containing a single switch. Such a technique is known as code flattening.

• The code for each state (inside the case code fragments) starts with some (optional) “real” code,
followed by a “control” code fragment, updating the state variable in one of four different manners,
which we call suffix types:

– Suffix type SIMPLE: The state value is replaced by a completely new one (e.g. num2 =
2183023298U)

– Suffix type MXOR: The state value is multiplied with a constant and then XORed with another
constant (e.g. num2 = (num3 * 1468221071U ^ 3530660000U))

– Suffix type BRANCH: A condition is checked, then the state variable is set to a new value
depending on the outcome. dnspy shows this as ternary operation ( ... ? ... : ...),
e.g. num2 = (((ulong)num < (ulong)(1L << (this.int_0 & 31)))? 3536790039U
: 2440591868U) in case 4 above. The condition is “real” code, the rest is “control” code. In

this case, the state variable is overwritten, similar to SIMPLE
– Suffix type BRANCH_MXOR: This is a combination of BRANCH and MXOR. Above sample does not

show this suffix type, but here is an example from a more complex case: num2 = (((num <
16777216U)? 4284753547U : 2545021605U)^ num3 * 3864922473U). Again, a ternary
operator checks a condition and chooses a constant depending on the outcome. This value is
then XORed with the result of the multiplication of the old state variable with a constant - note
that multiplication has a higher precedence than bitwise XOR in C#. This formula is identical
to the one used with the MXOR type, except the XOR constant depends on the condition. One
problem in analysis of such a state machine is that we can’t calculate the next state - or next
two states in case of one of the two branch types - by just statically looking at the code of one
of the case blocks. While we do know the state itself - this is the case label after all - we do
not know the content of the state variable before the modulo operation was applied, because
modulo is a non-reversible operation. But the state variable content is needed to calculate the
next state; knowledge of the state alone does not suffice. So, such a state machine needs to
be fully emulated, using some sort of backtracking, to gain a full analysis.

• One state (case 0 in above example) - acts as initial state, which usually just assigns the initial value
(num2 = 2666110116U). The decompiler shows this state outside the switch with an additional
goto label (IL_91) and creates a second for (;;) loop. However, this is just the way the decom-
piler shows this code in a try to make it look structured, but failing here. Replacing the goto in the
case by a goto from the outside directly into the case code would probably work better. This would
also allow to drop one of the two nested loops. Note that this initial state does not need to be of type
SIMPLE, it can also be of type BRANCH.

• One ormore state acts as end state (or leaf), which leaves the loop. In the above code, this is case 3.
Here it does not show up as an explicit case label - but it does on level ofMSIL instructions, as shown
below. Instead, the switch is left for case 3 as default action, and the following return statement

NCSC • GovCERT.ch 4



Unflattening ConfuserEx .NET Code in IDA 2022-09-16

terminates the loop. Several end states are possible.

An analysis of above state machine (performed by the actual script described later on) results in:

Function Struct1::method_0 at VA 2310
Switch loop at VA 2378: XOR 2708435411
Entry state 0
0 [Address 23A1 - 23A1 START]
1 [Address 236B - 2377]
4 [Address 232A - 2350]
IF:
2 [Address 2353 - 2364]
5 [Address 2317 - 2327]
4 ^

ELSE:
3 [Address 23A8 - 23A8 END]

The acronym VA stands for virtual address, the memory address of code and data after being loaded,
which is also shown in IDA. VAs need to be distinguished from the actual raw file offset in the sample. This
shows that code runs from the initial state 0 (which usually does not contain any “real” code) to state 1
(containing no “real” code at all), then to state 4, where a branch to either state 2 or state 3 (the end state)
occurs. State 2 leads to state 5 and then loops back to state 4 (the loop-back situation is indicated by a ^
character). State 4 probably implements a kind of while loop. Such an analysis allows us to unflatten the
code manually, resulting in something similar to:

internal void method_0()
{

uint num = 1u;
while ((ulong)num < (ulong)(1L << (this.int_0 & 31)))
{

this.struct0_0[(int)num].method_0();
num += 1u;

}
}

This code was actually produced by dnspy after the deobfuscation script was applied, but in such simple
cases a manual reassembly works just fine. Of course, this could better be expressed as a for loop.

While one could write a deobfuscator using decompiled code as input using text processing, that would
not be a very effective approach for several reasons:

• The decompilermightmake different decisions in different similar situations, leading to the necessity
to differ many strange situations and using complex regular expressions.

• The decompiler also often erroneously re-declares local variables inside the case blocks because
the real control flow is not known to it, so the scopes of local variables become messy.

• while-loops would never be simplified to for-loops, because this is done by heuristics in dnspy,
unless we re-implement those in our deobfuscator.

• This approach would just not be very satisfying….

NCSC • GovCERT.ch 5



Unflattening ConfuserEx .NET Code in IDA 2022-09-16

A much better strategy is to deal with this on the level of Microsoft Intermediate Language (MSIL), also
known as the Common Intermediate Language (CIL), .NET’s assembly instruction set. The obfuscation
structures are much clearer there, though still not as clear as we’d expect and wish - it does still seem to
contain many “compiler optimization”-like code fragmentation. This also suggests the obfuscator itself
operates on source code, and not on CIL instructions level directly.

Analysis of Code Flattening in CIL

Let’s look at the flattening code elements on CIL level. CIL is a simple stack-based instruction set7. Op-
codes are all just one byte, followed by optional operands. This is a screenshot of above method as it
appears in IDA:

Control code fragments are surrounded by orange frames, and the actual case values for the states are
written in orange over the relevant blocks. The “spider in the web” of the structure is the switch state-
ment in the middle with the preceding loop iteration code implementing the shared next-state-variable-
calculation - it expects the previous value of the state variable on the stack. This code fragment actually
appears in two different small variations. In this more common case, we have:

ldc.i4 0xA16F71D3 // push 2666110116 on the stack
// (above the previous state variable)

7https://docs.microsoft.com/en-us/dotnet/api/system.reflection.emit.opcodes?view=net-6.0

NCSC • GovCERT.ch 6



Unflattening ConfuserEx .NET Code in IDA 2022-09-16

xor // XOR with previous state variable
dup // Now we have 2 copies of the new state variable
stloc.1 // store in local variable 1 (reserved for the

// state variable) - the other copy remains on stack
ldc.i4.6 // calculate state variable modulo 6 (number of

// states), giving the next state
rem.un // modulo operator
switch loc_23A1, loc_236B, loc_2353, loc_23A8, loc_232A, loc_2317

Some variations we see in other places:

• ldc.i4.6 pushes the value 6 on the stack. Because 6 is a small number, a special opcode using only
one byte can be used. For larger values, this can show as ldc.i4.s 9 (for values up to 127, using
two bytes), or even ldc.i4 0x100 (using five bytes). These two cases both occasionally happen, so
we must consider them. Of course, the obviously “random” constant(s) (like ldc.i4 0xA16F71D3
) could also be expressed in one of the other variations for small values, but this is probably rare,
so we ignore that possibility for simplicity. It could have consequences as how many bytes remain
available for patching in our own code (one, two, or five bytes). The probability for these random
constants to be “small” by accident is roughly 1 to 17 million (24 bits).

• In some rare cases (e.g. at VA 3F12), we see something similar to:

ldc.i4 0x98EFB846
xor
ldc.i4.4
rem.un
switch loc_3F3D, loc_3F47, loc_3F0D, loc_3EF1

In this case, the state variable is not stored in a local variable of its own. As the new state variable is
actually eaten away by rem.un, this is only possible if all state variable calculations in the subsequent
switch blocks are of types SIMPLE or BRANCH, so the previous values need not be remembered. This
modification looks like a compiler optimization due to the fact the state variable is not read again
later on. Once more, this suggests the obfuscator does its work on source code level. We only see
this in very small code blocks.

One interesting and helpful observation is that the switch statement is always followed by an uncondi-
tional branch to the end state, br.s loc_23A8 above (marked with State 3 as it is the default if nothing
matches), which branches to the final ret statement. So, the tagging as “state 3” above is not completely
true, as it in fact only jumps there. This instruction does not seem to be required though, as the switch
instruction above is complete and no default is needed (it’s label for state 3 actually also points to ret),
but it help our deobfuscator to identify the “normal” exit state.

For the different types, we see different code patterns at the end of the blocks, ignoring the end state 3:

• SIMPLE (e.g. state 2):

NCSC • GovCERT.ch 7



Unflattening ConfuserEx .NET Code in IDA 2022-09-16

ldc.i4 0x821E4AC2 // push completely new state variable on the stack

• MXOR (e.g. state 5 or state 1)

ldloc.1 // push previous state variable on the stack
ldc.i4 0x96C9AEAE // push multiplier constant on stack
mul
ldc.i4 0xE7370457 // push xor constant on stack
xor // leaves new state variable on the stack

• BRANCH (e.g. state 4)

blt.s loc_2346 // blt.s is a ”real” instruction, but jump
// target is ”control” code

ldc.i4 0x917879FC // ELSE part: put 2 copies of the ”else” new
// state variable on the stack

ldc.i4 0x917879FC
br.s loc_2350

loc_2346: // IF part: put 2 copies of the ”if” new
// state variable on the stack

ldc.i4 0xD2CF2217
ldc.i4 0xD2CF2217

loc_2350:
pop // code flows combine, one copy is removed

// (duplication and pop happen for unknown reasons)
br.s loc_2378 // jump back to loop

This code also appears in a second layout with additional fragmentation, e.g. at VA 2773:

bge.un loc_26E6
br.s loc_275C
ret // unrelated code in the same fct behind
...

loc_26E6:
ldc.i4 0xBA2C2B6D
ldc.i4 0xBA2C2B6D

loc_26F0:
pop
br.s loc_2737
...

loc_275C:
ldc.i4 0x8873AC65
ldc.i4 0x8873AC65
br.s loc_26F0

The three sections can be torn apart and even appear in different order. The only relevant difference
is the additional unconditional branch in the ELSE part after the conditional branch. This again looks
like a compiler optimization and suggests obfuscation happened on source code level. These are
the only two layouts we found in the sample.

NCSC • GovCERT.ch 8



Unflattening ConfuserEx .NET Code in IDA 2022-09-16

• BRANCH_MXOR (e.g. at VA 2829)

blt.un.s loc_2837 // same code as in BRANCH, leaving an XOR constant
// (depending on test) on the stack

ldc.i4 0x97B1F2A5
ldc.i4 0x97B1F2A5
br.s loc_2841

loc_2837:
ldc.i4 0xFF64268B
ldc.i4 0xFF64268B

loc_2841:
pop
ldloc.s 5 // Previous state variable
ldc.i4 0xE65E0969 // multiplier constant
mul
xor

Again, an unconditional branch could follow the first conditional jump. However, we did not observe
that other layout in the sample.

There are several additional caveats we noticed during analysis, which make automated deobfuscation
harder in some cases - but as these border cases are rare, we can deal with them manually and let the
deobfuscator script do the major part:

Caveat: Fragmentation of State Code

The code inside one state is sometimes itself fragmented, using additional br/br.s instructions. However,
it is relatively easy to deal with this by just following these branches while traversing the state code.

Caveat: Non-Linear Code Fragments

One would expect every “real” code fragment inside a case block to be a single building block, i.e. without
additional conditional branches. Unfortunately, this is not always the case - it seems the obfuscator does
not obfuscate every normal conditional branch, but instead leaves some of these inside one case block
untouched. We deal with this situation by just following one side of the branch in order to find the end of
a state. This usually works, but there seem to be very few cases where actual non-obfuscated branches
lead to different follower states or otherwise inconsistent behavior.

Caveat: More Than One switch in a Function

Sometimes, more than one obfuscation-switch appear in the same function. This is not a major problem,
but it can make the initial or end state detection harder (except for the default end state). We try to cover
that by defining the appearance of a switch instruction inside a state as an indication the state to be a
leaf. This would fail if one obfuscation switch appeared inside an actual (non-leaf) state code of an outer
switch obfuscation. We did not actually see such a situation, but it would make deobfuscation harder.

NCSC • GovCERT.ch 9



Unflattening ConfuserEx .NET Code in IDA 2022-09-16

Caveat: Shared Code

In rare situations, two different states share some common control code and branch into this before the
next loop iteration starts. We cannot deal with these situations at the moment, and they might result in
code that dnspy can no longer decompile. This can also happen in case of some strange interaction with
try-except constructs (e.g. at VA 53D6).

Caveat: Inconsistent State Machine

Whenever the same state appears as successor of more that one other state, probably some kind of loop
is implemented. This is a common situation. We expect all re-entries into such re-used states to have the
same value of the state variable (or at least values that lead to the same state paths thereafter). Should
this not be the case, we call the state machine inconsistent. Fortunately, all state machines in our sample
turned out to be consistent. It is hard to think of an obfuscator algorithm producing an inconsistent state
machine - it would have to somehow melt two different states into one. A very advanced state obfuscator
might be able to actually realize this kind ofmagic. The situation is comparable to compilers: any standard
C code results in some type of consistent assembly code, but assembly code in general can be inconsistent
and not decompilable back into reasonale C code. Any state machine we come across could in theory turn
out to be inconsistent. We deal with the problem by just detecting it, emitting an error line, and leaving the
code unchanged.

Theremight be situationswhere an obfuscator could actually intentionally produce inconsistent states, just
to break debofuscator scripts. This could be done in code that is never actually be executed, e.g. because
some conditions leading to it will never be true, comparable to junk code. It might also be possible that
actual state code is of a nature that repetitions don’t do any harm, so repeating a state in a different context
might be acceptable, if it is only used as a link state to another state value which is not yet used. The
redundant repeating of the state code would then act like an empty state. This kind of obfuscation would
be quite advanced though, and fortunately, we did not need to take care of it in this sample. We’re not
aware of such a technique actually used by code obfuscators.

We occasionally observed unused states, i.e. states that were never reached during emulation of a state
machine. This does not make the state machine inconsistent, and it is safe to just ignore unused states;
but it is still a slightly unusual observation. Whereever we checked, these unused states actually did not
contain any real code, only control code. So they might very well be obfuscator artifacts.

Parsing and Analysis

As mentioned, we use IDA-Python for parsing. To make things easier, we use the excellent sark library8 as
disassembler wrapper. We define several structures to encapsulate the suffix type SType (a simple enum),
information about the actual suffix code Suffix (most importantly the XOR andmultiplication constants),
and all information about an actual state Block, and finally a Switch structure:

8https://github.com/tmr232/Sark

NCSC • GovCERT.ch 10



Unflattening ConfuserEx .NET Code in IDA 2022-09-16

# SType: the different code constructs which calculate the next
# state variable value
class SType(Enum):

NA = auto()
SIMPLE = auto()
MXOR = auto()
BRANCH = auto()
BRANCH_MXOR = auto()

# Suffix collect type+context of ctrl code at end of blocks
@dataclass
class Suffix:

addr: int = 0 # address of first control instruction
sType: SType = SType.NA # actual code type
val: int = -1 # value used for ”if” / ”else”
val_else: int = -1
xor: int = 0 # common xor/mult constants (MXOR)
mult: int = 0
# actual control instructions (for later NOPing):
ctrls: List[sark.code.line.Line] = field(default_factory=list)

# Block encodes information about one switch block
@dataclass
class Block:

state: int # case tag (idx of block in switch)
start: int # start- and end-VA of data
end: int = 0
is_start: bool = False
is_end: bool = False
is_ret: bool = False
next_state = -1
next_state_else = -1
enter_value = -1
enter_values: Set[int] = field(default_factory=set)
suffix = Suffix() # used to calculate next state

@dataclass
class Switch:

patcher: Patcher # used later to patch code
cont_addr: int = 0 # VA for loop calc
end_addr: int = 0 # VA of block which ends loop
switch_addr: int = 0 # VA of switch statement
# entry_states gets the blocks that are initially traversed
entry_states: Dict[int, List[int]] = field(default_factory=dict)
# control values for state calculation:
xor_value: int = 0
nbr_blocks: int = 0
failed: bool = False # set to true if unusual cases
blocks: List[Block] = field(default_factory=list)

Main Parsing Loop

Using above structure, the main code parsing loop starts with:

for fct in sark.functions():
buff: List[sark.code.line.Line] = [] # reverse order
pattern = bytearray() # Allows us to find the function

NCSC • GovCERT.ch 11



Unflattening ConfuserEx .NET Code in IDA 2022-09-16

switches: List[Switch] = []
lines: Dict[int, sark.code.line.Line] = {}

print(f”\nFunction {fct.name} at VA {fct.ea:X}”)
for l in fct.lines:

buff.insert(0, l)
lines[l.ea] = l
ops = l.insn.operands
pattern.extend(l.bytes)

# detect switch statement with preceding modulus:
if l.insn.mnem == ”switch” and \

buff[1].insn.mnem == ”rem.un” and \
buff[2].insn.mnem.startswith(”ldc.i4”):

We do keep the actual original byte data of the code in a byte array pattern. This is done because IDA
currently does not support code patching for .NET - we can only read CIL instructions. While it would
certainly possible to actually mimic the interpretation of .NET headers in Python to map VAs to actual raw
file offsets, we decided for the simpler and pragmatic way to just search for pattern in the actual binary
data of the executable in order to find the delta - which by the way is not constant for every function.
There’s also a caveat about this, which will be discussed further down.

Next, we check if one of the two knowncode fragments precede this, read andmemorize the corresponding
XOR value and the continuation address - i.e. the address jumped back to at each loop iteration after the
new state variable was set:

# 2 opcode sequences are possible:
# ldc / xor / dup / stloc / ldc / rem / switch: usual case, state variable is stored as
# local var
# ldc / xor / ldc / rem / switch: in some simple cases (e.g. VA 3f1a), the state
# variable if kept on stack
if len(buff) > 4 and buff[3].insn.mnem == ”xor” and buff[4].insn.mnem == ”ldc.i4”:

xor_value = buff[4].insn.operands[0].imm
cont_addr = buff[4].ea # this is where jumps to the next loop occur

elif len(buff) > 6 and buff[5].insn.mnem == ”xor” and buff[6].insn.mnem == ”ldc.i4”:
xor_value = buff[6].insn.operands[0].imm
cont_addr = buff[6].ea

else:
raise Exception(”Unknown xor construct before switch”)

As mentioned earlier, we ignore the really improbable situation where the XOR value were so small that
an ldc.i4.s or even an implicit instruction suffices. For our sample, the resulting exception in such a
situation never triggered.

However, when reading the number of states, we need to consider all possibilities. Finally, the Switch
object can be created:

# number of states is pushed in the previous ldc instruction. That one can embed the
# immediate value into
# the opcode for small values:
if buff[2].insn.mnem.startswith(”ldc.i4.”) and len(buff[2].insn.operands) == 0:

# Implicit instruction, value is not stored in an operand, extract it from the

NCSC • GovCERT.ch 12



Unflattening ConfuserEx .NET Code in IDA 2022-09-16

# mnemonic as string:
nbr_blocks = int(buff[2].insn.mnem.split(”.”)[-1])

else:
# Explicit operand (”.s” or full)
nbr_blocks = buff[2].insn.operands[0].imm

switch = Switch(patcher, switch_addr=l.ea, cont_addr=cont_addr, xor_value=xor_value,
nbr_blocks=nbr_blocks)

As additional confirmation, we assert an unconditional branch to the end state follows, which can be a
far or a near one. switch.end_addr is set to where this branch jumps to, which is the default end block
address:

if l.next.insn.mnem in (”br”, ”br.s”):
switch.end_addr = l.next.insn.operands[0].addr

else:
raise Exception(”no br after switch”)

Finally, wemust extract the entry addresses for everycaseblock. Unlike native assembly, CIL has aswitch
instruction with a variadic number of operands, meaning the list of operands is not always of the same
length. As IDA’s instruction model does not support variadic instructions, we can only read a comma-
separated string of all labels like one single operand. To get the actual addresses instead of the symbolic
labels, we rely on the fact these are of the form loc_+ “hexadecimal address”. As the loc_ prefix requires
4 characters, this can be expressed in the following way, which admittedly is an ugly hack - remember not
to rename any labels before applying the script:

# Create switch blocks for each label (we must parse these as text labels, e.g.
# ”loc_3F47”, where 3f47 is the VA)
for state, l in enumerate(ops[0].text.split(',')):

switch.blocks.append(Block(state, int(l.strip()[4:], 16)))

And we add the resulting switch construct: switches.append(switch)

After the loop parsed all lines of the function, we come back to each such detected switch, as we need to
find more information about the actual blocks, such as: Where do they end? Are they end or start states?
What suffix code is used? What are the relevant constants?

for switch in switches:
start_found = False # Will be set to true if start states could be detected
for block in switch.blocks:

if block.start not in lines:
raise Exception(f”Block address {block.start:X} has no instruction”)

l = lines[block.start]
crefs = list(l.crefs_to)

We create a list of code references to the first instruction of the block (crefs). For normal states, this list

NCSC • GovCERT.ch 13



Unflattening ConfuserEx .NET Code in IDA 2022-09-16

only contains one instruction, namely the switch instruction. Start states should additionally get a code
reference from where the loop is entered, and the normal end state should get another reference from the
branch instruction following the switch. But we can check for the normal end state by directly comparing
to switch.end_addr assigned in the previous step:

# The block that the branch after ”switch” jumps to is a leaf (e.g. does not loop back):
if switch.end_addr == l.ea:

block.is_end = True
block.end = l.ea
continue

Otherwise, if there are any cross references that differ from the switch address, we know this is a start state.
Unfortunately, two obfuscation switches in the same function occasionally share a state (e.g. switch at
VA 53D6 and switch at 5462 both point to the same block on VA 53FB). This is still an unclear case, and
for the moment we consider these as end states:

# We need to find the initial states. Normal states have only one xref (the switch
# statement itself),
# while the initial state is also referenced by the jump-in instructions.
for a in crefs:

if a != switch.switch_addr: # not in (switch.switch_addr, switch.end_addr):
if lines[a].insn.mnem == ”switch”:

# if 2 switch statements link top the same state (sigh),
# we assume it's a common end state
block.is_end, block.is_start = True, False
break

if block.state not in switch.entry_states:
switch.entry_states[block.state] = []

switch.entry_states[block.state].append(a)
block.is_start = True
start_found = True

Now we traverse the code for this block until we reach its end. Certain instructions are interpreted as
markers that we reached an end state; we don’t know at the moment if switch instructions themselves
indicate an end state. They probably do, but we can’t rely on this. We emit a warning if such a such a
switch instruction is not followed by a branch. An example is the switch at VA AC74, which does not
seem to have any end state at all (maybe an endless loop), and is jumped in from another switch at VA
AF73 (to address AC73). We consider these cases as end states. Note that branches which don’t return to
the loop entry (cont_addr) are just followed and assumed to occur due to code fragmentation:

# Traverse the code for this block:
while True:

# returns end the block immediately:
if l.insn.mnem == ”ret” and not block.is_end:

block.end = l.ea
block.is_end = True
break

# embedded switch are tricky - we follow the branch behind:
if l.insn.mnem == ”switch”: # ... maybe we can assume these are always end nodes,

NCSC • GovCERT.ch 14



Unflattening ConfuserEx .NET Code in IDA 2022-09-16

# but not sure...
l = l.next
if l.insn.mnem not in (”br”, ”br.s”):

print(f” INFO: Strange embedded switch at {l.ea:X} - we assume it's an end node”)
block.is_end, block.is_start = True, False
break

else:
l = lines[l.insn.operands[0].addr]
continue

# If we hit the first instruction of the xor-part, this is the last block before,
# where the branch lacks:
if l.ea == switch.cont_addr:

block.end = l.prev.ea
# extract the next-block-constants (code suffix of block):
block.suffix = find_suffix(l.prev, block.start)
break

# ... but most blocks end in a branch to the xor-part:
elif l.insn.mnem in (”br”, ”br.s”, ”leave”, ”leave.s”):

if l.insn.operands[0].addr == switch.cont_addr:
block.end = l.prev.ea
block.suffix = find_suffix(l.prev, block.start)
# We consider the terminating branch also as control instruction:
block.suffix.ctrls.append(l)
break

# branches that don't return are BRANCH-type instructions that we just follow
# (can be fragmented)
l = lines[l.insn.operands[0].addr]
continue

# Should not really happen (but maybe it does): last instruction of function also
# ends the block
elif l.ea + l.size not in lines:

break

l = lines[l.ea + l.size]

Keep in mind that all conditional jump conditions in this traversal are considered to fail - that’s how the
l.next method works. Hence, only one branch is traversed, knowing that in most cases both branches
will eventually coalesce. Also, while most states end in a br/br.s instruction for the next loop iteration, in
one case we probably see a fall-through (the block located just before this loop).

Detection of the Suffix Code Type and Extraction of the Constants (find_suffix function)

The find_suffix function is responsible for finding the control code part of the block, telling us about
the suffix type, and extracting the relevant constants; all of this will be returned in a new Suffix instance.
find_suffix also stores references to every control instruction into its ctrls field; these will be later
nop-ed out in the patching stage. To do it’s work, find_suffix relies on the parameter l, pointing to the
last instruction of the block previous to the final branch to the next loop iteration (or just the last instruction
in case of a fall-through state). It does so by walking backwards from that instruction using a temporary
variablel2. Because the control code is atmost 11 instructions long, it stopswhen this threshold is reached,
or when the block’s start-address or the switch instruction is hit. These up to 11 instructions are put into
a list ctrls, like before in reverse order:

NCSC • GovCERT.ch 15



Unflattening ConfuserEx .NET Code in IDA 2022-09-16

l2 = l
tree_else_addr = -1 # for branches, the else part usually follows, but could be

# branched to as well
# byte sequence of previous instruction (so actually the one behind), allows to detect
# 2 identical ldc instructions
prev_bytes = b''
for i in range(11): # suffixes are never longer

if l2.insn.mnem == ”switch”:
break

ctrls.append(l2)
if l2.ea == block_start_addr:

break

The variable tree_else_addr will be used to correctly link the IF-part of a branch to the ELSE-part - see
below for more details. Notice that we keep the binary representation of the previous instruction in a vari-
able prev_bytes; this allows us to easily detect the two subsequent ldc.i4 clones used in the BRANCH
suffix types.

We skip a short piece of code here (shown and explained three code paragraphs further down), which
asserts the correct flow in case of BRANCH suffix type.

The code cross-reference approach is used once more to decide if we can just go backwards normally, or
need to take care of a branch; this also allows us to follow back unconditional branches without preceding
fall-through:

crefs = list(l2.crefs_to)
if len(crefs) == 1:

prev_bytes = l2.bytes
l2 = sark.Line(crefs[0])
continue

# Only instructions used in standard branch construct (b.. / ldc / )
if len(crefs) != 2:

raise Exception(f”Only 1 or 2 crefs allowed at {l2.ea:X}”)

If we have more than one reference, we must either be at the pop instruction of one of the two BRANCH
suffix types, or one of their ldc.i4 instructions. As explained below, the latter case should already be
dealt with at this point though. In case of the pop instruction, in all observed layouts - fragmented or not -
the IF part with its 2 ldc instructions immediately precedes the pop instruction, while the ELSE part ends
in an unconditional br to the pop instruction. The address of this branch can be extracted using list(
set(crefs)- set([l2.prev.ea]))[0], which just removes the final instruction of the IF part from the
code references and so should point to the br of the ELSE part; this address is stored in a local variable
tree_else_addr, initialized to -1, for one of the next loop iterations:

# a BRANCH combines at ”pop” instruction; immediately before is the if part (2 ldc's)
# note: theoretically, a branch cold appear in between
if l2.insn.mnem == ”pop”:

tree_else_addr = list(set(crefs) - set([l2.prev.ea]))[0]
prev_bytes = l2.bytes
l2 = l2.prev

NCSC • GovCERT.ch 16



Unflattening ConfuserEx .NET Code in IDA 2022-09-16

continue
else:

prev_bytes = l
l2 = l2.prev

When going back beyond the pop instruction, we use the fact tree_else_addr was set to a value dif-
ferent from -1 (meaning a popinstruction was seen) in order to detect the first of the two ldc clones in
the IF branch - at this point we must jump to the just memorized ELSE branch. This needs to be done
earlier in the loop (before crefs was assigned, where the skipped code was mentioned), and we also set
tree_else_addr back to -1:

if tree_else_addr >= 0 and l2.insn.mnem == ”ldc.i4” and l2.bytes == prev_bytes:
# 2 identical ldc.i4 instructions detected
prev_bytes = l2.bytes
# after this, we jump to the else tree (linking to the pop)
l2 = sark.Line(tree_else_addr)
tree_else_addr = -1
continue

When the collection of the control code is completed, we can use the resulting ctrls list to differ the types:

• SIMPLE is easily identified by its ldc.i4 instruction at the end - it also is the only actual control
instruction:

if ctrls[0].insn.mnem == ”ldc.i4”:
s.sType = SType.SIMPLE
s.val = l.insn.operands[0].imm
s.addr = l.ea
s.ctrls.append(ctrls[0])

• MXOR is also easy to detect: we just allow for different local variables for the state variable. Keep in
mind that all 5 instructions checked for are considered control instructions (and suffix’s addr is set
to the first of them):

elif ctrls[0].insn.mnem == ”xor” and ctrls[1].insn.mnem == ”ldc.i4” and \
ctrls[2].insn.mnem == ”mul” and \
ctrls[3].insn.mnem == ”ldc.i4” and ctrls[4].insn.mnem.startswith(”ldloc.”):

s.sType = SType.MXOR
s.xor = ctrls[1].insn.operands[0].imm
s.mult = ctrls[3].insn.operands[0].imm
s.addr = ctrls[4].ea
s.ctrls.extend(ctrls[0:5])

• BRANCH needs a bit more flexibility - note that ctrls[6] is just checked for starting with the letter b,
as it can be the relevant conditional branch, or an additional unconditional fragmentation branch just
after it, depending on the layout. Everything except this one or two branches are considered control
code (this has to do with the special patching situation explained later on), but depending on the

NCSC • GovCERT.ch 17



Unflattening ConfuserEx .NET Code in IDA 2022-09-16

situation, we must set the start address differently:

elif ctrls[0].insn.mnem == ”pop” and \
ctrls[1].insn.mnem == ”ldc.i4” and ctrls[2].insn.mnem == ”ldc.i4” and \
ctrls[3].insn.mnem in (”br”, ”br.s”) and \
ctrls[4].insn.mnem == ”ldc.i4” and ctrls[5].insn.mnem == ”ldc.i4” and \
ctrls[6].insn.mnem.startswith(”b”):

s.sType = SType.BRANCH
s.val = ctrls[1].insn.operands[0].imm
s.val_else = ctrls[4].insn.operands[0].imm
if ctrls[6].insn.mnem in (”br”, ”br.s”):

if ctrls[7].insn.mnem.startswith(”b”):
# Fragmentation case, we start one instruction earlier
s.addr = ctrls[7].ea

else:
raise Exception(f”br should be preceeded by conditional branch at VA {ctrls[6].

ea}”)
else:

s.addr = ctrls[6].ea
s.ctrls.extend(ctrls[0:6])

• BANCH_MXOR is dealt with in the same way. As a side note, we did not actually see the fragmented
layout for this suffix type:

elif ctrls[0].insn.mnem == ”xor” and ctrls[1].insn.mnem == ”mul” and \
ctrls[2].insn.mnem == ”ldc.i4” and ctrls[3].insn.mnem.startswith(”ldloc.”) and \
ctrls[4].insn.mnem == ”pop” and \
ctrls[5].insn.mnem == ”ldc.i4” and ctrls[6].insn.mnem == ”ldc.i4” and \
ctrls[7].insn.mnem in (”br”, ”br.s”) and \
ctrls[8].insn.mnem == ”ldc.i4” and ctrls[9].insn.mnem == ”ldc.i4” and \
ctrls[10].insn.mnem.startswith(”b”):

s.sType = SType.BRANCH_MXOR
s.val = ctrls[5].insn.operands[0].imm
s.val_else = ctrls[8].insn.operands[0].imm
s.mult = ctrls[2].insn.operands[0].imm
if ctrls[10].insn.mnem in (”br”, ”br.s”):

if ctrls[11].insn.mnem.startswith(”b”):
s.addr = ctrls[11].ea

else:
raise Exception(f”br should be preceeded by conditional branch at VA {ctrls[6].ea

}”)
else:

s.addr = ctrls[10].ea
s.ctrls.extend(ctrls[0:10])

Emulation

After a Switch is fully parsed and an initial state actually found, it can be emulated by recursive code; this
is done for every possible initial state, if there should be more than one:

for initial_state in switch.entry_states.keys():
print(f” Entry state {initial_state}”)
switch.failed = not switch.emulate(initial_state, value=-1, prev_block=None,

NCSC • GovCERT.ch 18



Unflattening ConfuserEx .NET Code in IDA 2022-09-16

do_print=True, indent=1)

Switch’es emulation method returns True if it has worked without issues. Situations like inconsistent
state variables return False. The emulation method is pretty straightforward, so we won’t describe it in
detail; if things work, the next_state and next_state_else properties of every block should be filled in
correctly. It also allows to print the state machine using do_print and indent.

Patching

The actual patching step is the most critical one. As already mentioned, IDA can’t directly patch CIL code.
Instead, we must patch directly into the binary. For this purpose, a Patcher class is defined, reading the
original binary and writing the modified binary to the same filename with an additional .dec suffix:

class Patcher(object):
bin_data: bytes
delta: int

# Read binary data from disk when instantiated:
def __init__(self) -> None:

with open(idaapi.get_root_filename(), ”rb”) as f:
self.bin_data = f.read()

self.delta = 0

def write(self) -> None:
with open(idaapi.get_root_filename() + ”.dec”, ”wb”) as f:

f.write(self.bin_data)

The delta value stores the difference between raw file offsets and IDA’s virtual addresses. Unfortunately,
it needs to be recalculated for each method. Also, as we use sark’s .next property to walk through all
instructions of a method, this might sometimes skip some “code caves” (unused junk instructions), so we
can’t expect the byte pattern to be precisely identical in the binary to find the offset. So we decided for a
workaround to find a match as far as possible:

# set_fct: find function code in binary data and calculate ”delta” for this function
# (VA-physical mapping)
def set_fct(self, start_va_addr: int, pattern: bytes) -> None:

while True:
# Somethimes instructions are skipped that sark does not see, so not the full
# pattern need to match. Decrease until it matches.
# TODO: Make sure match is still unique
fct_offset = self.bin_data.find(pattern)
if fct_offset >= 0:

break
pattern = pattern[:-1]

self.delta = fct_offset - start_va_addr

When trying to unflatten code, different approaches can be chosen. The cleanest would be to re-arrange
the whole code of a method. We decided against this as we expect many potential problems doing so. For

NCSC • GovCERT.ch 19



Unflattening ConfuserEx .NET Code in IDA 2022-09-16

once, all branches in the method must be re-calculated, and care needs to be taken to differ between near
and far branches. Also, embedded structural elements like try-except-constructs could be broken by just
moving code of a function around.

An easier approach is be to leave all “real” code where it is, and just replace the start of all “control” code
fragments we previously identified by branches to the next calculated states. This will result in code with
non-optimal layout, fragmentation, and non-required branches - the main question however is whether
dnspy will be able to decompile such code or not. We can’t conclusively answer this question, but our
experiments showed that this works quite well, as long as all “other” control code (the code not actually
used for our replacement branches) isnop-ed out, i.e. overwritten by00 bytes (CIL’s opcode fornop). dnspy
does not seem to be able to detect and ignore unreachable instructions, so we can’t just let these artifacts
lie around, but are instead forced to clean things up.

To show the intended result, the code shown in the previous image looks like this after patching - notice
that all control code is now gone, but actual code blocks remain at their addresses. We mark the same
State tags to make comparison easier; e.g. state 1, which does not contain any actual code - it’s like an
empty state - is now reduced to a single branch to the next state 4. Also, at the end of state 4, we actually
left the conditional branch where it was (at addresses 2338) and overwrote the first ldc.i4 0x917879FC
instruction of the ELSE part by a branch to state 3 (at VA 233A, jumping to 23A8)

NCSC • GovCERT.ch 20



Unflattening ConfuserEx .NET Code in IDA 2022-09-16

To show the nop-ed out part, this is the same code in non-graph view:

seg000:2310 {
seg000:2310 .maxstack 4

NCSC • GovCERT.ch 21



Unflattening ConfuserEx .NET Code in IDA 2022-09-16

seg000:2310 .locals init (unsigned int32 V0,
seg000:2310 unsigned int32 V1)
seg000:2310 ldc.i4.1
seg000:2311 stloc.0
seg000:2312 br loc_23A1
seg000:2317
seg000:2317 loc_2317:
seg000:2317 ldloc.0
seg000:2318 ldc.i4.1
seg000:2319 add
seg000:231A stloc.0
seg000:231B br.s loc_232A
seg000:231D .byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
seg000:232A
seg000:232A loc_232A:
seg000:232A
seg000:232A ldloc.0
seg000:232B conv.u8
seg000:232C ldc.i4.1
seg000:232D ldarg.0
seg000:232E ldfld int32 Struct1::int_0
seg000:2333 ldc.i4.s 0x1F
seg000:2335 and
seg000:2336 shl
seg000:2337 conv.i8
seg000:2338 blt.s loc_2353
seg000:233A br.s loc_23A8
seg000:233C .byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
seg000:233C .byte 0, 0
seg000:2353
seg000:2353 loc_2353:
seg000:2353 ldarg.0
seg000:2354 ldfld valuetype Struct0[] Struct1::struct0_0
seg000:2359 ldloc.0
seg000:235A ldelema Struct0
seg000:235F call instance void Struct0::method_0()
seg000:2364 br.s loc_2317
seg000:2366 .byte 0, 0, 0, 0, 0
seg000:236B
seg000:236B loc_236B:
seg000:236B br.s loc_232A
seg000:236D .byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
seg000:236D .byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
seg000:236D .byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
seg000:23A1
seg000:23A1 loc_23A1:
seg000:23A1 br.s loc_236B
seg000:23A3 .byte 0, 0, 0, 0, 0
seg000:23A8
seg000:23A8 loc_23A8:
seg000:23A8 ret
seg000:23A8 }

And indeed, dnspy can correctly decompile this method the way shown above.

CIL Branch Instructions

To understand the patching code, a short detour into CIL is required. Unlike native assembly, the first
byte of each instruction is always the opcode - no two- or more-byte opcodes exist. CIL knows exactly 26
different branch opcodes: one unconditional and 12 conditional ones, and each of them in a far variant

NCSC • GovCERT.ch 22



Unflattening ConfuserEx .NET Code in IDA 2022-09-16

(4 byte operand) and a near variant (1 byte operand with .s suffix in the mnemonic), so occupying 5 or 2
bytes. The far- and near-variant opcodes of each branch always differ by exactly 13. E.g. we can modify
the opcode of blt to blt.s by subtracting 13 from the opcode, and vice versa. The opcodes for br and
br.s are 0x38 and 0x2b, again with a difference of 13. As in native assembly, the encoded operand is a
2-complement delta to the address of the otherwise following instruction, so near branches have a range
of -128 to 127. When patching code, we must take care of far and near branches because we must not
overwrite non-control code; this would happen if we changed a near branch to a longer far branch requiring
three additional bytes.

These small helper functions support us with patching code - they should be self-explanatory:

# Some helper functions to deal with branch functions:
# 0x2b - 0x37 are near (.s) variants, 0x38 - 0x44 far variants
# (difference with same condition is always 13)
# 0x38 / 0x2b are the unconditional jumps
def is_branch(opcode: int) -> bool:

return 0x2b <= opcode <= 0x44

def is_near(opcode: int) -> bool:
return 0x2b <= opcode <= 0x37

def is_far(opcode: int) -> bool:
return 0x38 <= opcode <= 0x44

def make_far(opcode: int) -> int:
if is_far(opcode):

return opcode
return opcode + 13

def make_near(opcode: int) -> int:
if is_near(opcode):

return opcode
return opcode - 13

def is_in_near_range(jump_addr: int, target_addr: int) -> bool:
return -128 <= target_addr - (jump_addr + 2) <= 127

# branch_delta: calculate delta from jump_addr to target_addr and encode in 1
# (if near) or 4 bytes
def branch_delta(jump_addr, target_addr, near: bool) -> bytes:

if near:
return struct.pack(”B”, (target_addr - (jump_addr + 2)) & 0xff)

return struct.pack(”<I”, (target_addr - (jump_addr + 5)) & 0xffffffff)

With this in mind, Patcher implements methods to patch branches, either by overwriting with an uncon-
ditional branch (if overwrite_unconditional is set to True), or by replacing the target address of an
existing conditional branch, as well as to nop out instructions and code blocks - the latter one uses recur-
sion in case of conditional branches:

NCSC • GovCERT.ch 23



Unflattening ConfuserEx .NET Code in IDA 2022-09-16

# patch_branch: patch in a branch to the destination address at the given address.
# if overwrite_unconditional is true, a br or br.s is encoded.
# otherwise, the existing branch condition is kept (just made far or near if required)
# returns the number of bytes required (5 for long, 2 for short)
def patch_branch(self, jump_addr: int, target_addr: int,

overwrite_unconditional=False) -> int:
opcode = self.bin_data[jump_addr + self.delta]
if overwrite_unconditional:

opcode = 0x38 # this is a br instruction
if not is_branch(opcode):

raise Exception(f”ERROR: there is no branch at address {jump_addr:X}”)

near = is_in_near_range(jump_addr, target_addr)
if near:

inst_size = 2
opcode = make_near(opcode)

else:
inst_size = 5
opcode = make_far(opcode)

self.bin_data = self.bin_data[:jump_addr + self.delta] + \
opcode.to_bytes(1, ”little”) + \
branch_delta(jump_addr, target_addr, near) + \
self.bin_data[jump_addr + self.delta + inst_size:]

return inst_size

def nop_inst(self, l: sark.code.line.Line) -> None:
addr = l.ea + self.delta
self.bin_data = self.bin_data[:addr] + \

(b'\x00' * l.size) + \
self.bin_data[addr + l.size:]

def nop_code(self, l: sark.code.line.Line, end_address: int) -> None:
while True:

self.nop_inst(l)
if l.ea == end_address:

return
if l.insn.mnem in (”br”, ”br.s”):

l = sark.Line(l.insn.operands[0].addr)
continue

if l.insn.mnem.startswith(”b”):
self.nop_code(sark.Line(l.insn.operands[0].addr), end_address)

l = l.next

The main code creates one Patcher instance, which is referenced to in every Switch instance as a prop-
erty patcher, because patch is a method of the Switch class.

Avoiding Overwriting Real Code When Patching

Asmentioned before, wemust be careful to never overwrite actual code. So let’s look at the different suffix
types and layouts:

• SIMPLE: The control code for a SIMPLE block is always a ldc.i4 ... instruction, which requires
5 bytes. As explained earlier, theoretically a 2-byte ldc.i4.s for 1-byte values or even an implicit
1-byte instruction for very small values could be used; but as this happens very rarely, we think it’s
safe to ignore these or deal with these situations manually. As our branch instruction requires 2 or 5

NCSC • GovCERT.ch 24



Unflattening ConfuserEx .NET Code in IDA 2022-09-16

bytes as well (depending if it’s near or far), we’re safe.
• MXOR: The same goes here, control code is even longer (and we never saw it fragmented), so over-
writing is safe

• BRANCH: This is the tricky part. We must differ between the 2 layouts.
– If no fragmentation is used, we’re safe as well: We’ll have a 2- or 5-byte conditional jump, fol-

lowed by a two 5 byte ldc instructions of the ELSE part, so 12 or 17 bytes. We must overwrite
this in the worst case with a far conditional and a far unconditional jump, so 10 bytes.

– If fragmentation is used, the situation is different. In the worst case, we only have a 2-byte
conditional near branch followed by a 2-byte unconditional near branch (4 bytes), so we can’t
fill in 10 bytes without potentially overwriting real code behind. As a workaround, we decided
to leave these 2 branches untouched, and instead overwrite the first ldc.i4 instruction of the
IF- and ELSE-part, where we know we have 5 (even 10) bytes available at each location. This
results in additional branches, but as this does not seem to be a problem for dnspy, we can live
with it. Note that the fact these 2 branch instructions remain as they are is the reason we do not
consider them as control instructions, so they are not noped out in the patch method. Note
that we could use the same approach for the no-fragmentation case, but decided to not do this,
mainly because it would be more complicated to implement it without offering advantages.

• BRANCH_MXOR: This is basically identical to BRANCH.

Finally, we can implement Switch’s patch method. Note that we do not need to change jumps into the
initial states, as they already point to the right place. Patching occurs in several stages:

• nop out the main loop construct (where the main loop’s XOR is calculated), up to and including the
branch that follows the switch instruction. As this code was never fragmented, we can go for the
easy way here.

• For all blocks, except end blocks:
– nop out all control instructions (keep in mind that the conditional and optional unconditional

branch instructions of a BRANCH/BRANCH_MXOR type are not affected by this).
– Should a state not have been actually used in the emulation, an INFO warning is printed: this is

not exactly an error, but still unusual. Then the whole “real code” block is nop-ed out as well.
– For SIMPLE and MXOR suffixes (where block.next_state_else == -1), just patch over an

unconditional branch to the calculated next state - we know this can’t overwrite any real code.
– For the two BRANCH types we differ between the fragmented case (if a br/br.s follows) and

the monolithic case. In the first case, we overwrite the two first ldc.i4 instructions of the 2
branches; we find these by extracting the jump addresses of the conditional and the uncon-
ditional branch. Otherwise, we modify the conditional branch to one new target, and put an
unconditional branch behind.

# patch: patch in all required branch and nop codes:
def patch(self, lines: Dict[int, sark.code.line.Line]) -> None:

# nop out switch loop as it could trigger unwanted crossreferences:
l = lines[switch.cont_addr]
while True:

self.patcher.nop_inst(l)
if is_branch(l.bytes[0]):

break

NCSC • GovCERT.ch 25



Unflattening ConfuserEx .NET Code in IDA 2022-09-16

l = l.next

for block in switch.blocks:
if block.is_end or block.is_ret:

continue

# nop out all control instructions:
for ctrl_inst in block.suffix.ctrls:

self.patcher.nop_inst(ctrl_inst)

# nop out all unusuaed states:
if block.next_state == -1:

print(f”INFO: block {block.state} at VA {block.start} is ”
f”unused - code will be nopped out”)

self.patcher.nop_code(lines[block.start], block.end)
continue

# and patch in branches:
if block.next_state_else == -1:

# State has a unique follower (is not a branch): patch in a
# unconditional br instruction
self.patcher.patch_branch(block.suffix.addr,

switch.blocks[block.next_state].start,
overwrite_unconditional=True)

else:
# State has an actual branch:
if lines[block.suffix.addr].next.insn.mnem in (”br”, ”br.s”):

# Followed by a br/br.s: fragmentation. Long branches might not fit,
# so put these over subsequent ldc instructions:
self.patcher.patch_branch(

lines[block.suffix.addr].insn.operands[0].addr,
switch.blocks[block.next_state].start,
overwrite_unconditional=True)

self.patcher.patch_branch(
lines[block.suffix.addr].next.insn.operands[0].addr,
switch.blocks[block.next_state_else].start,
overwrite_unconditional=True)

else:
# Otherwise (2 ldc instructions follow) there is enough space
size = self.patcher.patch_branch(

block.suffix.addr,
switch.blocks[block.next_state].start,
overwrite_unconditional=False)

self.patcher.patch_branch(
block.suffix.addr + size,
switch.blocks[block.next_state_else].start,
overwrite_unconditional=True)

Results and Lookout

The deobfuscator script only reports one function, Class6::smethod_1 as failed because the initial con-
tent of the state variable could not be found out. It actually happens at VA 5322 (ldc.i4 0xB4A56FF0),
but the situation is a bit complicated due to several switch constructs combined with a try. Another
function, GClass14::method_5, reports several unusues states and results in code dnspy can’t handle.
This is a quite long function and needs forther study. It seems to contain a switch statement inside a
non-end state of another switch statement, which explains the current inability to deal with it.

All other 90 obfuscated functions seem to have worked - we did not check if they all make sense though.

NCSC • GovCERT.ch 26



Unflattening ConfuserEx .NET Code in IDA 2022-09-16

There were occasional unusued states reported, but whereever we checked, these states indeed did not
contain any real code, so this might just be a normal obfuscator artifact.

Source code is available on https://github.com/govcert-ch/ConfuserEx_IDAPython/

NCSC • GovCERT.ch 27


	Initial Unpacking and Motivation
	Code Flattening After Decompilation
	Analysis of Code Flattening in CIL
	Caveat: Fragmentation of State Code
	Caveat: Non-Linear Code Fragments
	Caveat: More Than One switch in a Function
	Caveat: Shared Code
	Caveat: Inconsistent State Machine

	Parsing and Analysis
	Main Parsing Loop
	Detection of the Suffix Code Type and Extraction of the Constants (find_suffix function)

	Emulation
	Patching
	CIL Branch Instructions
	Avoiding Overwriting Real Code When Patching

	Results and Lookout

