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Lecture 5

9. Minimal sufficient and complete statistics

We introduced the notion of sufficient statistics in order to have a function of
the data that contains all information about the parameter. However, a sufficient
statistic does not have to be any simpler than the data itself. As we have seen, the
identity function is a sufficient statistic so this choice does not simplify or summarize
anything. A statistic is said to be minimal sufficient if it is as simple as possible in
a certain sense. Here is a definition.

Definition 11. A sufficient statistic T : X → T is minimal sufficient if for any
sufficient statistic U : X → U there is a measurable function g : U → T such that
T = g(U) µX|Θ(· | θ)-a.s. for all θ ∈ Ω.

How do we check if a statistic T is minimal sufficient? It can be inconvenient to
check the condition in the definition for all sufficient statistics U .

Theorem 10. If there exist version of fX|Θ(x | θ) for each θ and a measurable
function T : X → T such that T (x) = T (y) ⇔ y ∈ D(x), where

D(x) = {y ∈ X : fX|Θ(y | θ) = fX|Θ(x | θ)h(x, y), ∀θ and some function h(x, y) > 0},

then T is a minimal sufficient statistic.

Example 14. Let {Xn} be IID Exp(θ) given Θ = θ and X = (X1, . . . , Xn). Put
T (x) = x1 + · · ·+ xn. Let us show T is minimal sufficient. The ratio

fX|Θ(x | θ)

fX|Θ(y | θ)
=

θne−θ
∑

n

i=1
xi

θne−θ
∑

n

i=1
yi

does not depend on θ if and only if
∑n

i=1 xi =
∑n

i=1 yi. In this case h(x, y) = 1,
D(x) = {y :

∑n
i=1 xi =

∑n
i=1 yi}, and T is minimal sufficient.

Proof. Note first that the sets D(x) form a partition of X . Indeed, by putting
h(y, x) = 1/h(x, y) we see that y ∈ D(x) implies x ∈ D(y). Similarly, taking
h(x, x) = 1, we see that x ∈ D(x) and hence, the different D(x) form a partition.
The condition says that the sets D(x) coincide with sets T−1{T (x)} and hence
D(x) ∈ BT for each x. By Bayes theorem we have, for y ∈ D(x),

dµΘ|X

dµΘ
(θ | x) =

fX|Θ(x | θ)
∫

Ω
fX|Θ(x | θ)µΘ(dθ)

=
h(x, y)fX|Θ(y | θ)

∫

Ω
h(x, y)fX|Θ(y | θ)µΘ(dθ)

=
dµΘ|X

dµΘ
(θ | y).

That is, the posterior density is constant on D(x). Hence, it is a function of T (x)
and by Lemma 1 T is sufficient.

Let us check that T is also minimal. Take U : X → U to be a sufficient statistic.
If we show that U(x) = U(y) implies y ∈ D(x), then it follows that U(x) = U(y)
implies T (x) = T (y) and hence that T is a function of U(x). Then T is minimal.
By the factorization theorem (Theorem 2, Lecture 6)

fX|Θ(x | θ) = h(x)g(θ, U(x)).

We can assume that h(x) > 0 because Pθ({x : h(x) = 0}) = 0. Hence, U(x) = U(y)
implies

fX|Θ(y | θ) =
h(y)

h(x)
g(θ, U(x)).

That is, y ∈ D(x) with h(x, y) = h(y)/h(x). �
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The next concept is that of a complete statistic.

Definition 12. Let T : X → T be a statistic and {µT |Θ(· | θ), θ ∈ Ω} the family
of conditional distributions of T (X) given Θ = θ. The family {µT |Θ(· | θ), θ ∈ Ω}
is said to be complete if for each measurable function g, Eθ[g(T )] = 0, ∀θ implies
Pθ(g(T ) = 0) = 1, ∀θ.

The family {µT |Θ(· | θ), θ ∈ Ω} is said to be boundedly complete if each bounded
measurable function g, Eθ[g(T )] = 0, ∀θ implies Pθ(g(T ) = 0) = 1, ∀θ.

A statistic T is said to be complete if the family {µT |Θ(· | θ), θ ∈ Ω} is complete.
A statistic T is said to be boundedly complete if the family {µT |Θ(· | θ), θ ∈ Ω}

is boundedly complete.

One should note that completeness is a statement about the entire family {µT |Θ(· |
θ), θ ∈ Ω} and not only about the individual conditional distributions µT |Θ(· | θ).

Example 15. Suppose that T has Bin(n, θ) distribution with θ ∈ (0, 1) and g is a
function such that Eθ[g(T )] = 0 ∀θ. Then

0 = Eθ[g(T )] =
n
∑

k=0

g(k)

(

n

k

)

θk(1 − θ)n−k = (1− θ)n
n
∑

k=0

g(k)

(

n

k

)

( θ

1− θ

)k

.

If we put r = θ/(1− θ) we see that this equals

(1− θ)n
n
∑

k=0

g(k)

(

n

k

)

rk

which is a polynomial in r of degree n. Since this is constant equal to 0 for all r > 0
it must be that g(k)

(

n
k

)

= 0 for each k = 0, . . . , n, i.e. g(k) = 0 for each k = 0, . . . , n.
Since, for each θ, T is supported on {0, . . . , n} it follows that Pθ(g(T ) = 0) = 1 ∀θ
so T is complete.

An important result for exponential families is the following.

Theorem 11. If the natural parameter space Ω of an exponential family contains
an open set in R

k, then T (X) is a complete sufficient statistic.

Proof. We will give a proof for k = 1. For larger k one can use induction. We know
that the natural statistic T has a density c(θ)eθt with respect to ν′T (see Section
4.2, Lecture 4). Let g be a measurable function such that Eθ[g(T )] = 0 for all θ.
That is,

∫

T

g(t)c(θ)eθtνT (dt) = 0 ∀θ.

If we write g+ and g− for the positive and negative part of g, respectively, then
this says

∫

T

g+(t)c(θ)eθtνT (dt) =

∫

T

g−(t)c(θ)eθtνT (dt) ∀θ. (9.1)

Take a fixed value θ0 in the interior of Ω. This is possible since Ω contains an open
set. Put

Z0 =

∫

T

g+(t)c(θ0)e
θ0tνT (dt) =

∫

T

g−(t)c(θ0)e
θ0tνT (dt)
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and define the probability measures P and Q by

P (C) = Z−1
0

∫

C

g+(t)c(θ0)e
θ0tνT (dt)

Q(C) = Z−1
0

∫

C

g−(t)c(θ0)e
θ0tνT (dt).

Then, the equality (9.1) can be written
∫

T

exp{t(θ − θ0)}P (dt) =

∫

T

exp{t(θ − θ0}Q(dt), ∀θ.

With u = θ − θ0 we see that this implies that the moment generating function of
P , MP (u), equals the mgf of Q, MQ(u) in a neighborhood of u = 0. Hence, by
uniqueness of the moment generating function P = Q. It follows that g+(t) = g−(t)
ν′T -a.e. and hence that µT |Θ{t : g(t) = 0 | θ} = 1 for all θ. Hence, T is complete
sufficient statistic. �

Completeness of a statistic is also related to minimal sufficiency.

Theorem 12 (Bahadur’s theorem). If T is a finite-dimensional boundedly complete
sufficient statistic, then it is minimal sufficient.

Proof. Let U be an arbitrary sufficient statistic. We will show that T is a function
of U by constructing the appropriate function. Put T = (T1(X), . . . , Tk(X)) and
Si(T ) = [1 + e−Ti ]−1 so that Si is bounded and bijective. Let

Xi(u) = Eθ[Si(T ) | U = u],

Yi(t) = Eθ[Xi(U) | T = t].

We want to show that Si(T ) = Xi(U) Pθ-a.s. for all θ. Then, since Si is bijective
we have Ti = S−1

i (Xi(U)) and the claim follows. We show Si(T ) = Xi(U) Pθ-a.s.
in two steps.

First step: Si(T ) = Yi(T ) Pθ-a.s. for all θ. To see this note that

Eθ[Yi(T )] = Eθ[Eθ[Xi(U) | T ]] = Eθ[Xi(U)] = Eθ[Eθ[Si(T ) | U ]] = Eθ[Si(T )].

Hence, for all θ, Eθ[Yi(T )−Si(T )] = 0 and since Si is bounded, so is Yi and bounded
completeness implies Pθ(Si(T ) = Yi(T )) = 1 for all θ.

Second step: Xi(U) = Yi(T ) Pθ-a.s. for all θ. By step one we have Eθ[Yi(T ) |
U ] = Xi(U) Pθ-a.s. So if we show that the conditional variance of Yi(T ) given U
is zero we are done. That is, we need to show Varθ(Yi(T ) | U) = 0 Pθ-a.s. By the
usual rule for conditional variance (Theorem B.78 p. 634)

Varθ(Yi(T )) = Eθ[Varθ(Yi(T ) | U)] + Varθ(Xi(U))

= Eθ[Varθ(Yi(T ) | U)] + Eθ[Varθ(Xi(U) | T )] + Varθ(Si(T )).

By step one Varθ(Yi(T )) = Varθ(Si(T )) and Eθ[Varθ(Xi(U) | T )] = 0 since Xi(U)
is known if T is known. Combining this we see that Varθ(Yi(T ) | U) = 0 Pθ-a.s. as
we wanted. �

10. Ancillary statistics

As we have seen a sufficient statistic contains all the information about the
parameter. The opposite is when a statistic does not contain any information
about the parameter.
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Definition 13. A statistic U : X → U is called ancillary if the conditional distri-
bution of U given Θ = θ is the same for all θ.

Example 16. Let X1 and X2 be conditionally independent N(θ, 1) distributed
given Θ = θ. Then U = X2 −X1 is ancillary. Indeed, U has N(0, 2) distribution,
which does not depend on θ.

Sometimes a statistic contains a coordinate that is ancillary.

Definition 14. If T = (T1, T2) is a sufficient statistic and T2 is ancillary, then T1

is called conditionally sufficient given T2.

Example 17. Let X = (X1, . . . , Xn) be conditionally IID U(θ−1/2, θ+1/2) given
Θ = θ. Then

fX|Θ(x | θ) =

n
∏

i=1

I[θ−1/2,θ+1/2](xi) = I[θ−1/2,∞)(minxi)I(−∞,θ+1/2](max xi).

T = (T1, T2) = (maxXi,maxXi −minXi) is minimal sufficient and T2 is ancillary.
Note that fX|θ(y | θ) = fX|θ(x | θ) ⇔ max xi = max yi and minxi = min yi
⇔ T (x) = T (y). Hence, by Theorem 10 Lecture 7, T is minimal sufficient. The
conditional density of (T1, T2) given Θ = θ can be computed as (do this as an
exercise)

fT1,T2|Θ(t1, t2 | θ) = n(n− 1)tn−2
2 I[0,1](t2)I[θ−1/2+t2,θ+1/2](t1)

In particular, the marginal density of T2 is

fT2|Θ(t2 | θ) = n(n− 1)tn−2
2 (1 − t2)

and this does not depend on θ. Hence T2 is ancillary.
Note that the conditional distribution of T1 given T2 = t2 and Θ = θ is

fT1|T2,Θ(t1 | t2, θ) =
1

(1− t2)
I[θ−1/2+t2,θ+1/2](t1).

That is, it is U(θ − 1/2 + t2, θ + 1/2). Hence, this distribution becomes more
concentrated as t2 becomes large. Although T2 does not tell us something about
the parameter, it tells us something about the conditional distribution of T1 given
Θ.

The usual “rule” in classical statistics is to (whenever it is possible) perform
inference conditional on an ancillary statistic.

In our example we can exemplify it.

Example 18 (continued). Consider the above example with n = 2 and consider
finding a 50% confidence interval for Θ. The naive way to do it is to consider the
interval I1 = [minXi,maxXi] = [T1 − T2, T1]. This interval satisfies Pθ(Θ ∈ I1) =
1/2 since there is probability 1/4 that both observations are above θ and probability
1/4 that both are below θ.
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If one performs the inference conditional on the ancillary T2 we get a very dif-
ferent result. We can compute

Pθ(T1 − T2 ≤ Θ ≤ T1 | T2) = Pθ(Θ ≤ T1 ≤ Θ+ T2 | T2 = t2)

=
1

1− t2

∫ θ+t2

θ

I[θ−1/2+t2,θ+1/2](t1)dt1

=
t2

1− t2
I[0,1/2)(t2).

Hence, the level of confidence depends on t2. In particular, we can construct an
interval I2 = [T1 − 1/4(1 + T2), T1 + 1/4− 3T2/4] which has the property

Pθ(Θ ∈ I2 | T2 = t2) = 1/2.

Indeed,

Pθ(Θ ∈ I2 | T2 = t2) = Pθ(Θ − 1/4 + 3T2/4 ≤ T1 ≤ Θ+ 1/4(1 + T2) | T2 = t2)

=

∫ θ+(1+t2)/4

θ−1/4+3t2/4

I[θ−1/2+t2,θ+1/2](t1)dt1 = 1/2.

Since this probability does not depend on t2 it follows that

Pθ(Θ ∈ I2) = 1/2.

Let us compare the properties of I1 and I2. Suppose we observe T2 small. This
does not give us much information about Θ and this is reflected in I2 being wide.
On the contrary, I1 is very small which is counterintuitive. Similarly, if we observe
T2 large, then we know more about Θ and I2 is short. However, this time I1 is
wide!

Suppose T is sufficient and U is ancillary and they are conditionally independent
given Θ = θ. Then there is no benefit of conditioning on U . Indeed, in this case

fT |U,Θ(t | u, θ) = fT |Θ(t | θ)

so conditioning on U does not change anything. This situation appear when there
is a boundedly complete sufficient statistic.

Theorem 13 (Basu’s theorem). If T is boundedly complete sufficient statistic and
U is ancillary, then T and U are conditionally independent given Θ = θ. Further-
more, for every prior µΘ they are independent (unconditionally).

Proof. For the first claim (to show conditional independence) we want to show that
for each measurable set A ⊂ U

µU|Θ(A) = µU|T,Θ(A | t, θ) µT |Θ(· | θ)− a.e. t, ∀θ. (10.1)

Since U is ancillary µU|Θ(A | θ) = µU (A), ∀θ. We also have

µU|Θ(A | θ) =

∫

T

µU|T,Θ(A | t, θ)µT |Θ(dt | θ) =

∫

T

µU|T (A | t)µT |Θ(dt | θ),

where the second equality follows since T is sufficient. Indeed, µX|T,Θ(B | t, θ) =
µX|T (B | t) and since U = U(X)

µU|T,Θ(A | t, θ) = µX|T,Θ(U
−1A | t, θ) = µX|T (U

−1A | t) = µU|T (A | t).
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Combining these two we get
∫

T

[µU (A) − µU|T (A | t)]µT |Θ(dt | θ) = 0.

By considering the integrand as a function g(t) we see that the above equation is
the same as Eθ[g(T )] = 0 for each θ and since T is boundedly complete µT |Θ({t :
g(t) = 0} | θ) = 1 for all θ. That is (10.1) holds.

For the second claim we have by conditional independence that

µU,T (A×B) =

∫

Ω

∫

B

µU|T (A | t)µT |Θ(dt | θ)µΘ(dθ)

=

∫

Ω

µU (A)µT |Θ(B | θ)µΘ(dθ)

= µU (A)µT (B)

so T and U are independent. �

Sometimes a combination of the recent results are useful for computing expected
values in an unusual way:

Example 19. Let X = (X1, . . . , Xn) be conditionally IID Exp(θ) given Θ = θ.
Consider computing the expected value of

g(X) =
Xn

X1 + · · ·+Xn
.

To do this, note that g(X) is an ancillary statistic. Indeed, if Z = (Z1, . . . , Zn) are

IID Exp(1) then X d= θ−1Z and we see that

Pθ(g(X) ≤ x) = Pθ

( 1

x
<

X1

Xn
+ · · ·+

Xn−1

Xn
+ 1

)

= Pθ

( 1

x
<

Z1

Zn
+ · · ·+

Zn−1

Zn
+ 1

)

Since the distribution of Z does not depend on θ we see that g(X) is ancillary.
The natural statistic T (X) = X1 + · · · + Xn is complete (by the Theorem just
proved) and minimal sufficient. By Basu’s theorem (Theorem 13) T (X) and g(X)
are independent. Hence,

θ = Eθ[Xn] = Eθ[T (X)g(X)] = Eθ[T (X)]Eθ[g(X)] = nθEθ[g(X)]

and we see that Eθ[g(X)] = n−1.


