February 1991

FRACTAL REPORT 13

A Julia Set by Dr Ian Entwistle.

Further Fractals From Newton’s Formula John C. Topham 2
Editorial John de Rivaz 9
Announcements 9
More Mandelbrot Sets Chris Sangwin 10
Compressing Fractal Images Mike Parker 12

Single copy rate £2. Subscription rates six issues: — £10 (UK only) £12 Europe £13
elsewhere. Cheques in British Pounds should be drawn on a UK bank and should
- be made payable to "Reeves Telecommunications Laboratories Ltd." Alternatively,

dollar checks for $23 can be accepted if drawn on a U.S. bank and made payable
0 "J. de Rivaz".

Subscribers who_are successful in getting one or more articles with programs
published in a given series of six issues get the next volume of six issues free of
subscription. All new subscriptions are backdated to the start of the current volume.

Fractal Report is published by Reeves Telecommunications Laboratories Ltd.,

West Towan House, Porthtowan, Truro, Cornwall TR4 8AX, United Kingdom.
Volume 3 no 13 First published February 1991. ISSN applied for.

Magazine scanned 2023 by Stephen Shaw

FURTHER FRACTALS FROM NEWTON'S FORMULA

Various books and some articles in 'Fractal Report’ have
featured the production of fractal images from the use of
Newton ‘s method of finding the roots of equations with
complex variables. 7

Examples such aé equations =2z - 1 =0, n = 1,2,3,4,... (1)
have been dealt with before (see Figure 1).

Figure 1: F{(z) = z= - 1 .
Roots: z, =1, z2 = —-.5 + .8é61i, z= = —.59 — .Bbbi
Ficture dimensions:

X—axis -1.5,1.5 Y—axis —-1.5,1.5

What would be the result if "the power’ is negative, i.e. if
the equation becomes = " - 1 =0 or {(1/z7) - 1 = 0,
n=1,2,%,...{2}. Any trained mathematician would say that
this would only be a trivial rearrangement of equation (1)
(multiply both sides of =z - 1 = 08 by -z and you get

-1 + z2 =0 or =z -1 =0). However, if sgquation {(2) is
plugged. into Newton’'s formula as it is surprising images
appear. Figure 2 shows the attraction basins of the
equation: z~= - 1 = {1, the roots of which are: z4 = 1,

Tz = .0 + .8&bi, zx = —.5 — .Bbéi

The white background is the area where the iterations,
starting from these coordinates, diverge to infinity. The
areas that are shaded show that these initial coordinates
converge to a root. This contrasts greatly from the previous
=z — 1 = 0 examples where virtually any initial coordinate
homes in onto a root.

Unlike the equation =z= - 1 = 0 that seems to produce no
fractal behaviour, the egquation: z72 - 1 = 0 offers some

images as in figwes 3 and 4.

Fractal Report Issue 13 page 2

Figure 2: F(z) = =z—= — |

Roots: za = 1, Z=z = —.5 + .8Bé&b6i, Zx = —.9 — .Bbbi
Picture dimensions: X-axis: -2,2 Y-axis: -1.75,1.75

Figure 3: F(z) = -5 + z—=
Roots: Za = -1 + i, z=> =1 - i
Ficture dimensions: X—axis: —-2.5, 2.5 Y-axis: —-2.25, 2.25

Fractal Report Issue 13 page 3

Figure 4: Fiz}) = 1.6 - 2.4z7* + z—=
Roots: Ty = W79 + 251, z= = .75 — .251
Picture dimensions: X—axis —1,3 Y-axis —-1.75,1.75

If the program is set up to handle any third order polynomial
i.e. it calculates the coefficients when only the roots are
given, interesting pictures can be produced when the roots
are put close together (see figure S).

It seems to shows a sort of interference occuring.

Other examples are shown in figures &6 to 10.

Figure 5: F(z) = 1 — 2,45z—1
Roots: zZ, = —1, T2 T .0 4+ .
Picture dimensions: X—axis: -

Fractal Report Issue 13 page 4

Figure &: F(z) = 1 - .98z~ - .9%91z—2 + _99{z->
Roots: =z, = -1, zz =1 + .1i, zx =1 - .1i
FPicture dimensions: X-axis: -2,2.8 Y—axis: -2,2

Figure 7: Fiz) = —1.185 + 2.46&67z"* — 2.46467z 2 + z—38
Roots: =z, = .75 + .75%i, z2 = .75, z=x = .75 — .75i
Picture dimensions: X-axis: -1.5,4.5 Y-axis: -2.75,2.73

Fractal Report Issue 13 page 5

Figure B: F(z) = —.96 + 2.885z"* — 2,923z~ 2 4+ z—=
Roots: =z, =1 + .21, 22 =1, zs =1 - .2i
Picture dimensions: X—axis: —-1.5,35.5 Y-—-axis:

-3.2,3.2

Figure 9: F(z) = —-1.28 + 3.2z - 3.28z-2 + z—>
Roots: =z, =1 - 751, z=2 = .5, = =1+ .75i
Ficture dimensions: X-axis: —1.5,5 Y-axis: -3,

Fractal Report Issue 13 page 6

Figures 10 to 12 are fourth order polynomial images.

. -
&

d

Figure 10: Fi(z) = 1 + =—=
Roots: =z, = —-.7071 - 70711y, zo = —-.7071 + .7071i

= = 7071 + .7071i, Za = 7071 -.7071i
Picture dimensions: X—-axis: —1.7,1.7 Y-axis: —-1.4,1.4

“*'Wfﬁgéﬂﬁéi‘? &

SR g R R gt A SR B8

Shizhes Pepl Sty
S0 AL S A R oy o x’

S AN AR SR
RS s A

Figure 11: F(z) = 1.42 - 4.27z-* + 5,47z-2 - 3.73z7= + z—=
Roots: =z, = .75 + .75i, z-> = .75 + .25i :

Zx = .73 = .2591, 24 = .75 - .75i
FPicture dimensions: X—axis: -1,5 Y—axis: -3.5,3.5

Fractal Report Issue 13 page 7

Figure 12: F(z) = .0625 — .375z~1 + 1.125z—2 - 1,5z—S

Roots: =z, = 2 + 2i, =z =1 + i
z= =1 - i, Zaq = 2 - 21

Picture dimensions: X—-axis: -3,9 Y-axis: —6.73,6.75

No doubt higher degree polynomials will also produce
interesting pictures.
I include a program written in @GL ‘Superbasic’ to draw

z7™= - 1 = 0 attraction basins for anyone to experiment
188 REMark The Newton Formula used 410 EXIT iter

118 REMark on Fiz)= z2%{-3) - | 428 END IF

128 : 438 IF ABS{yn-ym){1E-2

138 wide=51Z:height=254 448 IF ABS{xn-xm){1E-2

140 WINDOW wide,height,@,8 458 FOR i=1 70 3

158 PAPER @ 460 IF ABS{ry{i)-ym){1E-2
1§B CLS 478 col={{iter MOD 3)+1)#2
170 across=200 :down=1080 430 PLOT_POINT:EXIT iter
180 xmin=-1:xmax= 499 END IF

198 ymin=-1:ymax=1 500 END FOR i

208 : . 518 END IF

210 DIM ry(5) 328 END IF

228 ry{1)=-88RT(3}/2 ~ 338 xn=xm:iyn=ya

238 ry{2)=58RT(3)/2 540 END FOR iter

240 ryi3i=@ 330 END FOR xp

258 _ 360 END FOR yp

268 Dx=(xmax-xmin)/across 578 STOP

278 Dy={ymax-yain)/down 58Q

280 xpos=INT{(wide-across)/2) 598 DEFine PROCedure PLOT POINT
298 ypos=INT{(height-down)/2} 6088 p=xpos+xp -

§BE H 618 gq=ypos+down-yp

310 FOR yp=@ TO down 628 BLOCK 1,1,p,q,col

328 FOR xp=8 T0 across 438 END DEFine

338 AT 18, 1@:PRINT yp,xp;’ 548 :

§40 yn=yn;n+(ypry) 658 DEFine PROCedure INVERSE I3
338 xn=xmint(xp*Dx) 660 a=4exn-xn*4+b4xn"2eyn"2-yn"4
368 FOR iter=1 70 3@ 678 b=4#yn-4#xn”3eyn+4éxntyn*3
378 INVERSE_I3 680 c=3

Ba w@={akc+hrd) /{c"2+d"2) 498 d=2

399 ym={b¥c-a*d) /{c"2+d"2) 788 END DEFine

408 IF x@"2+yn2:1000

Fractal Report Issue 13 page 8

+ z—4

the
with.

Editorial

It is probably seasonal considerations that makes the
number of short articles with programs that readers seem
to like somewhat scarce this issue. However this has given
me the opportunity to publish Mr Parker’s article in full,
which I hope will benefit some readers and indeed may
prove to be helpful to contributors interested in producing
new fractal programs. I have been wanting to publish this
article for some while, but was reluctant because for many
readers, particularly beginners, it could prove hard going,
We do have a few Fractal Report type articles still on file,
held over to make sl;])ace for tﬁe long articles this time, and
anticipate that by the time the next issue appears we can
revert to the usual format. There are not enough to make.
a full issue, and I hope that some more will be
forthcoming by around 1 March when issue 14 goes to the
printers.

Karen Griffin, my companion for some years, will be
leaving sometime later this year. Her help with Fractal
Report has been much appreciated, even if sometimes it
was a bit adamant. We intend to remain friends, and she
hopes to continue to offer help and advice with my
publications whenever possible.

Announcements

Archimedes Correspondents wanted

Mr J. Mourik, of 3rd Millennium, Box 11, Ammanford,
Dyfed, SA18 3WB wants Archimedes correspondents. He
has 3.5" disks and is interested in cellular automata, fractal
dust and sparklies, and wants help in getting hard copy
frprl;'n images saved to disk, and someone to swap programs
with.

Reader’s Hall of Fame

Mr Darryl Catchpole, of Scunthorpe, got a Mandelbrot Set
program published in Amstrad Action’s Type — Ins section,
1ssue 63 pages 76/7. Unfortunately they edited out his bit
about Fractal Report. My adviceis that if you want to
mention Fractal Report then include it in a REM statement
in the middle of your program - the magazine is
reluctant to edit it out then!

However if anyone writes to Mr Catchpole as a result of
the article he will mention Fractal Report to them. He also
asks me to mention to readers that if anyone wants a
trainee programmer, then he makes good coffee!

Striations

Mr L.G.L. Unstead —Joss refers to Dr Wolf's article in
issue 12, and mentions that variations in refractive index,
e.g. in heated glass, are called "striations’. He recalls
learning this 50 years ago.

A Crack in Mandelbrot Space?

Mr D.I. Brett sent in some interesting prints from his
Archimedes that appeated to show magnifications of “dull’
areas way outside the main set, which when magnified
enough, showed dots which expanded into new weird
images. True to form, these images included miniature
Mandelbrots. I sent them to Dr Tan Entwistle, who also
has an Archimedes, but his initial reaction was that it was
probably due to a precision error in the program.

Fractals: An Animated Discussion

This video has been mentioned before as being available
from Germany for about DM100, but it is now available in
the UK from W.H. Freeman and Co, 20, Beaumont Street,
Oxford OX1 2NQ, for £40.20 including tax and post. It
runs for 63 minutes and includes interviews with Edward
Lorenz and Dr Benoit Mandelbrot together with animated
sequences and fractal music. Thanks are again due to Dr
Entwistle for this item.

Sam Coupé Subgroup?

Dr Derek Burn eulogised over Ettrick Thomson’s article
including a Sam Coupé program in issue 12. Dr Burn is a
relative newcomer to programming, and finds it difficult
to convert other BASICs to Sam BASIC.

He asks whether any Fractal Report reader has converted
some of the programs given into Sam BASIC, and whether
anyone has some hints on translating to Sam BASIC.

Obviously this would be of interest to Sam Coupé users
only, so is there anyone out there interested in forming a
sub group, with distribution of Sam programs or listings
just to Sam Coupé owners?

Dr Burn also mentions that the Sam Coupé is flourishing,
and the new company Sam Computers Ltd has also
introduced a 1 megabyte memory expansion.

Amygdala Issue 21

The main article of this issue is Polar Coordinates and. the
Cardioid Body of M. It provides mathematical insight into
the circular shape of the "head" of the Mandelbrot Set and
the cardioid shape of the body. Other topics covered are
Lissajous figures and trigonometric identities. All four of
the slides were produced by Fractint 13.0. An
advertisement flyer contains $30 rectangles many of which
were filled with interesting offers, although some were
somewhat expensive. One program originator wanted a
whopping $20 to post the §79 disk and manual outside
America. (Must be some manual!) [Address: Amygdala,
Box 219, San Christobal, NM87564, USA.]

Chaotic Shops

Mr P.J. Mortimore kindly sent in a leaflet produced by
Strange Attractions of 204, Kensington Park Road, London
W11, whilst renewing his subscription. They provide a
range of fractal artifacts from 35p to £120. There was an
article about Mr Gregory Sams’ store in The Evening
Standard, undated. It concluded: It’s weird, but its going to
be big, very big. After all, Mr Sams has been responsible in
the past for such word shaking concepts as the first
macrobiotic restaurant, whole food shops, and the
VegeBurger.

He also included an article from Microcomputer Mart 130
about Mr Jake Davis’ operation Frachaos, which covers
similar material. (Frachaos, Higher Trengrove,
Constantine, Falmouth, Cornwall TR1T 5QR now have a
27 page illustrated catalogue of programs, books, videos,
tee shirts, music, prints and slides.)

Wear Your

Mandelbrot
with
Pride!

I'm so obsessed by the
Mandelbrot set I've had it
professionally reproduced
in real enamel, black on a gold background. With a clutch pin
fastening it can be worn as a tie-pin, a brooch or as a lapel
badge to declare yourself to other enthusiasts or simply for its
own originality.

The trouble is the minimum run was rather more than I can
wear at one time. To try to cover my costs I’'m offering the
surplus on a first come first served basis for £5 each plus 50p
post and packaging.
Enquiries only to:- Penelope Brett
1 Featherstone Cottages, Smarden, Kent TN27 8QY.
Telephone:- Smarden (0233 77) 629.

Fractal Report Issue 13 page 9

More Mandelbrot Sets

By Chris Sangwin.:
(Square by A. Byde)

There have been many variations on the old favourite of the
Mandelbrot set. This is my variation and it involves, not the ' 'set
itself, but the way the computer decides if the points are outside the
bounds. Normally the bound if a circle produces by the pseudo code;

Repeat

xnoi = xzn - an"" R

Yoes = 2 % Xo % Yo + 1

INC Itt ‘

Until X2 + Y2 >4 OR 1tt=255

The wvariable "itt" decides weather the system has stablilized
(reached a root) and the "Xz + Yz > 4" decldes weather the system will
tend to infinity. Mandelbrot identifies the set on page 188 of his
book The Fractal Geometry of Nature as " iterates of Zs=@ under Z ->
Z* - u (which) fail to converge to infinity." : ‘

By changing the method of deciding weather a point will converge to
infinity you can get startling new results. Of course the basic shape
of the set at the centre remains unchanged.

The outer borders and the colour contours are changed drastically.
I an sure that zooms into these sets will produce as many fantastic
shapes as zooms into the normal version do.

The first different border tried was a square derived from the
simple inequalities;

X<2 AND Y<2 AND X>-2 AND Y>-2
(X2<4 AND Y2<4)

This stops the process when X or Y are outside the square within by

' X= +2 or -2 and Y= +2 or -2. Another effective inequality is the

inverse of a circle caused by
XxY<4

This only Works when X<>@® and Y<>® because if either i3 zero then
the point will never satisfy the inequality and an overflow error will
result. This happened to me many times to begin with. The programmer
has to be careful to make sure the loops do not pass through zero but
very close either side of it.

Both these new sets can be melted in the same way suggested by
Steve Wright in issue 2 of Fractal Report or plotted in a 3D way.

As these new variations are still technically Mandelbrots sets | am
sure they would still apply for the "Larry T Cobb Prize" Awards that
appear periodically. ’

The frames that appear opposite are (Clockwise from top left);

All Frames : M-set , =-2 to +2 , R=-2 to +2 (ie all of it)
Colouring on a 1 iteration to one colour scale
All Produced on Amstrad CPC 664 (Photo reduced)
[terations: 109

Fractal Report Issue 13 page 10

i
s
i

i
il

i
il
i

..

The Square variation X2<4 AND Y2 <4
Inverse version X * Y < 4

Melted Square (no 1) melt factor = 9.3
3d Mandelbro set. Square.

Height as in my-programme in Amstrad Action no 6% pg 73.

PWN -

Fractal Report Issue 13 page 11

COMPRESSING FRACTAL IMAGES
by Mike Parker, 22 Hutchcomb Road,
Botley, Oxford OX2 9HL.

Tel (0865) 725495 (evenings)

Once you have produced your image, what do you do next? You could either switch off your computer
thus lorsing your image, or leave it running indefinitely thus rendering it unavailable for further work. Neither of
these options are at all satisfactory. You could output the image to a colour printer or plotter if you are lucky
enough to have access to such equipment. You could take a photograph of the screen (hopefully the subject of
afuture article). Or finally you could dump the image to disk so that it can be restored later for display or to
allow incomplete images to be finished. This is obviously the best choice.

Unfortunately there is a problem with this. With low resolution images using few colours little disk space
is required, but with high resolution images using many colours a large amount of disk space is required. For
example, my program uses an image size of 648 by 567 pixels in 256 colours = 648 * 567 * 8 bits = approxi-
mately 360k which is one full single sided quad density disk. Some method must be found to reduce this
amount of data.

Before discussing various compression methods a brief description of the method | use for plotting
images is given as it has a bearing upon one of them. First choose a plotting area which is a multiple of a power
of 3. In my case this 8 * a4 by 7 * 3% =g8*81 by 7 * 81 = 648 by 567 pixels. Tile this area using squares of side
81 using the centre of each square to calculate the required colour. Then for each of these squares, split it into
9 equal squares and for each of the 8 edge squares plot the square using its centre point. Repeat until squares
of side 1 have been plotted. See listing 1.

The advantages of this method are:

i) Because a power of three is used, no points need to be recalculated and replotted. The
centre point of each square remaining static.

ii) No distortion is introduced as happens with power of two tiling.

iii) Structure of plot is quickly shown in low resolution with the resolution being increased

by nine times on each pass.
It does have a few disadvantages as well:

i) Increased complexity of plotting algorithm.
ii) Limits choice of screen size, although this can be partially overcome by using a smaller
power of three.

See the article by Jack Weber in PCW December 1986 for further details of this method.

Pleasing fractal images usually consist of largish areas of single colours with smaller areas of fine detail.
If some way can be found to represent these large areas a significant saving can be made. See table 1 for a
comparison of the various compression methods described below.

The commonest and easiest method to implement is that of run length coding (method 1a). The image
is scanned from top left to bottom right, outputting the number of pixels of the current colour (8 bits) and current
colour (8 bits). This is fine for large single colour areas but not where adjacent pixels are of different colours
when two bytes are required to represent each pixel.

Variations of this method (methods 1b, 1c, 1d, 1€) can use a different number of bits for the pixel count
(for example four, reducing the overhead for single pixels but reducing the compression obtained on large
areas) and current colour if fewer than 256 colours are available. The optimum number of bits for the pixel count
varies depending on the complexity of the image, although four bits seems to give acceptable results for plots
of medium complexity.

A further improvement (methods 1f, 1g) is obtained by noting that for areas of fine detail there is a large
overhead caused by having a count of one (n bits) for every pixel. By using a count of one followed by a sub-
count of the number of single pixels followed by those pixel colours this overhead is substantially reduced:;
counts greater than one are handled as before. The optimum number of bits for the count and subcount again
varies depending on the complexity of the image. For simple images, a large count and small subcount are
required, whereas for complex images, a small count and large subcount are required. Method 1f uses a count
of four bits and a subcount of four bits; method 1g uses a count of five bits and a subcount of four bits.

A variation of the run length coding method (method 2) is to work on each colour plane independently,
outputting the start colour (as 1 bit) followed by a count of the number of pixels of the same colour (n bits), the
start colour being flipped after each count. A count of zero is used to indicate a maximum count and that the
start colour is not to be flipped. The number of bits used to hold the count changes for each colour plane,
varying from a small count for the least significant colour plane to a large count for the most significant colour
plane. Optimum values again depending on the complexity of the image. Values of three, three, three, four, four,
four, four and four have been used (optimised for map 45) for the examples in table 1.

Another method (method 3a) is to use a plotting area of a multiple of a power of three. In my case this is
648 by 567 pixels. For each square of side 81, check if all pixels are of the same colour. If they are then output

Fractal Report Issue 13 page 12

the current square size (81) (as 8 bits) and colour (8 bits). Otherwise split the square into nine equal squares
and for each of them repeat the procedure. If a square of three by three pixels is reached which is not of one
colour then output a square size of one (8 bits) and the nine colours in the three by three square (9 * 8 bits).

A refinement of this (method 3b) is not to hold the square size as 81, 27, nine, three or one in eight bits
but to use zero, one, two, three or four (3 bits) instead. See listings 2 and 3.

A further refinement (method 3c) can be made by examining the data stored in the three by three
square. It can contain either two, three, four or greater than four different colours. For the case of greater than
four different colours, output a square size of four (3 bits) followed by the nine colours as in methods 3a and 3b
above. For the case of three or four different colours, output a square size of six or five (3 bits) followed by the
three or four different colours (in the order they are found in the three by three square) followed by a colour
index for the nine pixels (15 bits) made up as follows. No bits are required for the first pixel as it must be the first
colour found, one bit is required for the second pixel as it can be either the first or second colour found (O=first,
1=second), two bits are required for each of the remaining seven pixels (0=first, 1=second, 2=third, 3=fourth).
For the case of two different colours, output a square size of seven (3 bits) followed by the two different colours
(in the order they are found in the three by three square) followed by a colour index for the nine pixels (8 bits)
made up as follows. No bits are required for the first pixel as it must be the first colour found, one bit is required
for each of the remaining eight pixels as they can be either the first or second colour (O=first, 1=second).

A final refinement (methods 3d, 3e) can be made by examining the data stored in the three by three
square in more detail. It can contain either two, three or more than three different colours. For the case of great-
er than three different colours, we find that many of the pixels have either adjacent colours or are black with only
a few widely spaced colours. By choosing one of the colours as a base colour, many of the pixels can be repre-
sented as a small offset from this base colour as follows. Use each of the first eight colours in the square, ex-
cluding those with a value of zero (black) as the base colour and calculate the number of pixels that are not less
than the current base colour and are not greater than the current base colour by more than 14 {6 for method
3e). Make a note of which base colour has the largest count. If this count plus the number of pixels in the
square with a value of zero is not less than three then output a square size of five (3 bits), the number of the
base colour (3 bits) and its actual colour (8 bits). Then for each of the remaining eight pixels output either a zero
(1 bit) followed by the pixels actual colour (8 bits), or a one (1 bit) followed by an offset (4 bits for method 3d, 3
bits for method 3e). An offset between zero and 14 (or 6) represents a positive offset from the base colour. An
offset of 15 (or 7) represents a pixel with a value of zero. If the count plus the number of pixels in the square with
avalue of zero is less than three, then output a square size of four (3 bits) followed by the nine colours (9 * 8
bits).

For the case of three different colours, we find that these colours are usually adjacent and so can be
represented by a small offset from the first colour as follows. Output a square size of six (3 bits) followed by the
first colour (8 bits). If the two remaining colours are both no more than two colours away from the first the output
a one (1 bit) followed by an offset for each of the two colours (2 * 2 bits) followed by the colour index (15 bits) as
for method 3c. The offset is as follows; zero = colour 1 + 1, one = colour 1 + 2, two = colour 1 - 2, three =
colour 1 - 1. If either of the two remaining colours are greater than two colours away from the first then output a
zero (1 bit) followed by the two remaining colours (2 * 8 bits) followed by the colour index (15 bits) as for
method 3c.

For the case of two different colours we find that in most cases the two colours are adjacent and so the
second colour can be represented by a very small offset from the first as follows. Output a square size of seven
(3 bits) followed by the first colour (8 bits). If the second colour is not more than one colour away from the first
then output a one (1 bit) followed by an offset for the second colour (1 bit) followed by the colour index (8 bits)
as for method 3c. The offset is as follows; zero = colour 1 + 1, one = colour 1 - 1. If the second colour is more
than one colour away from the first then output a zero (1 bit) followed by the second colour (8 bits) followed by
the colour index (8 bits) as for method 3c.

A variation of this tiling method (method 4) is to work on each colour plane independently, outputting
either zero (1 bit) followed by square size (2 bits; 0=81*81, 1=27*27, 2=9*9, 3=3*3) followed by the colour (1
bit), or one (1 bit) followed by the nine colours (9 by 1 bit).

In conclusion, a reduction to 60% of the original size is fairly easily obtained for all but the most complex
of images and a reduction to one third of the original size is obtainable with the more complex compression
methods. There are probably many other compression methods worthy of investigation. For instance, using
Fast Fourier Transformations or using different tiling shapes such as triangles, as well as further variations on
the methods described in this article. The application of commercially available archiving programs to the data
produced by these compression methods might also provide a further reduction in size. | hope that this article
has provoked some thought about the subject of storing fractals and | would welcome any suggestions for
improvements to the above methods or any new ideas. There is also a need for standardising any claims made
for compression rates as the same algorithm can produce such wide variations depending upon screen resolu-
tion, number of iterations, colour assignment methods, plot coordinates, etc. Any ideas?

Fractal Report Issue 13 page 13

LISTING 1

PROGRAM fractals;
{This program is written using Hisoft Pascal80 and illustrates the
power of 3 tiling method of plotting Mandelbrot and Julia sets. Graphic
handling routines have not been specified in detail as they are machine
specific}
CONST sginit = 81; {Initial block size. Must be power of 3}
width = 648; (Width of plotting area. Must be multiple of sqinit)
height = 567; {(Height of plotting area. Must be multiple of sqginit)
ncol = 256; {Number of colours available}
black = 0;
TYPE COMPLEX = RECORD
re,im : REAL
END;
COORD = RECORD
X,Y ¢ INTEGER
END;
VAR corner,size,extent,square : INTEGER;
map,minlevel,maxlevel,limit : INTEGER;
scale,konst,min,max : COMPLEX;
point,base : COORD;
ch : CHAR;

PROCEDURE Rfill(x,y,w,h,col : INTEGER):;
BEGIN
{insert code to fill a rectangle of size w by h pixels in colour col
with top left corner at x,y)
END;
PROCEDURE Plot(x,y,col : INTEGER):;
BEGIN
{insert code to plot a point in colour col at point x,y)
END;
PROCEDURE Calculate;
VAR col,i : INTEGER;
temp, tempsq, znew,c : COMPLEX;

BEGIN
i = 0;
IF map = 1 THEN BEGIN {initialise for Mandelbrot Set}
temp.re := 0.0; temp.im := 0.0;
c.re := min.re + (point.x * scale.re);
c.im := max.im - (point.y * scale.im) {for point 0,0 = top left
corner of screen. If point
0,0 = bottom left corner
then c.im := min.im +
(point.y * scale.im))
END;
IF map = 2 THEN BEGIN {initialise for Julia Set}
temp.re := min.re + (point.x * scale.re):;
temp.im := max.im - (point.y * scale.im);
c := konst
END;
tempsq.re := SQR(temp.re); tempsqg.im := SQR(temp.im);
WHILE (i < maxlevel) AND (tempsg.re + tempsqg.im < limit) DO BEGIN
i:=1i+ 1;
znew.re := tempsq.re - tempsq.im + c.re;
znew.im := (2.0 * temp.re * temp.im) + c.im;
temp := znew;
tempsg.re := SQR(temp.re); tempsg.im := SQR(temp.im)
END;
IF i = maxlevel THEN {calculate required colour}

col := black
ELSE IF i <= minlevel THEN

Fractal Report Issue 13 page 14

col := ((i - minlevel) MOD (ncol - 1)) + 1;
IF square = 1 THEN
Plot(point.x , point.y , col)
ELSE
Rfill (point.x - extent , point.y - extent , sSquare , square , col)

END;
BEGIN
{insert screen initialisation code here (if required) }
map := 1; {Mandelbrot Set)
minlevel := 1; maxlevel := 255; {min/max level of iterations)
limit := 4;
konst.re := -1.25; konst.im := 0.0; {default Constant for Julia Set)
min.re := -2.1; max.re := 2.1; {default plotting area)
min.im := -2.1; max.im := 2.1;
scale.re := (max.re - min.re) / (width - 1); (find difference between}
scale.im := (max.im - min.im) / (height - 1); {adjacent pixels)
square := sqginit; {draw preliminary large blocks)
extent := ENTIER(square / 2);
size := square;
corner := extent;
point.y := corner;
REPEAT
point.x := corner;
REPEAT
Calculate;

point.x := point.x + size
UNTIL point.x > width;
point.y := point.y + size
UNTIL point.y > height;
WHILE size > 1 DO BEGIN ({tile blocks with successively smaller blocks)

square := square DIV 3;
extent := ENTIER(square / 2);
base.y := corner;
REPEAT
base.x := corner;
REPEAT
{plot the 8 outer segments of current block}
point.y := base.y - square; point.x := base.x - square;
Calculate;
point.x := base.x; Calculate;
point.x := base.x + square; Calculate;
point.y := base.y:; Calculate;
point.x := base.x - square; Calculate:
point.y := base.y + square; Calculate;
point.x := base.x; Calculate;
point.x := base.x + square; Calculate;
base.x := base.x + size;
ch := INCH;
CASE ch OF
'St','s!' : Save;
'L','1' : Load
END
UNTIL base.x > width;
base.y := base.y + size
UNTIL base.y > height;
size := square;
corner := extent
END;
Save

END.

Fractal Report Issue 13 page 15

LISTING 2

{Save and Load routines for listing 1. They may need modifying if sqinit
is changed}
VAR filei : FILE OF INTEGER;
filer : FILE OF REAL;
packsz,packsize,packent,packval : INTEGER;
buffer : ARRAY[1l..sqinit,1l..sqinit] OF CHAR;

PROCEDURE Save;

PROCEDURE ReadImage(x,y : INTEGER) ;

BEGIN

{insert code to read block of data from screen into buffer, top left
corner at x,y, width and height of sginit. buffer[l,1] = top left;
buffer[1l,sqinit] = top right; buffer[sqinit,1] = bottom left;
buffer[sqinit,sqinit] = bottom right)

END;
PROCEDURE PackInit;
BEGIN
packval := 0;
packcnt := 16 {integers are 16 bits long}
END;
PROCEDURE PackItem(byte,dummy : INTEGER) ;
BEGIN
IF packcnt = 16 THEN BEGIN
packval := byte;
packcnt := 8
END ELSE BEGIN
packval := (packval * 128) + (byte MOD 128);

IF byte > 127 THEN
packval := -1 * packval;
WRITE(filei,packval) ;
PackInit
END
END;
PROCEDURE PackFinal;
BEGIN
IF packcnt = 8 THEN BEGIN
packval := packval * 128;
WRITE(filei,packval)
END
END;
PROCEDURE Compact (x0,y0,s0 : INTEGER);
VAR x1,x%x2,y1,y2,s3,1i,j : INTEGER;

k : CHAR;
flag : BOOLEAN;
BEGIN
packsize := packsize + 1;

flag := FALSE;
k := buffer([y0,x0];
j = yo0; -
REPEAT {check if block is of same colour)
i := x0;
REPEAT
IF buffer(j,i] <> k THEN
flag := TRUE;
i:=1i+1
UNTIL (i >= x0 + s0) OR flag;
jo:i=3 +1
UNTIL (j >= y0 + s0) OR flag;
IF NOT flag THEN BEGIN

PackItem(packsize, 3); {block of one colour}
PackItem(ORD(buffer(y0, x0]), 8)

Fractal Report Issue 13 page 16

END ELSE
IF sO0 <> 3 THEN BEGIN

s3 := s0 DIV 3; {block not of one colour and}
X1l := x0 + s3; x2 X1 + s3; {(not of smallest size so descend)
Yl := y0 + s3; y2 Yyl + s3;

Compact (x0, yO0, s3)
Compact (x0, yl1, s3)
Compact (x0, y2, s3)
END ELSE BEGIN
X1l :=x0 + 1; x2 :
yl :=y0 + 1; y2 :
PackItem(4, 3);
PackItem(ORD(buffer[y0, x0]),
PackItem(ORD(buffer[yo0, x1]),
PackItem(ORD (buffer[y0, x2]),
PackItem(ORD(buffer[yl, x0]),
PackItem(ORD(buffer(yl, x1]),
),
),
)
),

; Compact(xl, yO, s3); Compact(x2, yO, s3);
; Compact(xl, yl, s3); Compact(x2, yl, s3);
; Compact(xl, y2, s3); Compact(x2, y2, s3)
1; {block not of one colour and}

1; {smallest size)

PackItem(ORD(buffer[yl, x2]
PackItem(ORD(buffer[y2, x0]
PackItem(ORD(buffer[y2, x1]
PackItem(ORD(buffer[y2, x2]
END;
packsize := packsize - 1
END;
BEGIN
REWRITE (filer,' IMAGE .DT2');
WRITE(filer,scale.re,scale.im,max.re,max.im,min.re,min.im);
IF map = 2 THEN
WRITE (filer,konst.re,konst.im);
RESET (filer,' IMAGE .DT2"');
REWRITE (filei,' IMAGE .DAT');
WRITE(filei,map,minlevel,maxlevel,limit) ;
WRITE(filei,corner,size,extent,square,base.x,base.y);
PackInit;
point.y := 0;
REPEAT
point.x := 0;
REPEAT
packsize := -1;
ReadImage(point.x , point.y):
Compact(l , 1 , sqinit);
point.x := point.x + sqinit
UNTIL point.x >= width;
point.y := point.y + sqinit
UNTIL point.y >= height;
PackFinal;
RESET(filei," IMAGE .DAT')
END;

00 00 00 00 00 00 0O 0O ™
Nt Nt il Nl s it P e N
Ne N Ne e “e we wo wo

PROCEDURE Load;
PROCEDURE UnpackInit;
BEGIN
packent := 16;
READ(filei,packval)
END;
FUNCTION UnpackItem(dummy : INTEGER) : INTEGER;
BEGIN
IF packecnt = 16 THEN BEGIN
UnpackItem := ABS(packval) DIV 128;
packcnt := 8 :
END ELSE BEGIN
IF packval < 0 THEN
UnpackItem := (packval MOD 128) + 128

Fractal Report Issue 13 page 17

ELSE
UnpackItem := packval MOD 128;
UnpackInit
END

END;

PROCEDURE Expand(x0,y0,s0 : INTEGER) :;

VAR x1,x2,y1,y2,s83 : INTEGER;

BEGIN

packsize := packsize + 1;

IF packsz = packsize THEN BEGIN
Rfill(x0,y0,s0,s0,UnpackItem(8)):;
packsz := UnpackItem(3)

END ELSE

IF sO = 3 THEN BEGIN
X1 := x0 + 1; X2 := X
yl :=y0 + 1; y2 =y
Plot (x0,y0,UnpackItem

e wo

1
1
(8
Plot(x1,y0,UnpackItem(8
Plot (x2,y0,UnpackItem(8
Plot (x0,yl,UnpackItem(8
Plot (x1,yl,UnpacklItem(8
Plot (x2,yl,UnpackItem(8
Plot (x0,y2,UnpackItem(8
Plot (x1,y2,UnpackItem(8
Plot(x2,y2,UnpackItem(8
packsz := UnpackItem(3)
END ELSE BEGIN
s3 := s0 DIV 3;
X1l = %0 + s83; x2 := X1 + s3;
yl := y0 + s3; y2 := yl + s3;
Expand (x0,y0,s3); Expand(xl,y0,s3); Expand(x2,y0,s3);
Expand(x0,yl,s3); Expand(xl,yl,s3); Expand(x2,yl,s3);
Expand(x0,y2,s3); Expand(xl,y2,s3); Expand(x2,y2,s3)
END;
packsize := packsize - 1
END;
BEGIN
RESET(filei,' IMAGE .DAT');
READ(filei,map,minlevel,maxlevel,limit);
READ(filei,corner,size,extent, square,base.x,base.y);
UnpackInit;
packsz := UnpackItem(3):;
point.y := 0;

WO We WP WE N9 W "o “e Wy ’_l._l

REPEAT
point.x := 0;
REPEAT
packsize := -1;
Expand (point.x, point.y, sqinit);
point.x := point.x + sqginit

UNTIL point.x >= width;
point.y := point.y + sqinit
UNTIL point.y >= height;
RESET(filer,' IMAGE .DT2');
READ(filer,scale.re,scale.im,max.re,max.im,min.re,min.im);
IF map = 2 THEN
READ(filer,konst.re,konst.im)
END;

Fractal Report Issue 13 page 18

TABLE 1

Comparison of the various compression methods operating on several of the images illustrated in *The
Beauty of Fractals® by H.-O. Peitgen and P.H. Richter.

standard map 36 map 38 map 42 map 44 map 45
Frcoordinate
min x -2.03508 |-0.75104 (~-0.74758 [-0.74591 |-0.74554 |-0.74547
max X 0.54204 |-0.74080 |-0.74624 |-0.74448 |-0.74505 |-0.74538
min y =-1.20954 0.10511 0.10671 0.11196 0.11288 0.11298
max 1.28375 0.11536 0.10779 0.11339 0.11324 0.11304
-riterations
min 1 1 1 1 1 1
max 254 254 762 254 254 254
mapping linear linear banded linear linear linear
—method la
size (k) 67.00 211.125 454.625 195.25 283.25 228.75
% 18.67 58.84 126.71 54.42 78.94 63.75
—method 1b
size (k) 66.00 177.275 369.625 164.875 235.125 189.375
% 18.39 49.44 103.02 45.95 65.53 52.78
—method 1c
size (k) 76.375 173.50 343.50 163.625 224,625 184.625
% 21.29 48.36 95.74 45.60 62.60 51.46
—method 1d
size (k) 103.50 182.50 323.75 175.00 224.50 191.375
% 28.85 50.86 90.23 48.77 62.57 53.34
—method 1le
size (k) 171.50 225.00 322.75 220.00 253.375 230.625
% 47.80 62.71 89.95 61.32 70.62 64.28
—method 1f
size (k) 70.125 149.625 275.125 138.125 187.125 158.25
% 19.54 41.70 76.68 38.50 52.15 44.11
—method 1lg
size (k) 57.625 145.625 280.625 131.50 186.00 154.375
% 16.06 40.59 78.21 36.65 51.84 43.03
—method 2
size (k) 141.375 229.00 382.125 219.75 269.75 235.875
% 39.40 63.82 106.50 61.25 75.18 65.74
—method 3a
size (k) 93.00 198.875 341.25 188.875 246.75 219.00
% 25.92 55.43 95.11 52.64 68.77 61.04
—method 3b
size (k) 82.625 182.00 316.875 171.875 227.00 199.50
% 23.03 50.72 88.32 47.90 63.27 55.60
—method 3c
size (k) 54.875 141.50 275.00 133.00 179.875 152.25
% 15.29 39.44 76.64 37.07 50.13 42.43
—method 3d
size (k) 47.75 124.875 247.375 117.25 157.125 132.75
% 13.31 34.80 68.95 32.68 43.79 37.00
—method 3e
size (k) 47.125 119.875 248.875 113.25 151.375 127.75
% 13.13 33.41 69.36 31.56 42.19 35.60
—method 4
size (k) 52.125 161.75 304.125 140.375 193.25 162.375
% ’ 14.53 45.08 84.76 39.12 53.86 45.26
mapping - linear = 1 iteration per colour [colour 255 not used, colour 0 = black]

banded = 3 iterations per colour (762/254)

size (k) - size of compressed data (in kilobytes). Uncompressed = 358.8K
% - percentage of uncompressed data size

method 1a - RLC (8 bit count) method 2
method 1b - RLC (5 bit count) method 3a
method 1c - RLC (4 bit count) method 3b
method 1d - RLC (3 bit count) method 3¢
method 1e - RLC (2 bit count) method 3d
method 1f - RLC (4 bit count, 4 bit subcount) method 3e
method 1g - RLC (5 bit count, 4 bit subcount) method 4

Fractal Report Issue 13 page 19

- RLC (plane)
- Tiling

- Tiling with bit compression

- Extended Tiling
- Full Tiling (4 bit offset)
- Full Tiling (3 bit offset)
- Plane Tiling

LISTING 3

{Bit packing enhancements for listing 2. Machine code is recommended for
this as Pascal version is SLOW)
power ARRAY[1..15] OF INTEGER;

power[1l] := 1; power[2] := 2; power[3] := 4; power[4] := 8;

power[5] := 16; power[6] := 32; power([7] := 64; power[8] := 128;
power[9] := 256; power([10] := 512; power[1ll] := 1024; power[l2] := 2048;
power[13] := 4096; power[1l4] := 8192; power[1l5] := 16384;

PROCEDURE PackItem(byte,bitcount : INTEGER) ;
VAR i : INTEGER;
BEGIN
FOR i := bitcount DOWNTO 1 DO BEGIN
packent := packcnt - 1;
IF packent = 0 THEN BEGIN
IF packval >= 16384 THEN BEGIN
packval := (packval - 16384) * 2;
IF byte >= power[i] THEN BEGIN
packval := packval + 1; byte := byte - power([i]
END;
packval := -1 * packval
END ELSE BEGIN
packval := packval * 2;
IF byte >= power[i] THEN BEGIN
packval := packval + 1; byte := byte - power[i]
END
END;
WRITE(filei,packval);
PackInit
END ELSE BEGIN
packval := packval * 2;
IF byte >= power[i] THEN BEGIN
packval := packval + 1; byte := byte - power([i]
END
END
END
END;
PROCEDURE PackFinal;
BEGIN
PackItem(0,packcnt)
END;
FUNCTION UnpackItem(bitcount : INTEGER) : INTEGER;
VAR i,temp : INTEGER;
BEGIN
temp := 0;
:= 1 TO bitcount DO BEGIN
temp := temp * 2;
IF packcnt = 0 THEN
UnpackInit;
IF packent = 16 THEN BEGIN
IF packval < 0 THEN BEGIN
packval := -1 * packval; temp := temp + 1
END
END ELSE BEGIN
IF packval >= power[packcnt] THEN BEGIN
temp := temp + 1; packval := packval - power[packcnt]

END
END;
packcent := packent - 1
END;
UnpackItem := temp
END;

Fractal Report Issue 13 page 20

