LECTURE NOTES

Lecture 5

9. MINIMAL SUFFICIENT AND COMPLETE STATISTICS

We introduced the notion of sufficient statistics in order to have a function of the data that contains all information about the parameter. However, a sufficient statistic does not have to be any simpler than the data itself. As we have seen, the identity function is a sufficient statistic so this choice does not simplify or summarize anything. A statistic is said to be minimal sufficient if it is as simple as possible in a certain sense. Here is a definition.

Definition 11. A sufficient statistic $T : \mathcal{X} \to \mathcal{T}$ is minimal sufficient if for any sufficient statistic $U : \mathcal{X} \to \mathcal{U}$ there is a measurable function $g : \mathcal{U} \to \mathcal{T}$ such that $T = g(U) \ \mu_{X|\Theta}(\cdot \mid \theta)$ -a.s. for all $\theta \in \Omega$.

How do we check if a statistic T is minimal sufficient? It can be inconvenient to check the condition in the definition for all sufficient statistics U.

Theorem 10. If there exist version of $f_{X|\Theta}(x \mid \theta)$ for each θ and a measurable function $T : \mathcal{X} \to \mathcal{T}$ such that $T(x) = T(y) \Leftrightarrow y \in \mathcal{D}(x)$, where

 $\mathcal{D}(x) = \{ y \in \mathcal{X} : f_{X \mid \Theta}(y \mid \theta) = f_{X \mid \Theta}(x \mid \theta) h(x, y), \forall \theta \text{ and some function } h(x, y) > 0 \},$ then T is a minimal sufficient statistic.

Example 14. Let $\{X_n\}$ be IID $\text{Exp}(\theta)$ given $\Theta = \theta$ and $X = (X_1, \ldots, X_n)$. Put $T(x) = x_1 + \cdots + x_n$. Let us show T is minimal sufficient. The ratio

$$\frac{f_{X|\Theta}(x \mid \theta)}{f_{X|\Theta}(y \mid \theta)} = \frac{\theta^n e^{-\theta \sum_{i=1}^n x_i}}{\theta^n e^{-\theta \sum_{i=1}^n y_i}}$$

does not depend on θ if and only if $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$. In this case h(x,y) = 1, $\mathcal{D}(x) = \{y : \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i\}$, and T is minimal sufficient.

Proof. Note first that the sets $\mathcal{D}(x)$ form a partition of \mathcal{X} . Indeed, by putting h(y,x) = 1/h(x,y) we see that $y \in \mathcal{D}(x)$ implies $x \in \mathcal{D}(y)$. Similarly, taking h(x,x) = 1, we see that $x \in \mathcal{D}(x)$ and hence, the different $\mathcal{D}(x)$ form a partition. The condition says that the sets $\mathcal{D}(x)$ coincide with sets $T^{-1}{T(x)}$ and hence $\mathcal{D}(x) \in \mathcal{B}_T$ for each x. By Bayes theorem we have, for $y \in \mathcal{D}(x)$,

$$\frac{d\mu_{\Theta\mid X}}{d\mu_{\Theta}}(\theta\mid x) = \frac{f_{X\mid\Theta}(x\mid\theta)}{\int_{\Omega} f_{X\mid\Theta}(x\mid\theta)\mu_{\Theta}(d\theta)} = \frac{h(x,y)f_{X\mid\Theta}(y\mid\theta)}{\int_{\Omega} h(x,y)f_{X\mid\Theta}(y\mid\theta)\mu_{\Theta}(d\theta)} = \frac{d\mu_{\Theta\mid X}}{d\mu_{\Theta}}(\theta\mid y)$$

That is, the posterior density is constant on $\mathcal{D}(x)$. Hence, it is a function of T(x) and by Lemma 1 T is sufficient.

Let us check that T is also minimal. Take $U : \mathcal{X} \to \mathcal{U}$ to be a sufficient statistic. If we show that U(x) = U(y) implies $y \in \mathcal{D}(x)$, then it follows that U(x) = U(y) implies T(x) = T(y) and hence that T is a function of U(x). Then T is minimal. By the factorization theorem (Theorem 2, Lecture 6)

$$f_{X|\Theta}(x \mid \theta) = h(x)g(\theta, U(x))$$

We can assume that h(x) > 0 because $P_{\theta}(\{x : h(x) = 0\}) = 0$. Hence, U(x) = U(y) implies

$$f_{X|\Theta}(y \mid \theta) = \frac{h(y)}{h(x)}g(\theta, U(x)).$$

That is, $y \in \mathcal{D}(x)$ with h(x, y) = h(y)/h(x).

HENRIK HULT

The next concept is that of a complete statistic.

Definition 12. Let $T : \mathcal{X} \to \mathcal{T}$ be a statistic and $\{\mu_{T|\Theta}(\cdot \mid \theta), \theta \in \Omega\}$ the family of conditional distributions of T(X) given $\Theta = \theta$. The family $\{\mu_{T|\Theta}(\cdot \mid \theta), \theta \in \Omega\}$ is said to be complete if for each measurable function $g, E_{\theta}[g(T)] = 0, \forall \theta$ implies $P_{\theta}(g(T) = 0) = 1, \forall \theta$.

The family $\{\mu_{T|\Theta}(\cdot \mid \theta), \theta \in \Omega\}$ is said to be boundedly complete if each bounded measurable function $g, E_{\theta}[g(T)] = 0, \forall \theta$ implies $P_{\theta}(g(T) = 0) = 1, \forall \theta$.

A statistic T is said to be complete if the family $\{\mu_{T|\Theta}(\cdot \mid \theta), \theta \in \Omega\}$ is complete.

A statistic T is said to be boundedly complete if the family $\{\mu_{T|\Theta}(\cdot \mid \theta), \theta \in \Omega\}$ is boundedly complete.

One should note that completeness is a statement about the entire family $\{\mu_{T|\Theta}(\cdot \mid \theta), \theta \in \Omega\}$ and not only about the individual conditional distributions $\mu_{T|\Theta}(\cdot \mid \theta)$.

Example 15. Suppose that T has $Bin(n, \theta)$ distribution with $\theta \in (0, 1)$ and g is a function such that $E_{\theta}[g(T)] = 0 \ \forall \theta$. Then

$$0 = E_{\theta}[g(T)] = \sum_{k=0}^{n} g(k) \binom{n}{k} \theta^{k} (1-\theta)^{n-k} = (1-\theta)^{n} \sum_{k=0}^{n} g(k) \binom{n}{k} \left(\frac{\theta}{1-\theta}\right)^{k}.$$

If we put $r = \theta/(1-\theta)$ we see that this equals

$$(1-\theta)^n \sum_{k=0}^n g(k) \binom{n}{k} r^k$$

which is a polynomial in r of degree n. Since this is constant equal to 0 for all r > 0 it must be that $g(k)\binom{n}{k} = 0$ for each k = 0, ..., n, i.e. g(k) = 0 for each k = 0, ..., n. Since, for each θ , T is supported on $\{0, ..., n\}$ it follows that $P_{\theta}(g(T) = 0) = 1 \forall \theta$ so T is complete.

An important result for exponential families is the following.

Theorem 11. If the natural parameter space Ω of an exponential family contains an open set in \mathbb{R}^k , then T(X) is a complete sufficient statistic.

Proof. We will give a proof for k = 1. For larger k one can use induction. We know that the natural statistic T has a density $c(\theta)e^{\theta t}$ with respect to ν'_T (see Section 4.2, Lecture 4). Let g be a measurable function such that $E_{\theta}[g(T)] = 0$ for all θ . That is,

$$\int_{\mathcal{T}} g(t)c(\theta)e^{\theta t}\nu_T(dt) = 0 \quad \forall \theta$$

If we write g^+ and g^- for the positive and negative part of g, respectively, then this says

$$\int_{\mathcal{T}} g^+(t)c(\theta)e^{\theta t}\nu_T(dt) = \int_{\mathcal{T}} g^-(t)c(\theta)e^{\theta t}\nu_T(dt) \quad \forall \theta.$$
(9.1)

Take a fixed value θ_0 in the interior of Ω . This is possible since Ω contains an open set. Put

$$Z_0 = \int_{\mathcal{T}} g^+(t)c(\theta_0)e^{\theta_0 t}\nu_T(dt) = \int_{\mathcal{T}} g^-(t)c(\theta_0)e^{\theta_0 t}\nu_T(dt)$$

and define the probability measures P and Q by

$$P(C) = Z_0^{-1} \int_C g^+(t) c(\theta_0) e^{\theta_0 t} \nu_T(dt)$$
$$Q(C) = Z_0^{-1} \int_C g^-(t) c(\theta_0) e^{\theta_0 t} \nu_T(dt).$$

Then, the equality (9.1) can be written

$$\int_{\mathcal{T}} \exp\{t(\theta - \theta_0)\} P(dt) = \int_{\mathcal{T}} \exp\{t(\theta - \theta_0) Q(dt), \quad \forall \theta.$$

With $u = \theta - \theta_0$ we see that this implies that the moment generating function of P, $M_P(u)$, equals the mgf of Q, $M_Q(u)$ in a neighborhood of u = 0. Hence, by uniqueness of the moment generating function P = Q. It follows that $g^+(t) = g^-(t)$ ν'_T -a.e. and hence that $\mu_{T|\Theta}\{t : g(t) = 0 \mid \theta\} = 1$ for all θ . Hence, T is complete sufficient statistic.

Completeness of a statistic is also related to minimal sufficiency.

Theorem 12 (Bahadur's theorem). If T is a finite-dimensional boundedly complete sufficient statistic, then it is minimal sufficient.

Proof. Let U be an arbitrary sufficient statistic. We will show that T is a function of U by constructing the appropriate function. Put $T = (T_1(X), \ldots, T_k(X))$ and $S_i(T) = [1 + e^{-T_i}]^{-1}$ so that S_i is bounded and bijective. Let

$$X_i(u) = E_{\theta}[S_i(T) \mid U = u],$$

$$Y_i(t) = E_{\theta}[X_i(U) \mid T = t].$$

We want to show that $S_i(T) = X_i(U) P_{\theta}$ -a.s. for all θ . Then, since S_i is bijective we have $T_i = S_i^{-1}(X_i(U))$ and the claim follows. We show $S_i(T) = X_i(U) P_{\theta}$ -a.s. in two steps.

First step: $S_i(T) = Y_i(T) P_{\theta}$ -a.s. for all θ . To see this note that

$$E_{\theta}[Y_{i}(T)] = E_{\theta}[E_{\theta}[X_{i}(U) \mid T]] = E_{\theta}[X_{i}(U)] = E_{\theta}[E_{\theta}[S_{i}(T) \mid U]] = E_{\theta}[S_{i}(T)].$$

Hence, for all θ , $E_{\theta}[Y_i(T) - S_i(T)] = 0$ and since S_i is bounded, so is Y_i and bounded completeness implies $P_{\theta}(S_i(T) = Y_i(T)) = 1$ for all θ .

Second step: $X_i(U) = Y_i(T) P_{\theta}$ -a.s. for all θ . By step one we have $E_{\theta}[Y_i(T) | U] = X_i(U) P_{\theta}$ -a.s. So if we show that the conditional variance of $Y_i(T)$ given U is zero we are done. That is, we need to show $\operatorname{Var}_{\theta}(Y_i(T) | U) = 0 P_{\theta}$ -a.s. By the usual rule for conditional variance (Theorem B.78 p. 634)

$$\operatorname{Var}_{\theta}(Y_{i}(T)) = E_{\theta}[\operatorname{Var}_{\theta}(Y_{i}(T) \mid U)] + \operatorname{Var}_{\theta}(X_{i}(U))$$
$$= E_{\theta}[\operatorname{Var}_{\theta}(Y_{i}(T) \mid U)] + E_{\theta}[\operatorname{Var}_{\theta}(X_{i}(U) \mid T)] + \operatorname{Var}_{\theta}(S_{i}(T)).$$

By step one $\operatorname{Var}_{\theta}(Y_i(T)) = \operatorname{Var}_{\theta}(S_i(T))$ and $E_{\theta}[\operatorname{Var}_{\theta}(X_i(U) \mid T)] = 0$ since $X_i(U)$ is known if T is known. Combining this we see that $\operatorname{Var}_{\theta}(Y_i(T) \mid U) = 0$ P_{θ} -a.s. as we wanted. \Box

10. Ancillary statistics

As we have seen a sufficient statistic contains all the information about the parameter. The opposite is when a statistic does not contain any information about the parameter. **Definition 13.** A statistic $U : \mathcal{X} \to \mathcal{U}$ is called ancillary if the conditional distribution of U given $\Theta = \theta$ is the same for all θ .

Example 16. Let X_1 and X_2 be conditionally independent $N(\theta, 1)$ distributed given $\Theta = \theta$. Then $U = X_2 - X_1$ is ancillary. Indeed, U has N(0, 2) distribution, which does not depend on θ .

Sometimes a statistic contains a coordinate that is ancillary.

Definition 14. If $T = (T_1, T_2)$ is a sufficient statistic and T_2 is ancillary, then T_1 is called conditionally sufficient given T_2 .

Example 17. Let $X = (X_1, ..., X_n)$ be conditionally IID $U(\theta - 1/2, \theta + 1/2)$ given $\Theta = \theta$. Then

$$f_{X|\Theta}(x \mid \theta) = \prod_{i=1}^{n} I_{[\theta-1/2,\theta+1/2]}(x_i) = I_{[\theta-1/2,\infty)}(\min x_i) I_{(-\infty,\theta+1/2]}(\max x_i).$$

 $T = (T_1, T_2) = (\max X_i, \max X_i - \min X_i)$ is minimal sufficient and T_2 is ancillary. Note that $f_{X|\theta}(y \mid \theta) = f_{X|\theta}(x \mid \theta) \Leftrightarrow \max x_i = \max y_i$ and $\min x_i = \min y_i \Leftrightarrow T(x) = T(y)$. Hence, by Theorem 10 Lecture 7, T is minimal sufficient. The conditional density of (T_1, T_2) given $\Theta = \theta$ can be computed as (do this as an exercise)

$$f_{T_1,T_2|\Theta}(t_1,t_2 \mid \theta) = n(n-1)t_2^{n-2}I_{[0,1]}(t_2)I_{[\theta-1/2+t_2,\theta+1/2]}(t_1)$$

In particular, the marginal density of T_2 is

$$f_{T_2|\Theta}(t_2 \mid \theta) = n(n-1)t_2^{n-2}(1-t_2)$$

and this does not depend on θ . Hence T_2 is ancillary.

Note that the conditional distribution of T_1 given $T_2 = t_2$ and $\Theta = \theta$ is

$$f_{T_1|T_2,\Theta}(t_1 \mid t_2, \theta) = \frac{1}{(1-t_2)} I_{[\theta-1/2+t_2,\theta+1/2]}(t_1).$$

That is, it is $U(\theta - 1/2 + t_2, \theta + 1/2)$. Hence, this distribution becomes more concentrated as t_2 becomes large. Although T_2 does not tell us something about the parameter, it tells us something about the conditional distribution of T_1 given Θ .

The usual "rule" in classical statistics is to (whenever it is possible) perform inference conditional on an ancillary statistic.

In our example we can exemplify it.

Example 18 (continued). Consider the above example with n = 2 and consider finding a 50% confidence interval for Θ . The naive way to do it is to consider the interval $I_1 = [\min X_i, \max X_i] = [T_1 - T_2, T_1]$. This interval satisfies $P_{\theta}(\Theta \in I_1) = 1/2$ since there is probability 1/4 that both observations are above θ and probability 1/4 that both are below θ .

If one performs the inference conditional on the ancillary T_2 we get a very different result. We can compute

$$P_{\theta}(T_1 - T_2 \le \Theta \le T_1 \mid T_2) = P_{\theta}(\Theta \le T_1 \le \Theta + T_2 \mid T_2 = t_2)$$

= $\frac{1}{1 - t_2} \int_{\theta}^{\theta + t_2} I_{[\theta - 1/2 + t_2, \theta + 1/2]}(t_1) dt_1$
= $\frac{t_2}{1 - t_2} I_{[0, 1/2)}(t_2).$

Hence, the level of confidence depends on t_2 . In particular, we can construct an interval $I_2 = [T_1 - 1/4(1 + T_2), T_1 + 1/4 - 3T_2/4]$ which has the property

$$P_{\theta}(\Theta \in I_2 \mid T_2 = t_2) = 1/2.$$

Indeed,

$$P_{\theta}(\Theta \in I_2 \mid T_2 = t_2) = P_{\theta}(\Theta - 1/4 + 3T_2/4 \le T_1 \le \Theta + 1/4(1 + T_2) \mid T_2 = t_2)$$
$$= \int_{\theta - 1/4 + 3t_2/4}^{\theta + (1+t_2)/4} I_{[\theta - 1/2 + t_2, \theta + 1/2]}(t_1) dt_1 = 1/2.$$

Since this probability does not depend on t_2 it follows that

$$P_{\theta}(\Theta \in I_2) = 1/2.$$

Let us compare the properties of I_1 and I_2 . Suppose we observe T_2 small. This does not give us much information about Θ and this is reflected in I_2 being wide. On the contrary, I_1 is very small which is counterintuitive. Similarly, if we observe T_2 large, then we know more about Θ and I_2 is short. However, this time I_1 is wide!

Suppose T is sufficient and U is ancillary and they are conditionally independent given $\Theta = \theta$. Then there is no benefit of conditioning on U. Indeed, in this case

$$f_{T|U,\Theta}(t \mid u, \theta) = f_{T|\Theta}(t \mid \theta)$$

so conditioning on U does not change anything. This situation appear when there is a boundedly complete sufficient statistic.

Theorem 13 (Basu's theorem). If T is boundedly complete sufficient statistic and U is ancillary, then T and U are conditionally independent given $\Theta = \theta$. Furthermore, for every prior μ_{Θ} they are independent (unconditionally).

Proof. For the first claim (to show conditional independence) we want to show that for each measurable set $A \subset \mathcal{U}$

$$\mu_{U|\Theta}(A) = \mu_{U|T,\Theta}(A \mid t, \theta) \qquad \mu_{T|\Theta}(\cdot \mid \theta) - a.e. \ t, \ \forall \theta.$$

$$(10.1)$$

Since U is ancillary $\mu_{U|\Theta}(A \mid \theta) = \mu_U(A), \forall \theta$. We also have

$$\mu_{U\mid\Theta}(A\mid\theta) = \int_{\mathcal{T}} \mu_{U\mid T,\Theta}(A\mid t,\theta) \mu_{T\mid\Theta}(dt\mid\theta) = \int_{\mathcal{T}} \mu_{U\mid T}(A\mid t) \mu_{T\mid\Theta}(dt\mid\theta),$$

where the second equality follows since T is sufficient. Indeed, $\mu_{X|T,\Theta}(B \mid t, \theta) = \mu_{X|T}(B \mid t)$ and since U = U(X)

$$\mu_{U|T,\Theta}(A \mid t,\theta) = \mu_{X|T,\Theta}(U^{-1}A \mid t,\theta) = \mu_{X|T}(U^{-1}A \mid t) = \mu_{U|T}(A \mid t).$$

HENRIK HULT

Combining these two we get

$$\int_{\mathcal{T}} [\mu_U(A) - \mu_{U|T}(A \mid t)] \mu_{T|\Theta}(dt \mid \theta) = 0.$$

By considering the integrand as a function g(t) we see that the above equation is the same as $E_{\theta}[g(T)] = 0$ for each θ and since T is boundedly complete $\mu_{T|\Theta}(\{t : g(t) = 0\} \mid \theta) = 1$ for all θ . That is (10.1) holds.

For the second claim we have by conditional independence that

$$\mu_{U,T}(A \times B) = \int_{\Omega} \int_{B} \mu_{U|T}(A \mid t) \mu_{T|\Theta}(dt \mid \theta) \mu_{\Theta}(d\theta)$$
$$= \int_{\Omega} \mu_{U}(A) \mu_{T|\Theta}(B \mid \theta) \mu_{\Theta}(d\theta)$$
$$= \mu_{U}(A) \mu_{T}(B)$$

so T and U are independent.

Sometimes a combination of the recent results are useful for computing expected values in an unusual way:

Example 19. Let $X = (X_1, \ldots, X_n)$ be conditionally IID $\text{Exp}(\theta)$ given $\Theta = \theta$. Consider computing the expected value of

$$g(X) = \frac{X_n}{X_1 + \dots + X_n}.$$

To do this, note that g(X) is an ancillary statistic. Indeed, if $Z = (Z_1, \ldots, Z_n)$ are IID Exp(1) then $X \stackrel{d}{=} \theta^{-1}Z$ and we see that

$$P_{\theta}(g(X) \le x) = P_{\theta}\left(\frac{1}{x} < \frac{X_1}{X_n} + \dots + \frac{X_{n-1}}{X_n} + 1\right)$$
$$= P_{\theta}\left(\frac{1}{x} < \frac{Z_1}{Z_n} + \dots + \frac{Z_{n-1}}{Z_n} + 1\right)$$

Since the distribution of Z does not depend on θ we see that g(X) is ancillary. The natural statistic $T(X) = X_1 + \cdots + X_n$ is complete (by the Theorem just proved) and minimal sufficient. By Basu's theorem (Theorem 13) T(X) and g(X)are independent. Hence,

$$\theta = E_{\theta}[X_n] = E_{\theta}[T(X)g(X)] = E_{\theta}[T(X)]E_{\theta}[g(X)] = n\theta E_{\theta}[g(X)]$$

and we see that $E_{\theta}[g(X)] = n^{-1}$.

30