FRACTAL REPORT 12

A 3D Julia Set based upon Fractal Report ideas, by Dr Hugh Daglish.

- Simple Speedups ‘ Paul McGilly 2
Faster and Nicer Fractal Sets Dr Jules Verschueren 3
Area Preserving Mappings Paul Gailiunas 8
Spirals: Animal, Vegetable', Mineral or Fractal? Nigel Woodhead 10
Shaded Tree Dimensional Models Howard Jones 14

" Hyperbolic Patterns with Recursion Ettrick Thomson 16

- Wolf's Dust , Dr Daniel Wolf 18
Announcements : ’ ' 20
Editorial v John de Rivaz 20

Single copy rate £2. Subscription rates six issues: — £10 (UK ong) £12 Europe £13
elsewhere. Cheques in British Pounds should be drawn on a UK bank and should
be made payable to "Reeves Telecommunications Laboratories Ltd." Alternatively,
dolnlfrdchi{:_ks for $23 can be accepted if drawn on a U.S. bank and made payable
0 "J. de Rivaz".

Subscribers who_are successful in getting one or more articles with programs
published in a given series of six issues get the next volume of six issues free of
subscription. All new subscriptions are backdated to the start of the current volume.

Fractal Report is published by Reeves Telecommunications Laboratories Ltd.,

West Towan House, Porthtowan, Truro, Cornwall TR4 8AX. United Kingdom.
Volume 2 no 12 First published December 1990. ISSN applicd for.

Page 1

SIMPLE SPEEDUPS
Paul McGilly
43 Wellington Road, Hatch End, Pinner, Middx, HAS 4NF
(PM5 @ YORK.VAXA)

On most microprocessors multiplication is an extremely time consuming operation compared
with addition or memory accesses. (eg. 70 cycles vs 4 cycles on a 68000). Therefore one should
minimise the number of multiplications in a program. This can be illustrated by the following
pseudocode for the inner loop of the Mandelbrot algorithm :

6 multiplications 3 multiplications

REPEAT XTMP=X*X : YTMP=Y*Y
TMP=X*X-Y*Y+XC REPEAT
Y=2*X*Y+YC Y= (X+X) *Y+YC
X=TMP X=XTMP-YTMP+XC
C=C+1 C=C+1

UNTIL (C>MAXIT OR X*X+Y*Y>4) XTMP=X*X : YTMP=Y*Y

UNTIL (C>MAXIT OR XTMP+YTMP>4)

Changes such as the above can produce a speedup of upto 40% depending upon the language
and processor.

Similar speedups can be made to most of the programs that have been published in this
journal. The general technique is to remove all constant calculations from the inner loop and retain
only a single copy of any repeated code. The Henon map program by Andy Lunnes from Issue 4 is
now used to illustrate this point :

Original Program Optimised Program
(Adapted for Atari ST, Fastbasic)

GRAFRECT 0,0,640,400 GRAFRECT 0, 0,640,400

CLG 0 CLG 0

INPUT A INPUT A

FOR XS=-0.1 TO 0.8 STEP 0.05 AC=COS (A) : AS=SIN(A)

FOR ¥S=-0.1 TO 0.8 STEP 0.05 FOR XS=-0.1 TO 0.8 STEP 0.05

X=XS FOR ¥S=-0.1 TO 0.8 STEP 0.05

Y=YS X=XS : ¥Y=YS

I=1 I=1

REPEAT REPEAT
XX=X*COS(A)—(Y—X*X)*SIN(A) YXX=Y-X*X
Y=X*SIN(A)+(Y—X*X)*COS(A) Y=X*AS+YXX*AC
X=XX X=X*AC-YXX*AS
PLOT 150*X+320,150*Y+200 PLOT 150*X+320,150*Y+200
I=I+1 I=I+1

UNTIL I>1000 OR X>1000 OR Y>1000 UNTIL I>1000 OR ABS(X)>1000 OR

OR X<-1000 OR ¥<-1000 ABS (Y)>1000
NEXT YS NEXT YS
NEXT XS NEXT XS

The speedup achieved in this case is over 50%.

Fractal Report Issue 12 page 2

Magazine scanned 2023 by Stephen Shaw

Faster and Nicer Fractal Sets

Jules Verschueren

Binnenstraat 53

B - 3020 Veltem
Belgium

The Basic program corresponding to this article was developed with the idea to
describe techniques -not yet published in "Fractal Report'- in order to increase
both speed and beauty of fractal sets. Most of these methods are my own
original work.

Although the classic Mandelbrot/Julia algorithm is very familiar to all of you,
the pictures you can produce with this program are probably quite different from
what you are used to (see figures).

The program contains many remarks in order to minimize the following explanation

A. A faster picture production is achieved by selection of the

1) desired screen resolution / reduction,

2) length / height aspect correction (both 1 and 2 are indicated by the picture
window lines and are described in routines 'graphics" and "adaptgrid"),

3) symmetry use - described in "checksymmetry": 1/2 to 3/4 of all calculations
might be saved,

4) "attraction-stop' technique.

Item 4) deserves more explanation as it is probably new to most of the readers
and saves most of the calculation time (at least when part of the picture
belongs to the set). It also allows several ways of making the internals of the
set more attractive.

I discovered this type of technique via experimentation on the iteration process
itself, eg. by watching the evolution of Z"2, both during the iteration for one
starting point as well as iterations of neighbouring points. This evolution can
be followed by printing the consecutive values of Z"2 or by pixeling the
corresponding positions (as described in Fractal Report 1, page 16:
Z~Trajectories; by Ed Hersom). All points starting within the 'M' set are
finally attracted to 1 point (for starting point with origin in large cardoid)
or a stable cycle of 2 (origin in large circle left of cardiod and with centre
(-1,0), 3 (origin in top and bottom blob on cardoid), 4 (origin in second circle
left of caroid), etc... points. You can easily verify this with this program as
you can choose the '"Maximum values to check for a stable Z-Cycle" (ie. variable
MaxCycle). Try the M-set with MaxCycle values of 1, 2, 3, 4...

There will be no further speed gain after checking for a 3-cycle in the M-set as
keeping track of and checking for an additional match for all points in the set
-see routine '"testcycle"- will take at least as long as the early iteration stop
for a few additional points. The situation is obviously totally different when
you make a zoom of one of these sections, or when you produce a Julia set from
one of these points (see below).

Further speed is gained by optimizing the calculations (especially taking care
not to duplicate multiplications) and using one and the same iteration routine
for both the Mandelbrot and Julia set. This prevents checking for the type of
set during each and every iteration step.

The "testcycle" routine is only applicable for points in the set and is
therefore only turned on when the previously calculated point was inside the
set. The last 2°2 values are stored in the '"CycleZ" array and the "CycleZ(Iter
MOD MaxCycle)=z2" statement replaces the oldest Z"2 with the new one. The "FOR"
loop tests whether the new Z*2 has been encountered before, ie. a stable cycle
has been found and the iteration can be stopped. This test is not necessarily an

Fractal Report Issue 12 page 3

exact match (ie. DifZ=0), but can be a very small difference - possibly adapted
for grid size, number of iterations or Mandelbrot/Julia type of set. Changing
DifZ will have an influence on the pattern that is produced inside a set and
this influence is larger for Julia sets.

Consider eg. Fig. 4, a Julia set with C=-0.11+0.6557i: this point lies near the
root of the top blop of the M-set and if iterated there, settles down to a
stable 3-cycle with attraction coordinates (-.23+.174i), (-.087+.5751i) and
(-.433+.555i). Although it may take several hundreds of iterations before the
cycle is absolutely stable -as judged from identical consecutive Z°2's, and thus
dependent on calculation accuracy- a good approximation (controlled by variable
"DifZz") is usually achieved much quicker. Since no or only minimal changes can
occur on further iteration, further calculations become unnecessary and the
iteration is stopped. One could think of the M-set as a large bassin of
different attractors, while Julia sets behave quite differently. As in Fig 4
(using "Attraction value" or Z"2) each bassin is made up of one color and all
these points are attracted to one and the same Z2°2 or attraction point, equal to
(one of) the corresponding M-set final values. Not surprising, the number of
different bassins/colors/dragon arms or heads corresponds to the attraction
cycle number. Therefore '"MaxCycle" in Fig 1, 4 and 5 must be respectively 2, 3
and 11 to give the highest speed gain. Both a lower (no early calculation stops)
or higher value would have slowing effects as unnecessary checks are performed.

B. The internal set coloring techniques

These are completely linked to the above "Attraction-Stop" method with exception
of the "Minimum Z" (InType 3) technique which has been described in Algorithm
1.1, 1989, page 9: Inside the Mandelbrot Set; by CA Pickover. This method just
keeps track of the smallest Z2°2 produced in the iteration process and colors the
pixels accordingly by multiplying with some value -"InCont". Fig 3, a Mandelbrot
type set with ZRealStart=1.4 is an example of this technique (InCont=400).

The second method -"Attraction value'- colors the pixel according to the final/
stable Z°2 value. As this is the same in one particular Julia bassin, the
different bassins can all be colored differently. As it takes much longer for
some points in the bassin to be attracted, it is usually necessary to continue
the iterations until no change in consecutive Z"2's is found (ie. Difz=0).

The first method -"Attraction count'"- (InType 1) is really original. Just use
the number of iterations it takes to achieve a stable Z°2 cycle and use it to
color the pixel. The results can be quite remarkable as is visible from Fig 1
and 2. Even using the plain count ("Iter") to attraction (Fig 1, InCont=999) can
transform a simple Julia set into a very attractive and colorful picture. It
even shows consecutive bifurcations (doubling of spikes) from the center going
outwards. The speed difference for picture production with the "Attraction-Stop"
as opposed to the classic iteration method is quite extreme. The variable
"Contour=InCont/InMax" is introduced to give more color possibilities: values
lower than InMax will produce larger bands of the same coloring as eqg. shown in
Fig 2, the "classic?" Mandelbrot set.

The "calccolor" routine actually calculates the color for each pixel. If the
point belongs to the set, "MaxIter" is a constant number in each of the 3
methods and as changing this value slightly will usually not influence the
second term of the color calculation (attraction-stop occurs after a fixed
number of iterations) this can be used to adapt the color for a particular
region or bassin according to your liking. Try adding 1 to MaxIter in Fig 1:
blue should become green, green --> cyan --> red --> magenta --> yellow -->
white --> blue.

I hope you like the figures and have lots of fun with the program.

Fractal Report Issue 12 page 4

Fractal Report Issue 12 page 5

Rem Quick basic Mandelbrot (with starting ZReal/ZImag <=> 0) / Julia program
rem (c) L.J. Verschueren, Binnenstraat 53, B-3008 veltem, Belgium; 30/7/90
rem Can directly be used with CGA, EGA or VGA card

rem With fast Set calculation and 3 different Internal Set coloring techniques

DEFINT I,K,M,0,S,X-Y 'all variables starting with these letters are integers
'DEFDBL C-H,L,N,R,T,2 'double precision in the calculations - use when Length<0.001
Mode=12: MaxMode=0 'first try VGA, then EGA, then CGA
ON ERROR GOTO screenerror
SCREEN Mode: MaxMode=Mode 'select highest possible resolution
dataentry:

SCREEN 0: WIDTH 80 'text mode

PRINT"Fractal Type (0=Julia, 1=Mandel): ";: Type$=INPUT$(1): PRINT Type$

IF Type$<>"Q" AND Type$~>"J" AND Type$<>"j" THEN Mandel=1 ELSE Mandel=0
INPUT"Enter Window Length and Height (separated by a comma):", Length, Height
INPUT"Low Window X and Y Start coordinates:", LowX, LowY
INPUT"Escape Value for Z*Z and Maximum Iterations:", Escape2, Maxlter

IF Mandel THEN 'possibility for Mandel type sets with starting Z<>0
INPUT"Z-Real and Z-Imag Start values (0,0 = classic Mandel set):", ZRealStart, ZImagStart

ELSE INPUT"Real and Imaginary Constant:", CReal, Clmag 'Constant from Z*Z+C for Julia sets

END IF

PRINT"Select High or Low resolution (H/L): "“;: Res$=INPUT$(1): PRINT Res$
IF Res$="l" OR Res$="L" THEN
IF Mode>2 THEN Mode=7 ELSE Mode=1 'resolution 320x200
INPUT" Additional Reduction factor (0.1-1): ", Reduction
IF Reduction<0.1 THEN Reduction=0.1 ELSE IF Reduction>1 THEN Reduction=1
ELSE Mode=MaxMode: Reduction=1 'highest resolution
END IF
PRINT"Internal set Contours (Y/N)? ";: InCont$=INPUT$(1): PRINT InCont$
IF InCont$<>"N" AND InCont$<>"n" THEN InSet=1 ELSE InSet=0
IF InSet THEN

InMax=999 ‘changing this arbitrary value will influence the "internal® pattern from InType 1
INPUT"Maximum values to check stable 2-Cycle (2-20):", MaxCycle 'stable attraction points to be checked
REDIM CycleZ(MaxCycle) ‘array to store Z*Z

PRINT"Choose Internal contours Type (0-3):" ‘coloring within the set

PRINT" O=None, 1=Attraction Count, 2=Attraction Value, 3=Minimum Z : Y;: InType$=INPUT$(1): PRINT InType$
IF InType$<"1" AND InType$>"3" THEN InType=0 ELSE InType=VAL(InType$)

IF InType THEN PRINT“Enter Internal contours (1-";InMax;: INPUT")":; InCont

IF InType=1 THEN Contour=InCont/InMax
END IF
IF Mandel OR InType<>2 THEN DifZ=.0001*Length ELSE DifZ=0 'testing of stable cycle in set; adapted to zoom window

'color technique 2 in Julia set uses exact match
graphics:

SCREEN Mode ‘graphics screen according to hardware and selected resolution
IF Mode=1 OR Mode=7 THEN ScreenX=319 ELSE ScreenX=639
IF Mode<9 THEN ScreenY=199 ELSE IF Mode=9 THEN ScreenY=349 ELSE ScreenY=479

1F Mode=1 THEN OUT &H3D9,16 'CGA color palet 2: green, red, yellow
WINDOW(0,0)-(ScreenX,ScreenY): CLS
IF Mode>2 THEN 'EGA/VGA colors
SetCol=14: MaxCol=7: StartCol=9: Red=4 ‘only high intesity colors
ELSE
IF Mode=2 THEN 'CGA black/white 640x200
SetCol=1: StartCol=0: MaxCol=2: Red=1 'black also counted as a color
ELSE SetCol=3: StartCol=1: MaxCol=3: Red=2 'CGA 320x200
END IF
END IF
Iter1=6: Iter2=5 'for contour color outside the set
checksymmetry: 'with regard to axes and origin (0,0)

IF Height=-2*LowY THEN MirrorTB=1 ELSE MirrorTB=0 ‘'symmetry Top/Bottom
IF Mandel THEN IF ZRealStart<>0 AND ZImagStart<>0 THEN MirrorTB=0 'no symmetry if start not on an axis

Sym=0: MirrorLR=0 ‘used for Julia sets only
IF Mandel=0 THEN 'Julia set
IF Length=-2*LowX THEN MirrorLR=1 ‘symmetry Left/Right
IF MirrorTB AND MirrorLR THEN Sym=1 1(0,0) point symmetry
IF Clmag<>0 THEN MirrorTB=0: MirrorLR=0 ‘only point symmetry if Clmag<>0
END IF
adaptgrid: 'every reduction in grid size means less calculations
XStart=0: YStart=0: Aspect=Length*.75/Height 'to allow images <> screen Y/X ratio (=3/4)

IF Aspect<1 THEN XStart=CINT((ScreenX-ScreenX*Aspect)/2)
IF Aspect>1 THEN YStart=CINT((ScreenY-ScreenY/Aspect)/2)
XStart=XStart+CINT((ScreenX\2-XStart)*(1-Reduction)): YStart=YStart+CINT((ScreenY\2-YStart)*(1-Reduction))

DX=Length/(ScreenX+1-2*XStart): DY=Height/(ScreenY+1-2*YStart) 'grid step sizes
LINE(XStart-2,YStart-2)-(ScreenX-XStart+2,YStart-2): LINE-(ScreenX-XStart+2,ScreenY-YStart+2)
LINE-(XStart-2, ScreenY-YStart+2): LINE-(XStart-2, YStart-2) 'lines around picture

IF Mandel THEN CReal=LowX-DX ELSE ZRealStart=LowX-DX 'DX again added in "FOR X"-loop

IF MirrorTB THEN YEnd=ScreenY\2: ScreenY=ScreenY-1: ELSE YEnd=ScreenY-YStart
IF Sym OR MirrorLR THEN XEnd=ScreenX\2: ScreenX=ScreenX-1: ELSE XEnd=ScreenX-XStart

Fractal Report Issue 12 page 6

startcalc:

TimeO=TIMER 'start timing
FOR X=XStart TO XEnd
Iter=0 ‘ensure that CheckDifZ will be 0 at start of new column)

IF Mandel THEN CReal=CReal+DX: CImag=LowY-DY: ELSE ZRealStart=ZRealStart+DX: ZImagStart=LowY-DY
Z2RealStart=ZRealStart*zRealStart
FOR Y=YStart TO YEnd

IF InSet AND Iter>=MaxIter THEN CheckDifZ=1 ELSE CheckDifz=0

‘testing for stable (2*2)-cycle only starts when requested and when previous point belonged to the set

Iter=0: Z2Small=Escape2: ZReal=ZRealStart

IF Mandel THEN Clmag=CImag+DY ELSE ZImagStart=ZImagStart+DY

Zimag=ZImagStart: Z2Real=22RealStart: Z221mag=ZImag*ZImag: 22=22Real+221mag

FOR I1=0 TO MaxCycle-1: Cyclez(l)=22: NEXT I ‘initiate array with initial 2*z value
GOSUB iterate: GOSUB calccolor 'iterate, calculate color and put pixel(s)
NEXT Y
NEXT X
LOCATE ,1: PRINT CINT(TIMER-Time0);"sec" 'show calculation time
Wait$=INPUTS(1) 'wait until key pressed - possibility for PrtScreen/Restart/Exit
IF Wait$<>Chr$(27) THEN GOTO dataentry 'restart
END 'exit program when "Esc" key is pressed
iterate: ‘same routine used for Mandelbrot and Julia sets

WHILE Iter<MaxIter AND Z2<Escape2
NewZReal=Z2Real-22Imag + CReal: ZImag=(ZReal+ZReal)*ZImag + Clmag: ZReal=NewZReal
Z2Real=2Real*ZReal : Z21mag=21mag*ZImag: 22=22Real+221mag
Iter=Iter+1: IF CheckDifZ THEN GOSUB testcycle

WEND

RETURN

calccolor: 'determine color of pixel
IF Iter>=MaxIter THEN 'point belongs to the set

IF InType=1 THEN Iter=MaxIter+CINT(Iter*Contour)
IF InType=2 THEN Iter=MaxIter+CINT(Z2*InCont)
IF InType=3 THEN Iter=MaxIter+CINT(Z2Small*InCont)
IF InType=0 OR InSet=0 THEN Kolor=SetCol ELSE Kolor=Iter MOD MaxCol + StartCol
ELSE IF Iter<=Iter1 AND Iter>Iter2 THEN Kolor=Red ELSE Kolor=0 'point outside set, method 1
' ELSE IF Iter<=Iter1 AND Iter>Iter2 THEN Kolor=Iter MOD MaxCol +StartCol ELSE Kolor=0 'outside set, method 2
END IF
putpixel:
IF Kolor THEN 'put pixel only when Kolor<>background
PSET(X, Y),Kolor: IF MirrorTB THEN PSET(X, ScreenY-Y),Kolor

IF Sym THEN PSET(ScreenX-X,ScreenY-Y),Kolor: IF MirrorLR THEN PSET(ScreenX-X,Y),Kolor ‘only for Julia set
END IF

RETURN
testcycle:
IF InType=3 THEN IF 22Small>Z2 THEN Z2Small=22 'keep smallest 2*2
FOR 1=0 TO MaxCycle-1 ‘check for stable attraction cycle in the set

IF ABS(Z2-Cycle2(1))<=DifZ THEN I=MaxCycle: IF InType=1 THEN Iter=Iter+MaxIter ELSE Iter=MaxIter
NEXT 1

Cyclez(Iter MOD MaxCycle)=22 'keep last Z2*Z value(s)
RETURN 'if stable cycle found then stop iteration via Iter
screenerror: 'Err=5 : illegal function call

IF MaxMode=0 THEN
IF Mode=12 THEN Mode=9 ELSE IF Mode=9 THEN Mode=2 ELSE PRINT:PRINT"SORRY, NO GRAPHICS":STOP

RESUME 'try lower screen Mode
ELSE RESUME NEXT ‘continue if other error detected
END IF
'suggestions:

‘Julia, Length=3.22: Height=1.6: LowX=-1.61: LowY=-.8: Escape2=100: MaxIter=200: CReal=-1: CImag=0
'Resolution EGA: Z-cycle=2: Attraction count: Contours=999; Fig 1

'Mandelbrot, Length=2.6: Height=2.5: LowX=-2: LowY=-1.25: Escape=100: MaxIter=500: ZReal=0: ZImag=0
'Resolution EGA: Z-Cycle=3 : Attraction count: Contours=170; Fig 2

'Mandelbrot, Length=.88: Height=.56: LowX=-1.43: LowY=-.28: Escape=100: MaxIter=202: ZReal=1.4: ZImag=0
'Resolution EGA: 2-Cycle=2 : Minimum Z: Contours=400 (Iter1=8, Iter2=7); Fig 3

'Julia, Length=2.6: Height=2.26: LowX=-1.3: LowY=-1.13: Escape=100: MaxIter=802: CReal=-.11: CImag=.6557
'Resolution EGA: Z-Cycle=3: Attraction Value: Contours=29; Fig 4

'Julia, Length=1.8: Height=2.3: LowX=-0.9: LowY=-1.15: Escape=100: MaxIter=999: CReal=.32: CImag=.043
'Resolution EGA: Z-Cycle=11: Attraction Value: Contours=30; Fig 5

Fractal Report Issue 12 page 7

AREA PRESERVING MAPPINGS
Paul Gailiunas.
In 2-D any point can be specified by two coordinates x,y), and it can be
mapped to any other point by a rule which in general looks like:
x = f&,p
y = g&y.
Interesting graphics can be produced by plotting points as this mapping is applied
repeatedly. Many kinds of behaviour are possible, but if mappings are restricted to
those which preserve areas then cases where parts of the plane either shrink tao
nothing or expand to infinity are excluded. In mathematical terms this requires that
o 9 _ 29 .2¢ | _]
Ve Y 2> 99| T

Some of the best known area preserving mappings are Martin's Mappings:

x = y+fx@

y = a-x,
and one of the simplest has f(x)=sin(x), but despite its simplicity it still shows
much of the behaviour which is typical of area preserving mappings. One of the most
obvious things you will notice if you investigate this mapping is that, depending on
the value of a and the starting position, (x0,y0), sometimes a shape is repeated
four times. If this happens then there will be values for {x0,y0)> which produce four
dots. These are known as periodic points (of period four). Sometimes there will be
only one shape, with a single fixed point associated with it.

For any value of a it is possible to get a good idea of what is going on
by plotting say 200 points starting from variocus positions in the plane. In fact,
because of the periodicity of the sine function, any pattern is repeated at
intervals of 2x in either the x or y direction so that only a square of side 2x
need be considered. I have used the following BASIC program written for Amstrad PCV
using the DWBAS extension (from PCW-Vorld, Cotswold House, Cradley Heath, Varley,
Vest Nidlands. B64 7HF), using a screen-dump for varying values of a. Vith a
machine such as an Archimedes I would expect it to be quite feasible to produce an
animation. Notice that the sequence repeats as a varies, with periodicity 2x.

30 LDV d

75 pi=3.1415926535#: pi2=pis2
80 k=23TAN (243pi/180) §k LD =0l
90 magy=35:mag=magy/k

100 offset=40: yoffset=10

120 INPUT “a”;a

130 LDV c: LDV h

150 PRINT "a =" a

155 FOR k%=0 TO 5

160 FOR j%=0 TO 5

170 x=j%3pi/3

175 y=k%¥pi/3

180 FOR i%=1 TQ 200

190 xx%=INT (x#mag + offset)

200 yy%=255-1FT (ysmagy+yoffset)
210 LDV g,xx%,yy%

220 z=y-SIN (x)

230 y=a-x -

240 x=z

241 TF %<0 THEN x=x+pi2:GOTO 241
242 IF y<0 THER y=y+pi2:GOTO 242
243 IF x>pi2 THEN x=x-pi2:GOTO 243
244 IF y>pi2 THEN y=y-pi2:GOTO 244
250 NEXT i% .

260 NEXT j%

270 NEXT k%

Fractal Report Issue 12 page 8

(If you find it difficult to imagine what happens as the square repeats over the
plane, then leave out lines 243 and 244 and allow j% and k% to go to about 17,
taking care to adjust the magnification so that it all fits on the screen).

Vhen a=0 there are fixed points at (O,f)) and (x,0), and a pair at (0O,n) and
(x,0) which alternate. There are concentric loops about the fixed points, which are
known as elliptic fixed points. The other two points lie in between the loops and
are called hyperbolic. As a increases the loops begin to develop more structure, and
there are five elliptic and five hyperbolic points which produce a system of five
small loops. As a continues to increase more changes occur until eventually the
sequence repeats when a=2x. In general there are three types of behaviour:
individual points, which are either fixed or periodic of small period; invariant
curves, like the concentric loops, which occur near elliptic points; chaotic regions
which always occur near hyperbolic points. Chaotic regions may rum together, but
they can never cross an invariant curve.

Some of these shapes are very like thaose produced by the Henon map (which
is also area preserving), as described by Andy Lunness in Fractal Report Issue 4,
although in that case the behaviour over the plane is not periodic, and starting
points outside a fairly limited area seem to produce divergent behaviour. This
suggests the possibility of using an escape-time algorithm to produce a picture of
the Julia set for this mapping, which could also be used for an animation.

The patterns produced by some other Martin's mappings <(e.g.
f(x)=ggn(x)#(b¥x+c)) can be seen to consist of elliptic points, which could have
bigh periodicity, with chaotic regions in between. If the starting point lies within
the chaotic region then gradually the plane will be filled with dots as the mapping
is repeatedly iterated, but the regions with invariant curves will never be included.
This explains the characteristic appearance of these pictures.

Another kind of area preserving mapping has the general form:

x = y- fx + bsy)

y = a- (x + b¥y).
This is closely related to Martin’s mappings, and simply involves replacing x by
(x + b#y) in the formula. In the above example for example simply replace lines
220-240 by:

220 z=xtb#y

230 x=y-sin(z)

240 y=a-z.
This produces much larger regions of chaos for values of b not nearly equal to 0,
and it is usually more interesting just to start at (0,0) and let things develop,
rather than restricting everything to a 2n square and trying different starting
points. In other words just use the normal Nartin algorithm with the extra line
included. I have found that values around a=4, b=0.2 and a=6, b=0.8 are quite
interesting.

The change, x = x + b#y, is a particular example of the general affine
transformation:
X = atx + bty + e

y = c#x + dsy + f
which will preserve areas provided that abs(atd-b¥#c)=1. This suggests combining
area preserving maps to produce new, more complicated, ones - an idea 1 have not
even begun to explore. For example, what about:

x1=y-sgn (x)# (b¥x+c)

yl=a-x

=yl-sinx1)

y=d-x1
just for starters.

Fractal Report Issue 12 page 9

Spirals: animal, vegetable, mineral or fractal?

By Nigel Woodhead
The Road to 0z

Our word spiral comes to us from the Latin spiralis - 'continually
winding'. The Chambers 20th Century Dictionary gives the following
definition: '

"a curve (usu. plane), the locus of a point whose distance from a
fixed point varies according to some rule as the radius vector
revolves."

In this short piece I shall step beyond this strict mathematical
definition - using the term spiral as a flag of convenience to
float conceptual links between a great variety of phenomena.

Spirals are very pervasive. They occur in weather systems as
tornadoes and hurricanes, and in water systems as whirlpools. From
the macroscopic scale of galaxies, down to the scale of the subtle
fields of force in play between the smallest particles of matter,
we have evidence of strikingly similar morphology.

The spiral is not just a familiar talisman of the physical
scientist however - biologists also know them well: from bacillus
to brachiopod, from protein structure to the skeletons of snails
and shellfish. They are also universal in the art of human cultures
- as mystical or abstract symbols, pictographic characters,
children's doodles, or the merely esthetic (1). A fine example of
how man has abstracted spirals from Nature comes from Catalonia -
in the megalithic walls of Tarragona are carved spiral characters
from the ancient Iberian alphabet. This symbol is still reflected
in the crest of modern Catalonia - the snail, of which there is a
prolific (and delicious) local species.

But what we are really interested in here is the root of all of
these patterns - not where the spiral so much as how the spiral.
Answering 'how' questions involves a theory, and preferably a
demonstrable and replicable formula. And in looking for these
formulae, the spiral hurntar soon enters the great sea of fractalia.
Because spirals, wheels, chaotic curls and related phenomena can
all be produced by sequential operations on equations, e.g. simple
affine transformations on sets of constants, and logarithmic
sequences involving complex numbers.

The 15 roots of Unity

It has long been known that if you take a complex number raised to
its successive powers from 1 to 15 and map those points on the
complex plane, the corresponding escape vectors cut up the circle
into 15 equal segments of 24 degrees. This rotation is repeated for
the next 15 powers, and so on. Similarly, powers 2,4,6,8, also
rotate in a repeating double circle, and powers 3,6,9 in a triple
cirle, etc.

For some numbers the vector radius increases as the powers
increase, and the spiral unwinds outwards and anti-clockwise (see
Figure 1). For other numbers the spiral orbit decays into the
origin. This effect, when the complex number X is of an order that
X**n-C = 0, i.e. the orbit neither escapes or decays, is known as
the unit circle, and the power vectors are known as the roots of
unity.

Fractal Report Issue 1: page 10

The spirals of shells such as those of ammonites and snails can be
mimicked u51ng variations on logarithmic sequences (2). The present
day Nautilus is a particularly interesting case in that it is
mapped by the equation of the unit circle - growing outwards in a
rotations of 15 segments. In other words, we have a perfect example
of an organism whose morphology mirrors not only its own ontogeny,
but also a fundamental rule of mathematical regularity.

Mandelbrot Spirals

A number of similar 'escaping phenomena' thrive in the shallow
currents around the deep lagoon of the Mandelbrot Set itself.
Figure 2 shows a set of 7 spiral curls located off the major
'northern island' of the M Set (x = 0.120762 to 0.162787, y =
0.635716 to 0.667330).

Figure 3 (x = 0.128775 to 0.135012, y = 0.635716 to 0.667330)
shoows an area where a number of attractors with different
periodicity can be seen. In fact, each region of the complex planes
is characterised by a different periodicity (3).

Figure 4 (x = -0.252662 to -0.252629, y = 0,650062 to 0. 650088)
shows a similar but smaller set of splrals - this time there are
fourteen. Note that they are not equally distributed around the
circle - populating the ‘'southern' part of the map, i.e lower on
the y scale and closer to the main M Set more densely. Despite
this, they do exhibit scaleable, rotational symmetry.

However, the most remarkable fact to my mind is that in the Figure
at this scale, each curl exhibits a recursive banding - there are
14 repeating bands before each of the repeating 'branches'. This is
shown more clearly in Figure 5 (coordinate centre as for figure 4).
The overall effect is of 14 brachiopods or tendrils spiralling into
or out from a common (starlike) origin.

More generally, the numbers 7 and 14 appear to be particularly
significant in the sets of repeating phenomena around the M Set. So
do the numbers 8 and 16. I would be interested to hear of a good
explanation for this.

Returning to our dictionary definition of spirals as 'continually
winding' we can see from zooming in and out around Figure 3 that
this is not quite true for phenomenological spiral, which are
finite. Like other chaotic curls, self-similarity is stable only
within a relatively bounded region - a few 'generations'. At the
outer limits the spirals 'explode' into other phenomena. Iteration
and scale affect the image's 'ramifications', and the amount of
'noise' around the repeating areas.

I hinted earlier that we could explain spirals mathematically.
Well, no, not really. We need to know why they occur as well as how
to model them. Pickover (4) speculates that spirals may be
biologically useful as they keep long spaces compact, as in the
digestive tract. But at the more microscopic and macroscopic levels
we can still only observe the spiral; we do not know how or where
it is coded into an organism's DNA; we do not know what force takes
over from gravity to form the double spiral arms on the massive
scale of galaxies. The origins of the great family of spirals are
arguably the commonest and most enigmatic of all the strange
attractors.

Fractal Report Issue 12 page 11

T RN T WM

(e
CHAEN S £
P

O R
3 AE\W,,.V-.,, s
Liro 00 di § o

RIS
s
Fractal Report Issue 12 page 12

Fig. 1
Fig. 5

get the cross product io give Normal N:
nxX=py*qz - pz*qy
ny=px*qz - pz¥qx
nz=px*qy - py*qx

Now . given a light source with coordinates (xlyiz) we find the vector L, of the light, which is
simply the coordinates of the light. We find the normal N as before and then change both to unit
vectors. This is done by dividing each the component of the vecior by the pythagorean fengih of
the
vector.

ie.sqri(x*x + y*y + 2%7)

The amouni of light reaching a surface is proportional io the Cosine of the angle between the
surface and the light. By a sirange coincidence, there is another vector operation, the dot product
which is equal to the cosine of the angle between two vectors, for unii vectors. We work this oul .

dolprod = ix*nx + ly*ny +1z%nz

This gives a value between 0 and 1 for visible surfaces. If you just want 2 hidden surface routine,
this is far as you need to go. Just draw the triangle if the value of dotprod is positive.

To add shading, you need to be able to draw filled triangles, independent of the background. BBC
Basic will do this, so does GEM on the Atari ST, but a lot of Basics and C's don’t. In GWBasic you
should be able to use the plain fill and some colour fiddiing. Fili your palette with a smooth scale of
as many greys as you can gel. To find the shade, simply multiply by a suitable scale (64 for VGA)
for your palette, and draw a filled triangle of that shade. If the value is negalive, the triangle is
hidden, and as before, don’t draw it.

Tip: you can samelimes pad oul a grey scale with blues of similar tons, Or, if you'are a glution for punishment, work
which colours work with the Colour on the Monitor turned down.

Se now vou can produce shaded images of your favourite fractals. Great snapshots of vour
holiday on Stiperstones Ridge or Mount !\fandelbm{.

On that point. has anyone managed to make the 'Brownian Surfaces’ described in Mandelbrot's
Fr actals:&"arm, Chance and Dimension? These seem an ideal candidate for shading. I have only had
a brief look at the book, and I couldn’t see how to make them.

The shading model used in this routine is taken from a very readable book
‘Computer Graphics: A Programing Approach’ By Steven Harrington, published
by McGraw-Hill, ISBN 0-07~100472-6,

Other references that may be of interest are:

‘Mumination for Computer Generated Pictures’
Bui Tuong Phong, Communications of the ACM, vol. 18 no. 6 pp. 311-317

This is a (considerably) enhanced version of the system described. Although I found it heavy
going, and very comprehensive,

‘Ray Tracing Procedurally Defined Objects’
James T.Kajiya, ACM Transactions of Graphics, Vol. 2 no. 3 pp. 161-181
This gives a method for producing ray traced pictures of fractal surfaces, Very Tricky Stuff.

'An Improved Model for Shaded Display’
Turner Whitted, Communications of the ACM, vol. 23 no. 6 pp. 343-349
Shows how optical laws can be simulated to produce photo-realistic computer graphics.

‘Ray Casling for Modelling Solids’
Scott D.Roth, Computer Graphics and Image Processing vol. 18, no. 2
pp 109-144

Practical description of a ray tracing system. Quite long and detailed, but quite easy reading. My
favourite, I still intend to write a Ray Tracer based on this system.

Fractal Report Issue 12 page 13

Bibliography:
1. Arnheim, R. Art and Visual Perception. Faber 1956

2. Pickover, C.A. A short recipe for seashell synthesis. IEEE
Computer Graphics and Applications, November 1989, pp. 8-11

3. Becker, K-H. ang Dorfler, M. Dynamical Systems and Fractals.
C.U.P. 1989

4. Pickover, C.A. Computers, Pattern, Chaos and Beauty. Alan Sutton
Publishing, 1990

Shaded Three Dimensional Models
By Howard Jones, 12 Fountains Garth, Bracknell, Berkshire RG12 4RH

| read with interest Jon McLaren’s comments in Fractal Report issue 9 about producing shaded 3d
pictures of fractals.

The following routines will produce fully shaded pictures of any object that can be represented as
a series of planes. It takes as input the x,y & z coordinates of the three corners of a triangle, and the
coordinates of the light source n the scene.

The program can be built up in stages, so that it is easy lo see whal is going on. The first stage
simply changes the three dimensional object coordinates into two dimensional screen coordinates.

This routine uses the parallel projection. This uses a simple addition to the x and y coordinates to
create a skewed picture which 1s often used for drawing maps and graph surfaces.

screenx = x*10 + y*5
screeny = y*§ + z*5

The two multipliers scale the image for the screen, with values of 10 and 5, a 20%20 grid fills a
320*200 pixel screen. Change the values to fit your screen, but they should be roughly i the ratio
2:1.

For each of the points in the triangle, the transformation is performed, and the resuiting three
points plotted as a new triangle. If this repeated for all the planes in the scene, you will have a
'wireframe’ picture of the scene.

Next we can add the shading part. Even if you don't have many colours, you can still use this
routine to give hidden plane pictures.

For this, you must ensure that when the coordinates are passed to the routine, they are clockwise
from the direction they are to be viewed. This is usually not a problem, as the points will be fed to
the routine by some sort of loop, so that once you have figured out which way it should be, it will
work for all points. You must also draw the most distant points first Gorry). Again, if vou are
drawing from an array/grid this won’t be hard. Also note that x and y are the plane of the screen,
and that z is positive going into the screen, with z=0 at the surface of the screen.

For this. it helps if you know a little about vector maths. A vector is a direction, with an x, y and
z component. The triangles can be described as two vectors, both from one corner, towards one of
the other corners. The vectors are found by gelting the difference between the x, v and z
coordinates of the points at each énd of the vector. The two vectors define the plane of the triangle
to be drawn. Now. by using the ‘cross product’. we can get a Normal to the plane of the triangle.
This normal points out of the visible side of the triangle.

... with triangle points ax,ay,az, bx,by,bz, and cxcy.cz :

find vector P: and vector Q:

pX=cx-ax gx= bx-ax
py=cy-ay qy=by-ay
pz=cz-az qz=bz~az

Fractal Report Issue 12 page 14

Full Algorithm:

InitGraphics

Main Loop calling Triangle(xl,x2,%3,v1,y2,y2
Y 4 Y

-

Erd

defproc

.

o
z1,22,23):

=ty

Triangle(xl,x2,x3,y1,y2,y3,21,22,23}

px=x3-x1; py=y3-y1l; pz=2z3-z1;

qQr=x2-x1; qy=y2-v1; qgz=z2-z1;

NX=py*qz-pr*qy;
ny=px+qz-pz*qy;
NZ=pR¥qQy-qy¥px:

assqrt (re¥nx+ny*tny+nztnz) ;
NX=Nx‘/a; ny=ny/a; ni=nz/a;

assgqrt(lx*lx+1y*ly+lz*lz);
1x=1x/a; ly=1lv/a; lz=lz/a;

dotprod = 1x*nx + ly*ny + lz*nz

if (dotpred>0)
sxXl= x1*10 + y1*5;
syl= yl#5 + zl1*5;

.

i:{epeat for sx2/sy2 and sx3/sy3

-

drawtrianyle(szl, sx

endprac

(2

&8

«8X

£

R4 P

Calculate two vectors...

Get Cross Product...

Normalize Vectors...

Get Dot Product...

.8yl,=sy2,5y3,dotprod*64) Draw plane!

Graphic by Dr lan Entwistle

" Fractal Report Issue 12 page 15

HYPERBOLIC PATTERNS WITH RECURSION
Ettrick Thomson

The fascinating Hyperbolic Patterns of Uwe Quasthoff, Fractal
Report, Issue 11, pp 2-4, cry out for recursive programming.
This SAM Basic program produces the same pattern as Fig.l of
that article: PROC reflect (Line 300) does the recursion. It is
entered, in the first place. at L150. where x,y is a point in
the rundamental region (the central black curvilinear triangle),
1.2.3 specify the 3 reflecting circles, and n (defined at L10)
specifies the depth of recursion.

PROC reflect first finds u,v, the image of x,y with respect to
the specified circle, using PROC image (L200); this will be a
‘lst-order image' in one of the 3 triangles surrounding

the central triangle. The 2 images of this lst-order image with
respect to the 2 other circles will be 2Znd-order images, lying
in one of the 6 triangles surrounding those with the lst-order
images: these two 2nd-~order images are found by the recursive
calls of PROC reflect at L360; further recursive calls produce
3rd, 4th,...,nth order images.

With n=10, each point in the fundamental region produces 2046
images of various orders; with infinitely precise arithmetic
these would be distinct, and different from the images of other
points in the fundamental region; but with the discrete pixels
of a computer display, there will be much confoundlng of points,
which is taken advantage of to reduce running time. When each
image has been found, the coordinates su,sv of the pixel to
which it would be allotted are found (L330); the function
POINT (L340) is non-zero if that pixel is already set; only if
it is not set do we set it (if in a 'black' area) and carry on
with further recursive calls.

Line 10 sets various constants that depend on the computer
display: xpix, ypix are the numbers of pixels in the x, y
directions. The circle within which the pattern lies has unit
diameter, and D is the number of pixels representing unit
length. The depth of recursion, n, will have a maximum depending
on the resolution of the display. The arrays xc(),yc() give the
centres of the 3 reflecting circles. The x and y loops (LL60 -
170) cover the central curvilinear triangle by first covering
the linear triangle with the same vertices, and then (LL80-120)
testing so that LL140-150 are obeyed only for points of the
curvilinear triangle. The STEP inc=1/D used for both x and y is
a l-pixel step, so that all pixels of the central triangle are
set, but there are a few holes in some of the higher-order
triangles. The left-right symmetry of this particular pattern is
taken advantage of by: (1) the x,y loops cover only the right
half of the central triangle; (2) 2 symmetrical points are
plotted in the central triangle (L140); (3) 2 symmmetrical image
points are plotted (L350). The parameter n of PROC reflect not
only controls the depth of recursion, but its parity decides
whether images are plotted, giving the alternate black and white
areas. . :

For other patterns with 3 reflecting curves PROC reflect would

Fractal Report Issue 12 page 16

be unchanged (except that, in general, only one point would be

plotted at L350); PROC image would, in general. have to select

one of 3 routines, one for each curve. The main program would ‘
have to specify the reflecting curves and arrange to cover the

pixels of a suitable fundamental region. o

u

REM hyperbolic pattern

10 LET xpix=256,ypix=176,D=160,r=10

20 LET xo=xpix DIV 2+0.5, ‘ 200 DEF PROC image a,b,q, REF c, REF d
yo=ypix DIV 2+0.3 210 LET a=a—-xc(qg),b=b-yc(q)

30 LET inc=1/D,k=8SAR (0©.73) 220 LET s5=0.75/ (aka+bxb)

40 DIM xc(3),yc(3) 230 LET c=sxa+xc(q),d=skb+yc(q)

50 LET xc(1)=0,yc(1)=-1, . 240 END PROC
xc(2)=k,yc(2)=0.5,
xc(3)=-k,yc(3)=0.5 ' 300 DEF PROC reflect x,y,p.n

60 FOR x=0¢ TO k/2 STEP inc 310 LOCAL uw,v

70 FOR y=—0.25 TO 0.5-2XkX¥x STEP inc 320 image X,Yy,psU,V

80 LET i=1 330 LET su=INT (Dixu+xo),

DO sv=INT (Dxv+yo)

K LET u=x—xc(i),v=y-yc(i) 340 IF POINT(su,sv)=0

100 EXIT IF uxu+viv<0.75 30 IF n MOD 2=1 THEN

110 LET i=i+1 PLOT su,sv '

120 LOOP UNTIL i=4 PLOT xpix—su,sv

130 IF i=4 360 IF n>1 THEN

140 IF (n+1) MOD 2=1 THEN reflect u,v,1+p MOD 3,n-1
LET sx=INT (Dkx+xo0), " reflect u,v,1+(1+p) MOD 3,1

sy=INT (Dxy+yo) 37¢ -END IF

PLOT sx,sy 380 END PROC

PLOT xpix—sx,sy
150 reflect x,y,1,n
reflect x,y,2,n
reflect x,y,3,n

160 END IF
170 &#T v RECREATIONAL
STOP | &
EDUCATIONAL
COMPUTING

REC’ is the only publication devoted to the playful interaction of computers
and ’mathemagic’ - from digital delights to strange attractors, from special
number classes to computer graphics and fractals. Edited and published by
computer columnist and math professor, Dr. Michael W. Ecker, REC
features programs, challenges, puzzles, program teasers, art, editorial,
humor, and much more, all laser-printed. REC supports many computer
brands as it has done since inception Jan, 1986. Back issues are available.

To subscribe for one year of 8 issués, send $27 US or $36 outside North
America to REC, Att: Dr. M. Ecker, 909 Violet Terrace, Clarks Summit,
PA 18411, USA or send $10 ($13 non-US) for 3 sample issues, creditable.

Fractal Report Issue 12 page 17 -
2023: REC is archived at https://tinyurl.com/202qu259

Wolf’s Dust o: panie Wolf, Ph.D.

A novel method of calculating images of ZA2+Z (the Mandelbrot Set), ZA2+C (Julia Sets), ZA3+Z
(’cube’ Mandelbrot Set), and ZA3+C (’cube’ Julia Sets) reveals heretofore hidden aspects of the fractal
behavior of these functions under iteration for the region of the complex plane outside a radius 0ofZ.46
from the point (-0.5,0). ’

I developed this method for my program, FractalPro. The original intent of this development was to

~ improve the speed of calculation for points inside the above stated radius, since the Mandelbrot Set and
Julia Sets exist within a circle of that radius. I have made some study of the consequences of my method
of calculation and enclose some images which may be of interest to your Scientific American readers. 1
call my technique *method of truncated integers’. I call the resulting fractals Wolf’s Dust(M(i)) and
Wolf’s Dust(J(i)). When the usual ZA2+Z formula for M (the Mandelbrot Set) is applied, this would be
WD(M(2)). Similarly there are WD(J(2)) for ZA2+C and WD(M(3)) and WD(J(3)) for ZA3+Z and
Z73+C, respectively. '

The appearance of Wolf’s Dust is (superficially) a series of concentric rings surrounding the Mandelbrot
Set (or other set, depending on the function iterated). Upon closer examination, the series of concentric
rings is found to be fractal, that is, it is self-similar, containing rings within the rings and quite
interesting smaller scale structure which reveals whorls, swirls, and objects which resemble optical
diffraction patterns and the interference patterns generated by laser light passing through irregularly
shaped refractive materials (blown glass objects, etc., I've forgotten what these patterns are called).

Upon even closer examination (WD’s can be enlarged indefinitely, like M) WD(M(2)) is found to
contain tiny copies of M. Little baby Mandelbrot Set figures are in this dust (hence the name, Wolf’s
Dust of M or J or whatever) and can be magnified and resemble the ordinary images we’ve all seen of
Mandelbrot Sets. Elsewhere the dust continues to reveal structure resembling optical interference and
diffraction patterns. The regions surrounding the *baby’ M figures in the dust are also unusual in
appearance, with some aspects of the ’interference’ pattern showing up.

I have found points in WD(M(2)) of interest and then calculated ordinary Julia Sets (i.e. within a radius
of 2 from the origin) for those points. These Julia Sets from WD(M(2)) don’t behave like Julia Sets
based on points of M within radius 2.

I’ve also taken ordinary Julia Sets of ordinary points in M and explored WD(J(2)). Again I’ve found
copies of the Julia Set located in the WD(J(2)).

[am intrigued especially by the ’interference pattern’ appearance of the various WD’s. I have
confirmed the existence of the WD(M(3)) and WD(J(3)), that is, for the *cube’ formulae. It would be
most interesting to learn if these ’interference or diffraction patterns’ have an optical counterpart. Of
special interest to me is whether these patterns can be imaged or Fourier transformed to yield an
interesting result. I have a suspicion that the pattern is a hologram of something else, perhaps M itself.

I believe FractalPro is the only commercial program which permits exploration of Wolf Dusts. Since most
computer programs for exploring Mandelbrot and related Sets are done with high-level languages most
programmers won’t encounter the ’truncated integer’ method. Most such programs use ordinary or
double-precision floating point representations of Z and C. FractalPro doesn’t. FractalPro uses specifically
designed (what I believe are) unique assembly language routines with fixed point integer representations of
Z and C. Instead of leaving a large *headroom’ for the integer parts of the numbers, these algorithms
truncate the integer part (which improves the speed of multiplication of the fixed point numbers) so that
numbers which exceed a certain size (3.9999...) aren’t represented. That was a design decision for the
integer algorithms since calculating M only requires comparisons of a maximum norm (size) of ZA2+Z of 2

Additional bits of precision devoted to the integer part of Z seemed wasted (and added extra right-shifts to
the multiplication routines). The result is a program which is extremely fast and has more bits of fractional
precision than IEEE double-precision floating point. The additional fractional precision permits
magnifications over 100 trillion times, greater than most floating point-based methods. Other programmers
may be able to explore WD(M(2)), but they’ll have to find some method of truncation not usually found in

commercial Mandelbrot Set exploration programs.

The result of the truncation is an apparent ’artifact’ (Artifractals?), the rings of dust surrounding the sets.
The ’artifact’ is no ordinary kind of artifact, though. It’s not just some bothersome blob. Because of the
truncation’s effect on the iterated function at these radii, the consequence is as if the function were iterated
modulo 4 (with fractional remainders allowed). Thus arises Wolf’s Dust. It may contain even more variety
and infinitude than M itself (since it contains plenty of M’s in addtion to the interference patterns). I do not

Fractal Report Issue 12 page 18

yet knqw jf all the littlf: M’s inside WD(M(2)) are connected. I doubt it. WD(M(2)) seems to be like M
turned inside out. The interference patterns look like they might be the result of a circular wave converging
on M from the outside and then reflecting and interfering with itself.

[’ve also been viewing a new video from Art Matrix. The Mandelbrot Set zoom sequences in the video
(made on a Cray? at Cornell) can be easily generated with FractalPro on an Amiga (with quality remarkably
close to the stuff done with the Cray), and I’ve done panning, Julia Set zooms, and ’cube’ formula zooms
with FractalPro, too

Ref. Mr. Tom Marlow’s notes on page 14:

Mr. Cade Roux contacted me about finding the Wolf Dust using my commercially available FractaiPro
programs for Amiga (information enclosed) a few weeks ago. I have known of its existence for about 3
years and never publicised it much. There are hundreds of FractalPro users in 10 different countries, but
no one commented on the presence of WD until Mr. Roux (which has surprised me, since its presence is
sort of obvious). I mostly regarded it as a ’artifact’ (artifractal) and knew it was itself fractal way back
when I first wrote the earliest version of FractalPro in 1988. The reason for its existence is related to
truncating the integer part of the numbers used in the calculation. A small part of it can be found inside
the range I mentioned in my letter to Dewdney (near the main spike). I can force its appearance even
closer to the ’origin’ by reducing the precision of the integer part of the complex numbers. It can
effectively be forced to ’disappear’ by increasing the precision available for the integer. I don’t believe
it can be seen at all unless integer techniques are used instead of the usual floating point. Integer
methods are (I believe) only practical in assembly language (the language in which I wrote all of
FractalPro). Its particular appearance in FractalPro is due to a happy medium I found experimentally
which provides a certain integer precision resulting in very nice Mandelbrot (and related) images yet
which (nearly) minimizes the computation times (they are substantially faster with greater fractional
precision than floating point algorithms on the Amiga and most other machines). The integer methods I
use to represent the complex numbers provide for some variation which allowed my early
experimentation and my decision on the happy medium’ I mentioned above. I did some exploration in
the WD a long time ago but Mr. Roux’s letter in August made me realize it had a separate potential for
very beautiful images and I decided to ’let the cat out of the bag’ regarding its origin. That’s why I
wrote Dewdney (cc to Roux). Mr. Marlow’s letter doesn’t mention which algorithm or machine he uses,
but is the first time I’ve heard of (possibly) another program which permits exploration of WD. I hope
he’s using FractalPro.

Fractal T-Shirts
I I_I“ ' MegsaseM E“j
Eﬁ:—: Presents E_:'ﬁ:TI— Black silk-screened designs on XL size, white, 100% cotton shirts

Premier Fractal Art & Animation System For All Amiga PCs
Four Kinds of Beautiful Fractals:

o B3, X
Mandelbrot Sets 5 e
Julia Sets
’Cube’ Mandelbrot Sets
'Cube’ Julia Sets %

Beautiful HAM Mode Graphics Provides 256 Color Images y Y
Full Color Palette Controls and COLOR CYCLING ‘\?&r{ Y VAR ™
Magnify Fractals Up To Ten Trillion Times A*Cos(Z)=0 e

Automatic Sequences For Animated Zoom and Pan

Six Drrections of Motion:
Zoom In
Zoom Out
Pan Up
Pan Down
Pan Left
Pan Right

Interactive Convenient User Interface
Compatible with Other HAM Art & Animation Tools

7:=7+C

Load and Save Images to Disk in Standard IFF Format E.
Includes HAMandel3.0, AutoMag3.0, and Animation Tools Price: 1 shirt £7.95, 2 shirts £14.95 Send to:
. . L N Scarab Softwear
FAST Assembly Language with Built-In Support for 68020/030 Special offer o Fractal Report readers: 38 Midship Point
Any 4 shirts £€27.95 Westferry Road
Works With Any Amiga Anviall 6 shirts £33.95 London E14 8SW

T+ sluﬁr(irunl»\ £5.80 each! Postage & pucking per order: UK £195 FC £395 World £4.95

No Special Math Knowledge Required [-
. . [Name .-Address Post/Zip Cod
Anyone Can Create Beautiful Fractal Art With e
FractalPro
Available at local dealers or direct: $89.95 ($2.00 Shipping 6.75% CA Tax)
MegageM 1903 Adria Santa Maria, CA 93454 (805) 349-1104

Goods price: £

Post & packing: £

Total: £

Cheques should be drawn on 4 UK bunk
and made pavable 10 Scarab Softwear

Fractal Report Issue 12 page 19

Announcements

TI99/4A Program Exchange Offer

Mr Stephen Shaw wrote enclosing prints of the
work he had done with his Texas TI99/4A. He
is happy to exchange disks or BASIC listings
with other TI99/4A owners. His address is 10,
Alstone Road, Stockport, Cheshire, SK4 SAH.
His programs include gingerbread men, Connett
Circles, Feigenbaum Plots, and some graphics
from Dr Pickover’s book.

[2023: You can see these graphics at:

http://shawweb.myzen.co.uk/stephen/sdlbasic.htm]

(Archived: https://tinyurl.com/sdlbasic)

He also notes that if you look at some of the
Connett Circles, you can see squares around the
circles. I think that this may well be due to
computer rounding errors, but maybe readers
have other ideas.

Plea for help with Amstrad CPC664

Mr Bev Mason, of Highlands, Bromsash, Ross —
on—Wye, Herefordshire HR9 7PR asks for
some help with the best language to use for
fractals with the 64k Amstrad CPC664. He finds
assembler too slow to write and his BASIC
compiler can’t handle hyperbolics etc. He also
asks for some standard to be used for defining
Mandelbrot pictures, and seeks an explanation
of quantities used in articles such as offset, scale
etc which can often mean different things in
different articles on the same subject.

Creating a standard would undoubtedly be well

nigh impossible, but certainly we could ask
authors to spell out the meaning of terms used.
Although they may be obvious to some, the
range of readers of Fractal Report is very wide.

Art Matrix’s New Video

Mr Cade Roux writes to say that the new video
from Art Matrix is "stunning", although there is
no documentation to go with it.” He also
mentions that he has two of their T — Shirts. He
says that they have trouble with advertising
costs, and asks any reader with retail contacts
who may be interested to contact Art Matrix
direct. Of course the videos will sell far beyond
the computer market itself. The address of Art
Matrix is PO Box 880, Ithaca, NY14851, USA.
Anyone interested in buying their products
dir%ct is also advised that they accept credit
cards.

He also says that he has had some slides of his
own made, and is investigating a 24 — bit frame
buffer for his Amiga. This will'enable it to offer
high resolution and more colours.

Mr Lewis Siegel _
has moved without leaving a forwarding
address. Anyone who knows of his whereabouts
is asked to ask him to register his new address
if he wishes to continue with Fractal Report.

Editorial

Once again we come to renewal time. This year and in the
future the renewal notices will go out at the end of
November for the following volume. Cheques received
from readers will not be cashed until 1 February, the start
of RTL’s tax year. This is so that the funds received can
be directed towards printing the following volume without
suffering any tax penalties. The number of subscribers for
volume 2 (350) has been less than those for volume 1 at
the end of it’s year (400). Naturally this is a
disappointment, but we will continue in publication whilst
the numbers are above 200, and even allowing for a similar
reduction we should comfortably exceed this for the next
volume. As further copies of volume 1 were sold during
the year, the gap is in fact wider than the above figures
suggest. However volume 2 will remain on sale in 1991 as
back numbers, and it is anticipated that new readers will
still want them.

I would urge readers intending to renew to do so promptly
before they forget. Date your cheque 1 February 1991 if
ou like — it makes no J;fference — that is when it will
¢ paid in or soon thereafter.) We do not normally chase
those who don’t renew, so it is up to you to use the
enclosed form. If you have lost it, the address is on the
front cover.

Subscriptions won’t be acknowledged, but if you haven’t
received the next issue by early Fe%)ruary, then please let
me know promptly, — don’t leave it several months. We’ll
have the back numbers if you do, but obviously we don’t
want to keep you waiting.

Actually the main threat to Fractal Report is not so much

Fractal Report Issue 12 page 20

the lack of subscribers or the number of articles, but the
violently accelerating speed of time! A number of
contributors are helping with alleviating this by providing
material on disk or in a camera ready form that can be
used without any cutting and pasting, which apart from
being a great help also adds to improving the appearance
of the newsletter. Ideally articles should fill a whole
number of pages, not waste space with lots of blank lines
etc, and include illustrations fitted in spaces in the text, €
around program listings. I still seek new articles, althou:
we have held a number over this month. The more articles
I have to choose from the better the quality of each issue.

The success of Fractal Report has to a large amount been
due to the generosity of Computer Shoner, (14, Rathbone
Place, London, W1P 1DE) who run free spots for clubs
and specialist publications. A number of other magazines
gave us free publicity, but only Computer Shopper
repeated it relentlessly month after month with only a few
misses.) Micro Computer Mart, for example, have a club
spot, but char%e clubs large sums of money for insertion.
Indeed, the VAT on the advertising bills from such
magazines, on its own, would be enough to close a
publication like Fractal Report.

I would unreservedly recommend Computer Shopper 1o all
readers who don’t know it as having an excellent mix of
advertisement and editorial material for all main makes of
computer. It is also half the price of any comparablc
competition.

Magazine scanned
2023 by Stephen Shaw

