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Abstract. We describe a formal verification of a recent concurrent list-based s
algorithm due to Helleet al. The algorithm is optimistic: thedd and remove
operations traverse the list without locking, and lock only the nodestatfdry

the operation; theontains operation uses no locks and is wait-free. These prop-
erties make the algorithm challenging to prove correct, much more soithples
coarse-grained locking algorithms. We have proved that the algorithnesrig

able, using simulation between input/output automata modelling the behaviour
of an abstract set and the implementation. The automata and simulatidn proo
obligations are specified and verified using PVS.

1 Introduction

Concurrent algorithms are notoriously difficult to desigmrectly, and high perfor-
mance algorithms that make little or no use of locks even raoré-ormal verification
of such algorithms is challenging because their correstoéen relies on subtle inter-
actions between processes that heavier use of locks woedduple. These proofs are
too long and complicated to do (and check) reliably “by harsdy' it is important to
develop techniques for mechanically performing, or attleascking, these proofs.

In this paper we describe a formal verificationL@zyList, a recent concurrent list-
based set algorithm due to Hellgral. [1]. Our proof shows that the algorithm is lin-
earisable to an abstract set object supporétd) remove, andcontains methods. Lin-
earisability [2] is the standard correctness conditiondmncurrent shared data struc-
tures. Roughly, it requires that each operation can be resdig uniqudinearisation
point during its execution at which the operation appears to téketeatomically.

The LazyList algorithm is optimisticadd andremove operations attempt to locate
the relevant part of the list without using locks, and onlg lecks to validate the infor-
mation read and perform the appropriate insertion or deiefl hecontains operation
uses no locks, and is simple, fast, and wait-free. Hetlat. present performance stud-
ies showing that this algorithm outperforms well known aitjons in the literature,
especially on common workloads in which ttentains method is invoked significantly
more often tharmdd andremove [1].

The simplicity and efficiency of theontains method is achieved by avoiding all
checks for interactions with concurreatd andremove operations. As a resultpntains



can decide that the value it is seeking is not in the set at aenbmhen in fact it is in
the set. The main challenge in proving that the algorithnmisdrisable is to show that
this happens only if the sought-after value was absent fhensétat some point during
the execution of theontains operation.

We have proved that the algorithm is linearisable, usinguktion between in-
put/output automata modelling the abstract behaviour efstt and the implementa-
tion. Our proof uses a combination of forward and backwantl&itions, and has the
interesting property that a single step of the implemeatedutomaton can correspond
to steps by an arbitrary number of different processes irsfigeification automaton.
We modelled the automata and encoded the proof obligatimnsifhulations in the
PVS specification language [3, 4], and used the PVS systeimettkcoour proofs.

Apart from presenting the first complete and formal verifmabf an important new
algorithm, a contribution of this paper is to describe ougang work towards making
proof efforts like these easier and more efficient. The ppoe$ented in this paper builds
on earlier work in which we proved (and in some cases disgrewel/or improved) a
number of nonblocking implementations of concurrent ssackieues and deques [5—
8]. While we still have work to do in this direction, we have reaallot of progress in
determining how to model algorithms and specifications, lanwl to approach proofs.
In this paper, we briefly describe some of the lessons leakifechave made our proof
scripts available ahttp://www.mcs.vuw.ac.nz/reasearch/SunvVUw/ , SO
that others may examine our work in detail and benefit fromeogerience.

The rest of the paper is organised as follows. We describeahgl ist algorithm in
Section 2, and our verification of it in Section 3. We discussexperience with using
PVS for this project in Section 4, and conclude in Section 5.

2 The LazyList Algorithm

The LazyList algorithm implements a concurrent set suppgthree operations:

— add(k) addsk to the set and “succeeds”/ifis not already in the set.
— remove(k) removesk from the set and “succeeds”Afis in the set.
— containsg(k) “succeeds” ifk is in the set.

Each operation returrtsueif it succeeds; otherwise it “fails” and returifalse

The algorithm uses a linked-list representation. In addito key and next fields,
each list node has lack field, used to synchronisad andremove operations, and a
markedfield, used to logically delete the node’s key value (see rieéidifa)). The list
is maintained in ascending key order, and there are tworsdmodesHeadand Tail,
with keys—oo and+oco respectively. We assume that the list methods are invokkd on
with integer keys: (so that—oo < k < 400).

As explained in more detail below, a successdti(k) operation inserts a new
node containing into the list, and a successfidmove(k) operation logically removes
k from the set by marking the node containibgi.e., setting itsnarkedfield to true),
before cleaning up by removing the node from the list. Thugng point in time, the
abstract set is exactly the set of values stored irkéhdfields of unmarked node in the
list.
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Fig. 1. (a) Declaration of list node type, (b) Inserting and removing list nodes

The add(k) andremove(k) methods (see Figure 2) use a helper methodte(k),
which setscurrto point to the first node with a key greater than or equélandpredto
point to the node whoseextfield points to that node. THecate method optimistically
searches the list without using locks, and then locks thesg@dinted to bycurr and
pred If both nodes are unmarked (i.e., themarkedfields arefals€) and prednextis
equal tocurr (these tests constitute three separate atomic actiorsydthor remove
operation can proceed; otherwise, the locks are releasktharsearch is restarted.

After locate returns, aradd operation tests whethewrr.key equalsk. If not, then
k is not in the list, sadd creates a new node, setting kisy field to & and itsnextfield
to point tocurr (see Figure 1(b)). It then sets thextfield of predto point to this new
node, releases the locks onrr andpred and succeeds. Hurrkey is equal tok, then
k is already in the list, so thadd operation fails.

For aremove(k) operation, ifcurrkey equalsk after locate returns, therremove
removes the node aturr from the list and succeeds; otherwigejs not in the list,
so remove fails. A successful removal is done in two stages: first theikdogically
removed from the set by setting thearkedfield of curr, then it is physically removed
by setting thenextfield of its predecessopted) to its successorcirr.next) (see Figure
1(b)). Separating the logical removal of the key from theas®t the physical removal
of the node from the list is crucial to the simplicity and dfficcy of the algorithm:
because nodes are not removed before they are marked, iolgsemunmarked node is
sufficient to infer that its key is in the set.

A contains(k) operation makes a single pass through the list, startom tead
searching for a node with a key not less thanif this node containg: and is not
marked,contains succeeds; otherwise it fails. This operation requires s&dand is
wait-free (i.e., it is guaranteed to complete within a fimtenber of its own steps, even
if processes executing other operations are delayed ocstopletely).

Linearisation points A common way to prove that an algorithm is linearisable is to
identify a particular step of each operation as the lineios point of that operation.
With some simple invariants showing there are no duplicays n the list, it is straight-
forward to assign linearisation points in this way #atd andremove operations, and
for successfutontains operations.

Things are not so simple for failemntains operations, however. If the node found
by the loop at lines 2 and 3 contains a key greater theor it is marked contains(k)



contains(k) : add(k) :

1 curr := Head; 1 pred, curr := locate(k);
2 while currkey < k do 2 if currkey '= k t hen
3 curr := curr.next; 3 entry :=  new Entry();
4 if currkey = k and 4 entry.key := k;
5 “curr.marked t hen 5 entry.next := curr;

return true 6 pred.next := entry;

el se 7 res = true

return false el se

locate(k) : 8 res = false;
while true do 9 pred.unlock();

1 pred := Head: 10 curr.unlock();
2 curr := pred.next; return res
3 whi | e curr.key < k do remove(k) :
4 pred := curr; 1 pred, curr := locate(k);
5 curr := curr.next; 2 if currkey = k t hen
6 pred.lock(); 3 curr.marked := true;
7 curr.lock(); 4 entry := curr.next;
8 i f “pred.marked and 5 pred.next := entry;
9 “curr.marked and 6 res := true
10 pred.next = curr t hen el se
11 return pred, curr 7 res = false;

el se 8 pred.unlock();
12 pred.unlock(); 9 curr.unlock();
13 curr.unlock() return res

Fig. 2. Pseudo-code for lazy list algorithm

returnsfalse But there is no step of theontains operation at whiclk is guaranteed not

to be in the set. In particular, when kgy or markedfield is checked, the node may
have already been removed from the list, and another protaegshave added a new
node with keyk, so thatk is in the abstract set at that time. Thus the simple approach
of proving linearisability by defining a linearisation poior each operation at one of
its steps does not work for this algorithm.

The key to proving that Lazylist is linearisable is to showatthfor any failed
contains(k) operationk is absent from the set abme point during its execution. Our
proof shows that if aontains(k) operation fails, then eithét is absent from the set
when it begins or that some successfeiove(k) operation marks a node contain-
ing k& during the execution of theontains(k) operation. Because there may be many
contains(k) operations executing concurrently, it is sometimes resgsto linearise
multiple failedcontains operations after the sammemove(k) operation. We found this
interesting, because our previous proofs have not reqthied



3 Verification

To prove that LazyList is a linearisable implementation eéasupportingdd, remove,
andcontains operations, we define two input/output automata (I0A) [9; &@oncrete
automaton ConcAut, which models the behaviour of the LazyList algorithm, arsiha-
ple abstract automaton AbsAut, which specifies all correct behaviours of a linearisable
set. We usaimulation proof techniques [11] to prove th@bncAut implementsAbsAut.

3.1 I/O automata and simulation proofs

We now informally describe the IOA model and simulation gsodn our verification,
we use a simplified version of IOAs, which is sufficient forsthierification. See [9-11]
for a more detailed and formal discussion.

An 10A consists of a set of states and a set of actions. Eadbnalehs aprecon-
dition, which determines the set of states from which it can be d@rdcand areffect,
which determines the next state after the action has beewtxke The actions are di-
vided intoexternal actions, which define an interface to the automaton, iateinal
actions, which represent internal details. An automatoimplements an automaton
A if for every execution ofC, there exists an execution ef with the same external
actions, which means thét cannot be distinguished from by observing its external
behaviour.

One way to prove thaf’ implementsA is to consider an arbitrary execution of
C and to inductively construct an execution dfwith the same external actions in
the following fashion: Start from the initial state {'s execution, and then for each
action in turn, choose a (possibly empty) sequence of axtionA to execute such
that (i) the actions chosen constitute a valid executiord ofii) wheneverC' executes
an internal action, the sequence of actions chosenifbas only internal actions, and
(iii) whenever C' executes an external action, the sequence of actions clioseh
contains that same action and no other external actionkidmiy, we ensure that the
constructed execution fot contains the same external actions as the executi@n of
To describe this construction for an arbitrary executibis useful to define forward
simulation, which is a relation between states@fand states ofd such that given a
pair of states related by the simulation, and any action ledah the state ot”, there
is a way to choose a sequence of actions4dhat preserves this relation.

For some algorithms and their specifications, howevergetieno way to define
such a forward simulation because for some actior'pthe actions ofA that we
should choose depend on future outcomes. As we descrilvellaigyList is one such
algorithm. In such circumstanceshackward simulation can help. A backward simula-
tion is like a forward simulation except that instead of titagr from the initial state and
working forwards to an arbitrary state of the automaton, teet &t an arbitrary state
and work backwards towards the initial state.

For a backward simulation, we must be careful that while waylbackward, the
abstract prestate that we end up at is reachable (going fdyirmm the initial state.
Otherwise, we will not be able to construct an abstract eiatuhat starts from the
initial state. There is no similar proof obligation for foavd simulations because every
state resulting from executing an action from a reachabte & reachable by definition.



For this reason, and because thinking “backwards” seerasigaral than thinking for-
wards, verifying backward simulations can be more challepthan verifying forward
simulations. Furthermore, just as forward simulationsiaaelequate for some proofs
backward simulations are inadequate for others [11].

Therefore, when a backward simulation is necessary, it edrelpful to develop the
proof in two stages by defining an “intermediate” automasorg proving that the con-
crete automaton implements the intermediate automatog aforward simulation and
that the intermediate automaton implements the abstractisimg a backward simula-
tion. We have taken this approach for this verification, asese used it successfully
in previous verifications, e.g. [6].

3.2 The abstract and concrete automata

We now describe informally the abstract and concrete |OAs We use in this verifi-
cation; more detailed descriptions of the way we use IOAs dadehspecifications and
implementations can be found in [5-8].

The abstract automatokbsAut models a set of processes operating on an abstract
set, in which each process is either “idle”, in which caseit mwvoke any operation on
the set, or is in the midst of executing an operation.

There are four actions ibsAut for theadd method (see Figure 3). TialdInk, p)
action models invocation of treeld method by procegswith key k, and theaddRes(b, p)
action models this method returning boolean valu® processp. Between the in-
vocation and the response, the automaton requires exawtly'do” action, either a
doAddT(p) or a doAddHp) action. The precondition of thdoAddT action requires
thatk is not in the abstract set, and its effect adde the set, and thdoAddF action
requires that is in the set, and its effect does not modify the set. Eachefdimove
andcontains methods is similarly modelled with four actions.

Action Precondition Effect

add(k, p) a'pc(p) = idle a‘pc(p) := pcbDoAdd(k)

doAddT(k, p) pcDoAdd(k) AND a‘'pc(p) = pcAddResp(true)
NOT member(k, a‘'keys)

doAddF(k, p) pcDoAdd(k) AND a‘'pc(p) := pcAddResp(false)
member(k, a‘'keys)

addResp(r, p) |pcAddResp(r) a‘pc(p) := idle

Fig. 3. AbsAut actions for theadd method

Per-procesprogram counter variables constraint the order in which actions can be
performed, ensuring that each operation consists of arcatian action, alo action,
and a response action. These variables also connect tha xetue of the response
action to thedo action. For example, thdoAddT(p) action sets procegss program
counter topcAddResftrue p). Thus each operation is guaranteed to return a value
consistent with applying the operation atomically at thépat which thedo action



is executed. Because each operation “takes effect” atdlgniaathe execution of its
internaldo action, all executions oAbsAut are behaviours of a linearisable set. Thus,
proving thatConcAut implementsAbsAut proves that LazyList is a linearisable set im-
plementation.

The concrete automat@oncAut models a set of processes operating on a setimple-
mented by the LazyList algorithm. It has the same exterrnadae asAbsAut, but rather
than modelling the application of the entire operation aggls atomic actionCon-
cAut has an internal action for each step of the algorithm cooredimg to a labelled
step in the pseudocode shown in Figure 2. In fact, conditistegos in the algorithm
have two associated actions, one for each outcome of theFsiepxample, the precon-
dition of thecont2T(p) action (which models an execution by procgss line 2 of the
contains method when the test succeeds) requiresisgbrogram counter ipcCont2
andcurrkey, < k;,, and its effect setg’s program counter tpcCont3

3.3 Anintermediate automaton

As mentioned earlier, we cannot prove ti@dncAut implementsAbsAut using a for-
ward simulation proof. The reason is that, to do so, we muitifly a point at which
each operation “takes effect” and choose the corresporabragtion inAbsAut at that
point. However, as explained in Section 2, a faitedtains operation may not take ef-
fect at the point where it determines that it has failed: thiatoat which the sought-after
key is absent from the set may be earlier. A correct forwaraiktion proof would have
to choose theloContFaction at a point where the key is absent from the set. However
at that point, it is still possible that theontains operation will returntrue so choos-
ing doContFwould make it impossible to complete the proof because weantAut
executes the externabntResfitrue) action, the precondition for this action would not
hold in theAbsAut state (recall that we are required to choose the same aotidbd$Aut
when theConcAut action is external).

The intermediate automatdntAut must eliminate the need to “know the future” in
order to choose appropriate actions in proving tBancAut implementsintAut using
a forward simulation. However, because backward simulatexe more difficult than
forward ones, we prefer to keep the intermediate automagociase as possible to
the abstract one. We achieved this by modifydasAut slightly so that thecontains
operation can decide to retufalseif the key it is seeking was absent from the set at
some time since its invocation (though it is still permittedreturntrue if it finds its
key in the set). We now explain how we achieved this.

The state ofintAut is the same as that &bsAut, except that we augment each
processp with a boolean flagseenout,. When process is executing econtains(k)
operation,seenout, indicates whethek has been observed to be absent from the set
since the invocation of the operation.

The transitions ofntAut are the same as thoseAlfsAut, except that:

— Thecontin(p, k) action setseenout, to falseif k is in the abstract set, and tae
otherwise.

— The doRemTgq, k) action, having performed its usual action of removinfrom
the set, then setseenout, for every processg that is executingontains(k).



— The precondition of theloContFRk, p) action is modified to requirseenout, to be
true instead of being absent from the set.

Thus thedoContKp) action is enabled it was not in the set wherontains(k) was
invoked, or if it was removed later by some other proegpsrformingdoRemTgq, k).
Therefore, in this automaton,@ntains(k) operation can decide to retufalse even
whenk is in the set, provided@ was absent from the set sometime during the operation.
This is what we need in order to allow a forward simulatiomirGoncAut to IntAut.

3.4 The backward simulation

BecausdntAut is so close tAbsAut, the backward simulation is relatively straightfor-
ward. Our simulation relation requires that the sets of kayisitAut and AbsAut are
identical, and that each processn AbsAut stays “in step” with process in IntAut,
with one exception. IMbsAut, p may have already executeldContF indicating that it
will subsequently returifalse whereas inntAut, p has not yet decided to retufalse
This is allowed only ifseenout, is trug indicating that eithek is absent from the
abstract set at the invocati@ontin(k, p), or is present at the invocation but is subse-
quently removed befordoContFis performed. The backward simulation relation has
two components, one relating data and one relating progocamters of processes. The
PVS definition of our backward simulation relation betwéptiut statei and AbsAut
statea is shown below.

bsr(i, a): bool = i'keys = a‘'keys AND
FORALL p: (i‘pc(p) = a‘pc(p) OR
(i'‘pc(p) = pcboCont AND
a'‘pc(p) = pcContResp(false) AND
i‘'seen_out(p)))

In the backward simulation, for eadhtAut action, we choose the same action
for AbsAut, with the following exceptions. First, for doRemTk, p) action inlIntAut
(which successfully removesfrom the abstract set), we choose a sequenddsut
actions consisting of the santwRemTk, p) action, followed by onedoContkk, p)
action for each procegsthat is executing &ontains(k) operation that is enabled to
returnfalsein the post state ofbsAut.

Second, because we choose dlo€ontFAbsAut action for acontains(k) operation
that returndalsein IntAut either at that operation’s invocation or in the sequenceémm
diately after adoRemTaction that removes, doContFactions inIntAut are ignored
(i.e., we choose not to execute any actionAlbsAut for a doContFin IntAut). This
corresponds to the intuition that, by the tinm@Aut decides to returialse the value
it is seeking may actually be in the abstract set: it is at thiatpat whichseenout is
set totrue that we know the value is absent, and therefore that is wherehwose the
doContFaction forAbsAut.

3.5 The forward simulation

When defining the relationship between the stateB#ut and ConcAut, one option
is to represent the relationship directly in the simulatietation. However, because



in this case the relationship is quite complex, we chosee@tsto reflect the state of
IntAut within ConcAut via the introduction of two auxiliary variablesux keys and
auxseenout Then, rather than constructing the simulation relatiouitectly relate
theConcAut state and théentAut state, we capture this relation as invariant€oficAut,
and simply require that the auxiliary variables equal tieeinnterparts inntAut. This
approach has the benefit of making it easier to check pr@seste intend to test with a
model checker.

ConcAut is augmented with the auxiliary variables in a straightf@mivmanner:
auxkeysis updated when a node is inserted into the list at line 6 ofatltbmethod,
or is marked for deletion at line 3 of tlremove method; andaux seenout, is updated
when thecontains method is invoked by procegs or when another process executes
line 3 of theremove method to remove the same valués seeking.

With the addition of the auxiliary variables, the simulatielation is quite simple.
Like the backward simulation relation, it has two composeate relating data and one
relating program counters of processes. The first compasiegly requires that the
ConcAut auxiliary variables equal their respective counterpartsiAut. The second
component is more complicated than in the backward sinaratlation, because we
must relate each program counterGancAut to a program counter value IntAut.

The proof is also quite straightforward: almost all of theqfs for the forward
simulation were dispatched automatically via the use of Biv&egies. The only proofs
that required user interaction were those to show that wiesrvee choose ao action
for IntAut or a givenConcAut action, that action’s precondition holdslintAut. These
proofs required the introduction of high-level invarianfsthe concrete automaton—
one for each action corresponding t@l@aaction in the intermediate automaton—that
show that at the point that we choose these actions in thdaion, their preconditions
hold in IntAut.

For one interesting example, we must show that when we chd@SentKk, p) as
the action forintAut, seenout, is true More specifically, we show thatux seenout,
is true in the ConcAut state, and then use the simulation relation’s requirenteatt t
aux.seenout andseenout are equal to infer that thietAut action is enabled.

Proving these invariants requires a number of other inmggiand lemmas. Stating
and proving these properties accounts for the bulk of thevothis proof.

3.6 Invariants

We do not have space to describe all of the invariants andeptiep we proved. Instead
we choose a handful of interesting properties to discuss. ifiterested reader may
examine the proofs in detail by consulting our proof scripthich are available at
http://www.mcs.vuw.ac.nz/reasearch/SunVUW/

Theaux keys _accurate invariant states thatux keysis exactly the set of keys for
which there is a live node. (Ave node is one that has been inserted into the list, and has
not yet had itsnarkedbit set.) This property is mostly straightforward becaukeyais
inserted intcaux keyseach time a new node containing that key is inserted intaishe |
(thus becoming live), and removed fraaix keyseach time a node containing the key
is marked as deleted (thus ceasing to be live). The hardestfithis proof is showing
that marking a node with a certain key value ensures thavambde with that key value



exists. This is achieved using several additional invasidite _nodes _in _list says
that all live nodes are reachable fratiead one from _other says that if two different
nodes are both reachable frgdeadthen one of them is reachable from the other; and
later _nodes _greater _and_public says that if one node is reachable from another,
then it has a higher key. Together these three propertiely itlngt there is at most one
live node for a given key value at any time, and therefore igrlone falsifies the
existence of any such node, as required.

A contains(k) operation that returngue finds an unmarked node containikg
Because the key field of a node does not change after it islinéd, if acontains(k)
operation finds a node containikgand then observes that the node is not marked,
it follows from aux _keys _accurate thatk is in the abstract set when the node is
observed to be unmarked. Thus, when we chooseélti@@ontTaction forIntAut given
a cont5Taction inConcAut, the precondition fodoContTholds.

A contains(k) operation that returnf&lseis more interesting. When such an opera-
tionis invoked by a process if k is not in the abstract set, then &yx _keys _accurate
there is no live node containing, so thecontin(k, p) action setsseenout, to true
Therefore if the algorithm decides to retufaise we are justified in choosing theo-
ContFaction forIntAut because its precondition holds. Otherwise, there is a lbgen
containingk when thecontink, p) action is executed, and this is still true when the
contl action readsHead unless the node has been marked, in which czsmout,
(andaux.seenout,) are set tarueg again justifying a subsequent executiordoiContF
in IntAut. Otherwise, aftecontlreadsHeadinto curr,, the live node is reachable from
the node indicated byurr, variable. As explained below, this remains truepasalks
down the list towards the live node unless the live node irerd, settingseenout, to
true Thus, unles# is not in the set whenontains(k) is invoked, or is removed before
p reaches it, theontains(k) method returngrue

The above reasoning is captured in part bydve _val still _in invariant, which
states that ap executes the loop at lines 2 and 3 of tantains(k) method, either
auxseenout, is trug or there is a path froneurr, to a live node containing. The
latter property is captured Hgadsfrom (curr,,n), which states that there is a non-
zero-length path fronturr, to n. leadsfrom is defined usindeadsfromsteps as
follows to allow us to prove to PVS that inductive proofs oitare finite.

leadsfromsteps(c, n, m, w): INDUCTIVE bool =
n /= Tail AND ((w=1 AND c'nextf(n) = m) OR
(w>1 AND c'nextf(n) /= m AND
leadsfromsteps(c,c‘nextf(n),m,w-1)))
leadsfrom(c, n, m): bool = EXISTS w: leadsfromsteps(c, n, m, w)

A challenging part of the proof is proving thatdsfrom (m,n) is falsified only if
node n is marked, and thereforecont wval stil _in is not falsified by
leadsfrom (curr,, n) becoming false. The intuition for this property is clearanges
outside the path between andn have no effect, and inserting or removing a node
from the list betweenn andn preserves théadsfrom (m,n) property. Thus, only
removing a link ton can falsifyleadsfrom (m,n), and it is easy to prove that this
occurs only ifn is marked. While the intuition for this property is straightivard, the



proof is somewhat involved because it requires variousdtidas over theéeadsfrom
property to capture the effects of inserting and removingdgsan the middle of the list.

A key invariant that is used in many of the proofs, for exampkgturing the ef-
fect of adding or removing a node, is theate _works invariant, which captures
the properties that are guaranteed byltuate method because it locks the nodes and
then validates the desired properties before returningdtbor remove. Specifically,
locate _works tells us that when we return from a calllmate, we have locks on ad-
jacent live nodes such that the key of the first node is smidéer our key, and the key
of the second is greater or equal. Because we know (fiem _nodes _in _list and
later _nodes _greater _and_public ) that live nodes are in ascending order in the list,
we can determine by examining the key of tier node whether the value in question
is in the abstract set or not.

Thelocate _works invariant also ensures, for example, that whiem5 sets the
next field of itspred node to the value previously read from thext field of its curr
node, thenext field of the pred node still points to theurr node, thus ensuring that
the intended node is the one removed. Another invagatiy _unchanged _in _rem
ensures that the value written to thextfield of the prednode is still thenextfield of
the currnode, showing that exactly one node (ther node) is removed.

4 Experience with PVS

We used PVS [4] to verify all the proofs discussed in this pafse we are not experts
in the use of PVS, and we had no special support, our experi@ay be relevant both
to others considering using PVS to verify similar proofs] as a comparison to others’
experience with different formal tools. In addition to ouonk with PVS, we collabo-
rated with David Friggens and Ray Nickson, who developedetsofbr this algorithm
for use in the model checkers Spin and SAL [12, 13]. As well ad@hchecking the en-
tire algorithm for small numbers of threads and small bowndthe queue size, which
gave us some confidence that our proof attempt would evéyntoalsuccessful, they
used these models to test some of the putative invariantseet in our proofs before
we actually proved them.

In approaching this verification, we worked mostly “top-ddwstarting with the
simulation proofs and then proceeding with the invariavis.did not develop the basic
proof using PVS; rather, we figured out the top-level invatsanformally, and prepared
a fairly detailed proof sketch of these invariants, and sofrteeir supporting lemmas
and invariants, before formalizing them in PVS. We did natybver, work out all the
low-level lemmas and invariants that we knew would be hélfgfiuthe proofs, leaving
many of them to be stated and proved as necessary.

As mentioned earlier, introducing auxiliary variables Ire tconcrete automaton
pushed the bulk of the work for this proof into the verificatiof invariants. The com-
plete verification contained 171 PVS proofs: 27 typecheaistraints, 29 lemmas for
the simulation proofs, and 115 invariants and supporting@s. Pushing most of the
work into the invariants reduced the state that had to be gehwithin a PVS proof,
because invariants are about a single automaton, whilelaions are relations be-
tween two automata. Also, unlike simulation relationsaimants are straightforward to



check using model checkers, so this reduced the gap betweevook and that of our
colleagues working with Spin and SAL.

PVS includes support for proof management, tracking whiclefs have been done,
and marking lemmas as proven but “incomplete” if they depamdarlier lemmas that
have not yet been proved completely. This support helped weik independently on
different lemmas, which was especially helpful as the autheere spread over three
countries. However, PVS manages changes at the file levelrgelain the file in-
validate all proofs for lemmas in that file—so we often had twmeproofs that were
unchanged. Finer-grained dependency tracking would reersus considerable time.

PVS supports the creation of user-defined rules, calleategies, by combining
built-in rules. These strategies can be saved and usedentbofs (or several times in
a single proof). We used strategies extensively, for exaptplset up the beginning of
invariant proofs, which almost always begin assuming tiariant holds on an arbitrary
reachable state and setting up as a goal that it holds aftetu8rg any action; to extract
parts of the precondition or effect of an action; and to harigk many “trivial” cases in
the forward simulation proof for concrete actions that did correspond to any action
in the intermediate automaton.

As useful as strategies are, we found that in many cases ibettar to define a
lemma that captured a desired property than to design &gyréd prove it. There are
two advantages: First, PVS doesn’'t have to do the proof éamftit just uses the
lemma. Second, often the way you state a property makes dicign difference in
how you are able to use it. With a lemma, you can easily cotowl a property is
stated. Another disadvantage of strategies is that thesnanetained in a single file, so
defining new strategies invalidates all proofs, even thos&emmas in different files.

One challenge in this verification was making proofs that Re@d check quickly.
In particular, in an invariant proof, we typically show thiae property is preserved by
every action. Usually, only one or a few actions affect anyhef variables mentioned
by the property, and only those actions need to be consigtdredest obviously pre-
serve the property. However, PVS must check all of thosestiand even a couple of
seconds for each action turns into minutes for 52 actionas;Twe stated and proved
several “does not modify” lemmas, one for each variabldjrgjavhich actions actu-
ally modified that variable, and we used those lemmas extelygp avoid having PVS
consider each of the other actions separately.

We also found it helpful to define functions to describe thitigat we wanted to
refer to frequently, and especially that we might want to insa strategy. For exam-
ple, in the forward simulation proof, we defined thetion_corr function to return, for
any transition of the concrete automaton, the correspgrsiiguence of actions of the
intermediate automaton. We also definmth andpcout to return, for each action, the
program counters corresponding to the prestate and peststpectively.

5 Concluding Remarks

We have developed the first complete and formal correctness for the LazyList
algorithm of Helleret al. [1]. We model the algorithm and specification as I/0O Automata



in the PVS language, and proved that the algorithm implesiiat specification using
simulation proofs developed in and checked by the PVS system

As in previous proofs we have done ([5-8]), we found that thie@me of an oper-
ation cannot always be determined before it takes effeatptof uses a combination
of backward and forward simulations to deal with this proflé\n interesting aspect
of the proof, which we have not encountered in our previouwsfs; is the need for
multiple operations to be linearised after an action of ed#ht operation.

In a related manual verification effort, Vafeiadisal. [14] consider a version of
the LazyList algorithm that is augmented by adding auxiliariables and actions that
perform the abstract operation on an auxiliary set at thealiisation point of each op-
eration, and use the Rely-Guarantee proof method [15,d8hdw that the implemen-
tation and the abstract set behave the same way in everytexeot this augmented
algorithm. Because it is impossible to correctly linearséiled contains operation
without knowledge of the future, this approach cannot bel tis@rove the linearisabil-
ity of failed contains operations. Therefore, [14] only considers this case m#dly.
Both our proof and our colleagues’ model checking work caméid our doubts about
some of the claims made about the linearisation points t#daiontains operations in
an early draft of [14]. Our completely machine-checked pifoo the LazyList algo-
rithm significantly increases confidence in the correctioésise algorithm.

We have made out proof scripts available so that others magfibédrom our ex-
perience (seéttp://www.mcs.vuw.ac.nz/reasearch/SunVUW/ ). We will
also test our hypothesis that substantial parts of our graobe reused to prove correct
several optimised versions of LazyList. In the longer temra plan to continue refining
our proof methodology to make it easier and more efficienteeetbp fully machine
checked proofs for concurrent algorithms.

Acknowledgements:We are grateful to David Friggens and Ray Nickson for useful
conversations and for model checking various proposedepties.
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