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Abstract: In this paper we present XSAMPL3D, a novel language for the high-level rep-

resentation of actions performed on objects by (virtual) humans. Actions are encoded in

a compact and human-readable XML-format which is a suitable basis for the synthesis of

virtual human animations. XSAMPL3D descriptions can be generated automatically from

captured VR interaction data or created manually for rapid prototyping of animations.
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1 Introduction

Previous work on the animation of virtual humans performing object manipulations has led

to two main approaches: data-driven methods, using motion-capture data, and model-driven

methods, synthesizing animations at runtime. Usually, data-driven approaches suffer from

limited adaptability to new situations, such as changing environments and different charac-

ter proportions, e.g. the well-known retargetting problem [Gle98]. Model-driven approaches

on the other hand allow for high adaptability but often result in unnatural, ‘robotic’-looking

animations. In earlier work, we described a Virtual Reality-based approach to character

animation that aims to combine the strengths of the data- and model-driven approaches:

First, a VR user demonstrates the manipulations of scene objects. The user’s movements

and, complementing traditional motion capture, interactions with the objects of a virtual

environment are recorded via VR tracking devices, including data gloves or equivalent finger

tracking systems (in contrast to classical VR manipulation techniques, where the selection

of an object has to be confirmed explicitly, we focus on natural interaction by using grasp

recognition). Then, the recorded motion and interaction data are abstracted to an inter-

mediate action representation. Finally, animations of virtual characters are generated from

these action representations through behavioral animation techniques. Following research

results from the field of imitation learning, where a distinction is made between imitation

on the level of mere movements as opposed to imitation of actions on objects, action =

movement + goal [Arb02], we call this approach action capture [JAHW06].

As this paper’s main contribution, a detailed account of the action representation lan-

guage XSAMPL3D is presented. As the main focus of action capture lies on the recording

and animation of realistic manipulations of objects, XSAMPL3D representations center on

action/object pairs, supplemented by information allowing for smooth animation of virtual



Figure 1: Action Capture - action representation and animation synthesis.

characters such as timing and trajectory data. The automatic derivation of XSAMPL3D

descriptions from user interactions in VR (lower left corner in Figure 1) builds on the de-

tection of basic interactions such as grasp, move, and release which are then combined to

complete actions on the involved object. XSAMPL3D representations are however also com-

pact enough to be directly authored by an animation designer (upper left corner in Figure 1),

e.g. for purposes rapid prototyping of animations showing virtual humans performing object

manipulations.

2 VR Infrastructure

Even though the action language presented here can also be used to rapid-prototype anima-

tions by manually creating actions description files, it is normally embedded in the action

capture architecture. This architecture poses several demands on the infrastructure of the

virtual reality system it runs on.

2.1 Scene Representation: Annotated Objects

An important component of an action description and animation system is formed by

the objects on which actions are performed. In the sense of Arbib’s formula action =

movement+goal [Arb02], objects are the goals of the actions. In computer graphics objects

are mostly described as geometric models with additional information for rendering like ma-

terials, texture and other maps, etc. However, for the kind of complexity involved in the

action capture method this is not enough. A description method is called for that allows

for integration of other aspects about an object that go beyond mere graphical appearance,

like physical properties, joint information for articulated objects and semantic annotations

to support the grasping algorithms. To provide a convenient mechanism for declaration of

all these different aspects of higher-level information about scene objects, the concept of



annotated objects has been introduced [WHAJ06]; for an extension to articulated objects

such as control actuators like knobs, switches etc. see [Gom08]. Object type descriptions

are written in an XML-based representation structure and stored in a common database for

reference.

2.2 Interaction Recording

Since our approach for animation synthesis is primarily data-driven there needs to be some

way to record VR interaction data. Most importantly arm trajectory and hand posture data

during grasping are recorded. In our system all interaction data is stored persistently in an

interaction database organized by recording sessions. Recording sessions are subdivided into

channels each of which represents a certain single stream or element of the interaction data.

This could be an input device like an optical tracker or a data glove, or motion data of a

certain part of the body like hand postures or hand trajectories. The latter are recorded

in a hand trajectory channel of which there is one for each hand. Trajectories within the

channel are segmented by pauses in the motion or by object contact.

Hand posture data can be annotated with the grasp type used. In this way it can be

used to train a grasp recognition classifier or as example data to create a low-dimensional

posture model for a particular grasp type (see section 4). All grasp types are specified with

respect to a certain grasp taxonomy. During the course of the virtual workers project several

taxonomies have been explored. Currently the Schlesinger taxonomy [Sch19] is used for its

simplicity and since it produces reliable classification results.

The result of the intermediate interaction analysis process is the detection of basic in-

teractions (like reach-motions, grasping, releasing and manipulations of objects) which form

the ‘building blocks’ of complete action descriptions. The details of the interaction analysis

process go beyond the scope of this paper and the process is only mentioned here for the

sake of completeness.

3 The XSAMPL3D Action Language

In order to realize a simple exchange and a compact representation of action descriptions,

we defined an XML-based language called XSAMPL3D (XML Synchronized Action MarkuP

Language for 3D). XSAMPL3D offers a human-readable syntax at a high level of abstraction.

On the one hand, this facilitates the authoring of action descriptions and the post-editing of

previously captured action sequences. On the other hand, if XSAMPL3D actions are derived

from lower level data such as interaction events, trajectories and motion records, some of the

details contained in the original data are lost. To compensate for this drawback, a multi-layer

architecture was realized within the action capture framework, which allows for referencing

lower-level information from higher-level layers. For example, an action description may

contain links to the underlying interaction event layer. Using this mechanism, an animation

player is able to synthesize an action animation at different levels of detail: From a ’pure’



Figure 2: Simplified overview of the XSAMPL3D schema elements.

XSAMPL3D description, an animation can be generated which resembles roughly a recorded

human motion (low level of detail). If the XSAMPL3D document contains additional links

to interaction event data it is possible to reproduce the original motion very precisely (high

level of detail). However, in either case an XSAMPL3D document must provide sufficient

information to generate a natural looking animation.

Until now, XSAMPL3D comprises methods for the specification of one- or two-handed

object manipulations. Actions can involve the displacement of objects. Currently, we do

not consider indirect manipulation of objects (i. e. manipulating an object by using another

object, such as displacing an object with a tool).

XSAMPL3D was specified as an XML schema. The schema defines a hierarchy of action

types and additional elements related to the composition and synchronization of actions.

It can be seen as a framework which delivers the components for building complex action

scenarios. Figure 2 presents a simplified overview of the different action types.

XSAMPL3D was designed with extensibility in mind. Since very specific scenarios require

very specific actions, it is almost impossible to specify a complete set of all imaginable

actions. For example, while in a sports scenario an action throw object could be useful, in

a car driving scenario such an action makes little sense. Thus, only a small set of actions

was defined which allows us to describe the use cases we primarily address in our project,

such as ergonomic studies on virtual machine prototypes. At schema level, a developer can

extend XSAMPL3D by deriving new action types from the predefined ones in order to adapt

the language to new situations. In addition, at instance level new actions can be composed

using a set of interaction elements as described later in this section.



Figure 3: Espresso machine example. (a) The virtual human attaches a porta filter to an

espresso machine. (b) The virtual human (skeletal representation) presses a button to fill a

cup. (c) The cup is taken out of the machine.

3.1 Example

As an example to demonstrate the application of XSAMPL3D we have chosen a brief scenario

(Figure 3). We developed this example among others in a practical course together with

students at the TU Freiberg in order to show the feasibility of our approach.

3.2 Action Specification

The specification of the action format includes different aspects, such as (manipulated)

objects, different action types, action composition, synchronization and timing.

Objects can be divided into several classes: articulated objects (e.g. control actuators),

fixed objects and movable objects. Articulated objects have specific movement constraints

which are defined in a separate annotated object document (see section 2). For example, a

slider can only be moved along one axis and has a minimum and a maximum position. Fixed

objects cannot be moved at all while movable objects can be moved arbitrarily (e. g. a cup).

An action describes the interaction of the (virtual) human’s hand with a particular ob-

ject. Conceptually, an action consists of different phases: Reaching (approaching the object),

grasping, object interaction and releasing the object. Different action types can be distin-

guished: constrained object movements (Slide, Rotate, ChangeState), unconstrained object

movements (Manipulate) and actions which don’t result in an object displacement (Touch).

Some action types can be only performed on special objects. For instance, constrained

movements refer to the corresponding articulated object types. Unconstrained movements

normally result in a change of the position and/or orientation of a movable object.

We focus on the manipulation of freely movable objects here since a more detailed dis-

cussion of articulated objects and the corresponding actions would go beyond the scope of

this paper.

The manipulation of an object can involve different interactions, such as Place, Shift or



Turn. The additional Pause element enables the insertion of a pause of a certain duration into

a sequence of interactions. Place places an object at a certain position expressed in world

coordinates (default), its own local object coordinates or relative to another object. It is also

possible to specify the final orientation of the manipulated object. Shift is comparable to

Place, with the difference that the object is moved over a planar surface (such as a computer

mouse moved over a desk). A Turn interaction results in an orientation change of the object

by specifying a turn angle and an optional turn axis. The turn axis is the ”Up”-axis of the

object by default. For example, in the kitchen scenario, the porta filter is first moved to

the espresso machine and attached to it afterwards by a turn. The corresponding action

description looks as follows:

<Manipulate ID=’AttachFilter’ graspType=’schlesinger:cylindrical’

object=’PortaFilter’ reachDuration=’0.5’>

<Place duration=’1.0’ orientation=’0 0 1 0.785’

position=’0 0.1 0.1’ posRelativeTo=’EspressoMachine’/>

<Turn duration=’0.5’ angle=’-0.785’/>

</Manipulate>

An action has two timing related attributes: reachDuration and duration (part of the

contained interactions). reachDuration represents the time required to position the hand

on the target object (reaching phase). During the reaching phase the hand is also preshaped

to perform a grasp. The reaching phase has finished if a stable grasp has been established.

The grasp type can be defined explicitly by using the action property graspType (syntax

<grasp-taxonomy>:<grasp-type>). If no grasp type was specified, the animation player

has to decide which grasp type can be applied in order to generate a plausible animation.

The duration attribute of an interaction defines the length of time required to perform the

interaction. In the example above it will take 0.5 seconds to turn the porta filter. The sum

of all interaction durations and the reach duration represents the overall action duration.

Actions can be grouped together using an action unit. An action unit contains a sequence

of actions which are executed with the same hand or with two hands cooperatively. In order

to enable an appropriate description of action units, three different kinds of action units

were defined: RightHand, LeftHand and BiManual. The code example below specifies that

all actions of the kitchen scenario are to be performed consecutively with the left hand

(simplified).

<LeftHand startTime=’0’ relaxDuration=’2’>

<Manipulate ... object=’PortaFilter’>...</Manipulate>

<TouchObject ... object=’Button’/>

<Manipulate ... object=’Cup’><Place .../></ManipulateObject>

</LeftHand>

Properties related to timing of an action unit are startTime and relaxDuration. The

startTime is the point of time when the first action of the unit starts after the unit was

entered. All actions of the action unit are then executed consecutively in the order defined



Figure 4: (a) A BiManual unit describes a sequence of actions which are performed biman-

ually. (b) A Synchronize action can be used to ”synchronize” the movements of one hand

with the movements of the other hand to perform selected actions of parallel sequences with

both hands. In the example, actions 2 and 3 of unit 1 are performed bimanually.

in the corresponding XSAMPL3D instance document. When the last action has been com-

pleted, the action unit enters the relaxation phase. The relaxation duration of an action unit

therefore describes the time required to return to the hand’s relaxation position.

Action units themselves can be combined via so called unit composites. There are parallel

composites, in which all actions are executed in parallel, and sequential composites, in which

all actions are executed successively. The processing of a composite ends if the last (in

sequential composites) or longest action unit (in parallel composites) is completed. For

example, it would be possible to specify a parallel composite holding a unit which describes

the action of the left hand (such as taking the cup out of the espresso machine) and a unit

for the right hand, which at the same time is used to perform other tasks. Beside action

units, unit composites can contain other composites. For instance, one can define sequential

unit composites which are contained in a parallel composite. To realize such a containment

hierarchy, the composite design pattern was applied.

ObjectInteraction elements, actions, action units and unit composites are so called time

containers. A time container has its own internal relative time line. Any time container,

which is equipped with an ID, can become a kind of a reusable prototype. Instead of

inserting a copy of the container description at an appropriate place in an XSAMPL3D

instance document, a ReuseContainer, ReuseAction or ReuseObjectInteraction tag with

a prototype reference can be applied. An example would be a ReuseAction element which

references the AttachFilter -action defined above.

A very special action type is the Synchronize type. Synchronize primarily enables the

description of bimanual object manipulations. In contrast to the bimanual unit (see above in

this section), Synchronize also allows for partially synchronizing parallel units (Figure 4).

Like any other action, Synchronize can be inserted into an action unit. A synchronize action

contains the ID of the unit to synchronize with and an attribute to specify the duration of

the synchronization.



3.3 Action-Behavior-Mapping

Since XSAMPL3D descriptions are independent of a specific animation framework, map-

pings from actions to behaviors and animations can be realized in several different ways. In

our implementation an XSAMPL3D instance document is automatically transformed into

an XML behavior plan, which is a suitable format for virtual human animation (see next

section). Since XSLT is the de-facto standard for transforming XML documents we use the

schema-aware Saxon engine (www.saxonica.com), which allows us to access type informa-

tion from the XSAMPL3D schema in XSLT. If necessary, the generated XML-plans can be

manually refined.

4 Behavior Language and Execution

In our architecture actions describe the animation at a high-level of abstraction. Many

informations about how the action is executed in detail are not included at this level of

abstraction. However, for visualization and replay, such information is indispensable. The

transformation of actions into animations is performed using a behavior-based animation

framework (right-hand side of Figure 1). The framework uses a set of goal-directed behaviors

to compute the joint rotation for animating the virtual human. An important property of

the behaviors is their context awareness. Depending on the current situation, e.g. positions

and orientations of objects, different control parameters for animating the virtual human are

generated. During animation synthesis, machine learning and optimization techniques are

used in order to guarantee that the generated motions fit the situation and environment at

hand, more details are given in Section 4.1. The approach builds on current robot control

architectures.

The behaviors contained in the framework include among others the relax, push, pick,

place and turn behavior. The relax behavior makes the virtual human take on a relaxed

body posture. This is useful for chaining several actions sequences. The push behavior can

be used to push any objects or buttons. The pick behavior makes the virtual human perform

a grasping motion in order to pick a given object. Conversely, the place behavior is used to

move the grasped object to a new position. The turn behavior allows the virtual human to

turn the grasped object around a given axis.

The framework automatically executes a sequence of behaviors provided in an XML

representation. Figure 5 shows the behavior sequence for the kitchen scenario. Each behavior

supported by the framework can be instantiated and parameterized in XML. The following

XML code shows the instantiation of a Pick behavior:

<behavior>

<type>Pick</type>

<param name="start-time">3</param>

<param name="end-time">4</param>

<param name="side">left</param>

<param name="object">Cup</param>



Figure 5: A sequence of behaviors used to create an animation in which a virtual human

brews a cup of coffee.

Figure 6: Left: The starting point of the algorithm. The goal is to grasp the object by moving

along a recorded trajectory. Right: First a suitable grasp is found using optimization (1).

Then, the new position of the wrist is used to retarget the trajectory (2).

<param name="grasp-type">Schlesinger::tip</param>

<param name="grasp-pre-shape">-1 0 0</param>

<param name="follow-trajectory-file">trajectory_1_global_left.trj</param>

<param name="follow-ik-method">heuristic</param>

<param name="pick-hand-coords-rotation">-1 0 0</param>

</behavior>

Apart from the start and end time of the behavior, the user can also supply the name

to be picked up and the particular grasp type in which this action should be performed.

Typically before grasping, the human hand configuration takes on a preshape followed by

the actual closing of the hand. This can be specified by the grasp-pre-shape parameter. The

given hand shape is specified as a coordinate of a point in a probabilistic low-dimensional

grasp model; for further details on this please refer to [BAHJV08]. The user can further

specify which inverse kinematics algorithm should be used. In the following we will roughly

explain the grasping algorithm for realizing such a pick behavior. In particular we will

show how the algorithm ensures that even new objects or displaced objects can be correctly

grasped.



4.1 Grasping Strategy

The synthesis of a new grasping animation consists of two steps, as can be seen in Figure

6. First, a stable and natural looking grasp is generated. This is done using an imitation

learning based approach. For this, the user provides some example hand configurations

using a data-glove. These recorded demonstrations can be used to synthesize a large number

of variations of the intended grasps. Using an optimization algorithm, such as a genetic

algorithm, an appropriate grasp can be generated for a given object. In the second step,

the new wrist position is used to generate a trajectory leading from the start position of

the hand to the new wrist position. Using the algorithm described in [BADV+08], we

retarget a previously recorded trajectory to the new wrist position. As a result we have

both a trajectory specifying the motion of the wrist during the animation as well as a hand

configuration for grasping the object. This is sufficient for generating the animation using

well-known algorithms, such as inverse kinematics. Motor programs for different skeletal

architechtures, such as the H-Anim format, allow us to replay the animation with a number

of available virtual humans.

5 Related Work

The design of XSAMPL3D was influenced by different research domains and standards. In

the field of Embodied Conversational Agents (ECAs) researchers separate concepts to de-

scribe the agent’s intentions (”higher-level” goals) from concepts to describe behaviors. From

this viewpoint, XSAMPL3D rather contains behavioral elements (actions) which represent

the steps required to reach a certain higher-level goal (such as preparing a cup of espresso),

while behavior plans as described in section 4 concretize how (i.e. with which body move-

ments) exactly such a goal can be achieved. Examples of behavior-related XML-formats in

the field of ECAs are e.g. MURML [KKW02] or the Behavior Markup Language [VCC+07].

Although these languages focus more on gestures, facial expression, gaze and speech than

on the interaction with virtual objects, they share some common aspects with XSAMPL3D,

such as the synchronization and timing of activities. Another influence of gesture-related

research in XSAMPL3D is represented by the concept of action units. This concept was in-

spired by Kendon [Ken04], who analogously uses the term gesture unit to denote a sequence

of connected gestures.

The CONFUCIUS system introduced in Ma and Mc Kevitt [MMK06] can be seen as an

example of a character animation framework which is partially based on action descriptions.

The authors propose a comprehensive list of hand movements. Some of these movements,

especially those involving the manipulation of objects, are comparable to XSAMPL3D inter-

actions. In contrast to XSAMPL3D, the authors aim at animation generation from natural

language input.

XSAMPL3D was also influenced by the field of animation scripting languages. For in-

stance, the Alice3D scripting language [PAB+97] aims at enabling 3D animation authoring



for novices. As in XSAMPL3D, 3D object manipulations (or actions) can be described in an

intuitive manner. For instance, objects can be moved to an absolute position or displaced

relative to their current position. As other animation scripting languages, Alice3D contains

elements for the definition of synchronization aspects, such as parallel and sequential move-

ments. However, Alice3D does not explicitly focus on hand-object interaction and virtual

character animation.

The syntax and semantics of XSAMPL3D synchronization elements, such as Parallel

and Sequential, were primarily inspired by SMIL, the Synchronized Multimedia Integration

Language [Wor98], while the reuse of time containers is geared to the DEF/USE-mechansim

in X3D or VRML.

6 Conclusion

In this paper, we proposed a new approach for the representation of actions involving object

manipulations and their reproduction by virtual humans, which is part of the action capture

overall process described in [JAHW06]. Actions are encoded in a domain-specific XML-

dialect called XSAMPL3D. XSAMPL3D offers a compact and human-readable notation at

a high-level of abstraction. XSAMPL3D descriptions can be either derived from recorded

interaction data or created manually for rapid prototyping of animations. XSAMPL3D

documents are automatically translatable into XML behavior plans, which provide a solid

foundation for the animation of virtual characters.

As a first proof-of-concept, the approach was successfully applied by students in a prac-

tical course. In this course several scenarios were realized, such as different kitchen scenarios

(e.g. the example described in this paper) and an office desk scenario.

We plan to evaluate the approach in further scenarios, especially scenarios including the

operation of control actuators. Since the existing physics support for control actuators has

been implemented and tested using a separate framework, this functionality has to be in-

tegrated as a component into our current virtual human animation system. In addition,

the flexible hierachical structure of XSAMPL3D facilitates the extension with elements that

allow the description of more than two parallel (i.e. left and right hand) activities. Exten-

sion possibilities comprise the integration of head and foot movements or multiple (virtual)

humans.
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