
Kinesthetic Bootstrapping:

Teaching Motor Skills to Humanoid Robots

through Physical Interaction

Heni Ben Amor, Erik Berger, David Vogt and Bernhard Jung

VR and Multimedia Group, TU Bergakademie Freiberg, Freiberg, Germany
{amor,bergere,vogt3,jung}@mailserver.tu-freiberg.de

Abstract. Programming of complex motor skills for humanoid robots
can be a time intensive task, particularly within conventional textual or
GUI-driven programming paradigms. Addressing this drawback, we pro-
pose a new programming-by-demonstration method called Kinesthetic

Bootstrapping for teaching motor skills to humanoid robots by means of
intuitive physical interactions. Here, “programming” simply consists of
manually moving the robot’s joints so as to demonstrate the skill in mind.
The bootstrapping algorithm then generates a low-dimensional model of
the demonstrated postures. To find a trajectory through this posture
space that corresponds to a robust robot motion, a learning phase takes
place in a physics-based virtual environment. The virtual robot’s motion
is optimized via a genetic algorithm and the result is transferred back
to the physical robot. The method has been successfully applied to the
learning of various complex motor skills such as walking and standing
up.

1 Introduction

Research in robotics and AI has lead to the emergence of increasingly complex
anthropomorphic robots, such as humanoids and androids. In order to be mean-
ingfully applied in human inhabited invironments, anthropomorphic robots need
to possess a variety of physical abilities and skills. However, programming such
skills is a labour and time intensive task which requires a large amount of expert
knowledge. In particular, it often involves transforming intuitive concepts of mo-
tions and actions into formal mathematical descriptions and algorithms. Even
in GUI-based programming environments where complex robot movements are
specified as sequences of robot postures defined in the graphical user interface,
much time is usually spent for parameter tweaking. Due to their relatively large
number of degrees of freedom, this process becomes particularly cumbersome for
the case of humanoid robots. To reduce the complexity of this task, more natural
and intuitive approaches to programming robot skills are called for.

This paper presents a new programming-by-demonstration method for boot-
strapping robotic motor skills through kinesthetic interactions. A human teacher
instructs the robot by manually moving the robot’s joints and body to postures



that approximate the intended movement. Then, an automatic optimization
phase takes place during which the robot learns a motor skill that still resembles
but also compensates for likely imperfections of the demonstrated movement.
This learning phase makes use of a physics-based virtual enviroment, where a
large amount of movement variations can be tried out very quickly without the
need for human intervention. In this way, the Kinesthetic Bootstrapping method
introduced in this paper both simplifies and reduces the time for programming
of robotic motor skills.

2 Related Work

The work presented in this paper can be regarded as a variant of imitation learn-
ing. In the context of robotics, the goal of imitation learning is to allow human
teachers to program robotic agents by conveying a demonstration of the desired
behavior. This is often realized using expensive motion capture or virtual real-
ity techniques in order to record the example motions. In [1] the walking gait
of a human demonstrator is first recorded through motion capture and then
adapted for imitation by a small humanoid robot. However, such approaches
need to tackle the correspondence problem: the question of how to map the joint
information of the user onto the robot’s body [2]. A variation of this approach
can be found in [3]. Here, actions are recorded while the human demonstrator is
interacting with a virtual reality environment using a data glove. Recently, more
intuitive approaches to programming by demonstration have been pursued. In
[4], direct kinesthetic interaction with humanoid robots has been used for teach-
ing manipulation skills. In this approach, the instructor has to repeatedly convey
demonstrations and provide corrective feedback to the learning robot. A similar
approach has been used by Tani et al. [5] to encode demonstrated behaviors using
recurrent neural networks. In both papers the imitated behaviors where limited
to the upper body of the robot and did not involve complex, dynamic motions.
In contrast to these works, the approach introduced in this paper works even
with a single example demonstration but can also deal with several examples.
The robot can adapt and improve the provided example autonomously, with-
out relying on any further interaction with the instructor. Further, providing
the example motion through a kinesthetic modality, allows us to increase the
naturalness of the interaction. This is closely related to “physical programming
languages” [6] found in human-computer interaction research.

3 Kinesthetic Bootstrapping

When learning a new physical skill, children are often supported by their parents.
This allows to transmit knowledge on how to solve the task at hand and, thus,
overcome learning barriers. In these situations, kinesthetic interactions serve as
a communication channel between the parent and the learning child. The bod-
ily experience resulting from these interactions helps to reduce the amount of



Fig. 1. Overview of the Kinesthetic Bootstrapping approach. After kinesthetic inter-
action, a posture model is created. A simulator is used to optimize the demonstrated
skill. The result is then applied on the real robot.

time needed for acquiring the skill. Still, the child has to go through an unas-
sisted learning phase in order to fully master the skill. Kinesthetic Bootstrapping
applies the same principle to the programming of humanoid robots. A human
conveys a demonstration of the task at hand through kinesthetic interactions.
The bodily experience allows the robot to draw important information on the
task at hand. This information is used to “bootstrap” the robot’s knowledge,
which is then used in a learning phase to reproduce the skill without any assis-
tance. Figure 1 shows an overview of the learning approach used in Kinesthetic
Bootstrapping.

First, the teacher moves the joints of the robot in order to convey a demon-
stration of the intended motion or behavior. This is done continuously without
relying on keyframes or another kind of discretization. During the demonstra-
tion, the motor configurations of the robot are recorded with a frequency of
20 Hz. The robot used in this study is a Bioloid robot with 18 servo-motors
(i.e. 18 degrees-of-fredom). In each step, the state of each of all servo-motors
is recorded, resulting in an 18-dimensional posture vector p. Once the user fin-
ishes the demonstration, all posture vectors are collected in order to compute
a low-dimensional posture model of the skill. Next, using the extracted posture
model, different variations of the skill are evaluated. This is done in a physics-
based virtual reality simulation of the robot. The simulator allows us to optimize
the motion without harming the robot hardware and without reyling on human
assistance. In particular, when the demonstrated motion is very dynamic, such
as a standing up motion, it is important for the robot to learn how to account
for the external (stabilizing) forces previously applied by the human teacher.
Once the optimization phase is finished, the learned motion is transfered to the
physical robot and replayed outside of the simulation. In the remainder of this
section, we will explain each phase of the learning process in more detail.

3.1 Simulator

As mentioned above, learning and adaptation of the demonstrated skill is per-
formed in a physics-based virtual reality simulator. The simulator is based on
the Open Dynamics Engine (ODE) and contains a precise model of the Bioloid



humanoid robot. For calibrating the model, each motor is automatically moved
by the calibration software and the time needed to reach a given configuration
by the real and simulated robot is measured. The difference between the two
time values, i.e. the discrepancy between the real and simulated world, is used
to adapt the values of the low-level PID controller in simulation, so as to better
fit the movements of the real robot. An important feature of this simulator is
an abstraction layer for the control of the robot. This layer allows it to control
the real or simulated robot or both using the same interface. Thus, the user can
always decide whether to apply the current program in reality or simulation.
During the learning phase, the simulator is used for reproduction of different
variations of the originally demonstrated motion. In a trial-and-error fashion
each variation is executed by the virtual robot, evaluated and the result used for
further optimization.

3.2 Low-Dimensional Posture Models

The kinesthetically recorded demonstration can be regarded as a template from
which important information about the skill in mind is inferred. More precisely,
the demonstration is used to compute a model, from which new variations of
the skill can be synthesized. In the following, such models will be referred to as
low-dimensional posture models. They are extracted by applying dimensionality
reduction techniques on the dataset P of recorded postures pi. The resulting
low-dimensional space of postures can have arbitrary dimensions d, with d <<

18. Without loss of generality, in the following explanation, we will use a two-
dimensional posture space (d = 2).

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
rr

or

0 5 10

Number of Dimensions

.
. . . . . . . . .

.

. . . . . . . . .

.
. . . . . . . . .

. . . . . . . . .
..

. . . . . . . . .

. . . . . . . . . .

.
. . . . . . . . .

. PCA. LLE. NLM. CCA. CDA. Isomap. MDS

Fig. 2. Left: A representation of the low-dimensional space corresponding to the pos-
ture model for grasping with both hands. Right: The projection error resulting from
applying different dimensionality reduction techniques to the recorded robot postures.



In Figure 2 (left) we see an example of a low-dimensional posture model.
The model was computed based on demonstrations of two-handed grabbing or
grasping. Different techniques such as PCA, LLE or Isomap can be used for
this purpose. Figure 2 (right) depicts the reprojection error of applying such
techniques to the robot postures. We found that for most skills, even with a
simple PCA, 95% of the original information can be retained using only four
principal components.

Each position in the posture space corresponds to a posture of the robot.
In the figure we see the postures resulting from projecting some points back
into the the space of 18 joint values. Because we get a continuous space, we can
compute interpolations and extrapolations of recorded postures. Motions can be
synthesized by simply specifying a trajectory in this space. Each point along the
trajectory reflects a posture of the robot at a particular time step of the motion.

3.3 Learning

After dimensionality reduction, machine learning techniques are used to optimize
the demonstrated skill. As a starting point for the learning algorithm, we use the
low-dimensional trajectory of the demonstration. For this, the set P is projected
into the posture space, yielding a new set P ′ of points specifying a d-dimensional
trajectory. Next, P ′ is approximated using n control points C = {c1, .., cn}
specifying a spline curve. The spline can be regarded as a highly compressed
representation of the demonstrated motion. Instead of using all points of the
original trajectory P ′ only a limited number n of control points is used for
learning.

More precisely, the control points C are used as an initializing individual of a
real-coded Genetic Algorithm (GA). A set of slightly perturbed variants of C are
created in the initial population of the GA. Each individual is then processed,
and the corresponding motion executed by the simulated robot. This is done, by
reprojecting each point along the encoded trajectory back to the original space
of joint values. Using a user-provided fitness function, each individual is then
evaluated and assigned a fitness value. Once all fitness values are determined,
the best chromosomes are selected, mated and mutated according to the typical
rules of a GA. Finally, when learning is finished, the newly learned skill is applied
on the real physical robot.

When performing dynamic motions, such as a standing up behavior, timing
plays an important role. Therefore, we add add a special time parameter for
each of the control points into the chromosome. The time parameter indicates
at which timestep each posture should be realized. Each individual in the GA,
thus, consists of the set of values {c1, t1, .., cn, tn}.

4 Experiment and Results

To evaluate the proposed approach, we conducted a set of experiment in which a
human teacher had to teach a small humanoid robot a set of skills using Kines-
thetic Bootstrapping. Among others, the robot learned to perform a headstand,



Fig. 3. Direct replay of a demonstrated standing up skill by the small humanoid robot.
The robot fails to stand up, because of the missing support forces of the human teacher.

stand up by itself, and walk. In the following we will focus on the standing up and
walking skills. In all experiments, PCA was used as a dimensionality reduction
technique. The number of dimensions d was set to 4.

The teacher was given about 15 minutes time to kinesthetically demonstrate
the respective skill. In Figure 3 we see the result of directly replaying the demon-
strated skill. Because of the missing support of the teacher, the robot failed to
stand up by itself. Next, we run the optimization as described in section 3.3. The
number of control points n was 25. For the ‘standing up’ skill, the fitness values
were determined based on the sum of the z-values (=height) of the robot’s head
position. The trial was aborted, if the robot’s head was below a given threshold,
i.e. the robot fell down during the simulation. Figure 4 shows the result of the
optimized skill in simulation, and after application on the real robot. As can be
seen, the robot learned to stand up by modifying the original motion. In par-
ticular, the hip motion was changed such that the robot can lift the torso up,
without losing balance (2. picture from right). By moving the hip backwards to
an extreme position, the zero moment point of the robot remains between the
legs. The result is an elegant solution to the problem of standing up.

Fig. 4. Results of applying the evolved standing up behavior in simulation and on the
real robot. The robot learned to move the hip backwards to an extreme position, so as
to pull up the torso without falling forwards.



For the walking skill, the fitness value of each individual was determined,
using the distance traveled from the starting position without falling down. The
number n of control points was set to 12. In Figure 5(left) we see the low-
dimensional trajectories resulting from the control points of the walking skill
before and after optimization. The trajectories show the values of the control
points in the first and second principal component. The lower-order components,
in this case the first and second component, contain the “most important” as-
pects of the data. Thus, by visualizing the first two components, we can see
most important changes to the robot motion. Figure 5(right) shows the evolu-
tion of the fitness values during optimization. With each generation of the GA,
the robot managed to travel larger and larger distances. However, after the GA
finished, we found that the best individual in the simulation did not lead to a
stable walk in reality. This unveils a common pitfall of using a simulator: even
the best simulation is only an approximation of the real world. Fortunately, GAs
allow for a simple solution to this problem. By testing the best individuals of
earlier generations, we can search for solutions that are transferable to the real
world. In Figure 6 we see an evolved stable walking pattern. It corresponds to
the fittest individual from generation 50. In later generation, the GA exploited
the characteristics of the simulator too much and, thus, generated an individual
that was not applicable on the real environment.

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

Pr
in

ci
pl

e
C

om
po

ne
nt

2

-0.5 0.0 0.5

Principle Component 1

Low-Dimensional Motion Trajectories

Demonstration
Optimized

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fi
tn

es
s

0 10 20 30 40 50 60 70 80 90 100

Generations

Evolution of Walking Skill

.....
.........

......
..........

...........
.................................

.........................
.

Fig. 5. Left: The trajectories of the walking skill in the low-dimensional space of pos-
tures. Right: The evolution of the fitness value during the learning of the skill. The
fitness was determined using the distance traveled by the robot.

5 Conclusion

Up to now, the standard method for creating new motions and behaviors is
through low-level programming or through the use of graphical user interfaces.
Both approaches are labour intensive and do not support the automatic opti-
mization of the specified behavior. In this paper we presented a new approach to



Fig. 6. The result of applying the evolved walking behavior in simulation and on the
real robot. Learning this skill only involved a 5 minute kinesthetic demonstration, in
which the legs where moved by the human, and the specification of the fitness function.

programming humanoid robots, which relies on physical interaction between a
human teacher and a learning robot. By optimizing the demonstrated behavior
in a virtual environment we can speed up learning times and reduce the need
for human intervention. Further, by introducing low-dimensional posture mod-

els, we were able to integrate human knowledge into the learning process. In the
future we will investigate the use of low-dimensional posture models in conjunc-
tion with other learning techniques such as Reinforcement Learning or Neural
Networks. We also plan to use the described technique on more sophisticated
android robots with more degrees of freedom.

References

1. Chalodhorn, R., Grimes, D.B., Grochow, K., Rao, R.P.N.: Learning to walk through
imitation. In: IJCAI. (2007) 2084–2090

2. Nehaniv, C.L., Dautenhahn, K.: The correspondence problem. In: Imitation in
animals and artifacts. MIT Press, Cambridge, MA, USA (2002) 41–61

3. Aleotti, J., Caselli, S., Reggiani, M.: Leveraging on a Virtual Environment for Robot
Programming by Demonstration. In: IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems IROS 2003, Workshop on Robot Programming by Demonstration, Las
Vegas (USA). (2003)

4. Hersch, M., Guenter, F., Calinon, S., Billard, A.: Dynamical system modulation for
robot learning via kinesthetic demonstrations. IEEE Trans. on Robotics (2008)

5. Tani, J., Nishimoto, R., Namikawa, J., Ito, M.: Codevelopmental learning between
human and humanoid robot using a dynamic neural-network model. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B 38(1) (2008) 43–59

6. McNerney, T.S.: From turtles to tangible programming bricks: explorations in phys-
ical language design. Personal Ubiquitous Comput. 8(5) (2004) 326–337

7. Frei, P., Su, V., Mikhak, B., Ishii, H.: Curlybot: designing a new class of computa-
tional toys. In: CHI ’00: Proceedings of the SIGCHI conference on Human factors
in computing systems, New York, NY, USA, ACM (2000) 129–136


