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Abstract. We describe a formal verification of a recent concurrent list-based set
algorithm due to Helleret al. The algorithm is optimistic: theadd andremove
operations traverse the list without locking, and lock only the nodes affected by
the operation; thecontains operation uses no locks and is wait-free. These prop-
erties make the algorithm challenging to prove correct, much more so than simple
coarse-grained locking algorithms. We have proved that the algorithm is linearis-
able, using simulation between input/output automata modelling the behaviour
of an abstract set and the implementation. The automata and simulation proof
obligations are specified and verified using PVS.

1 Introduction

Concurrent algorithms are notoriously difficult to design correctly, and high perfor-
mance algorithms that make little or no use of locks even moreso. Formal verification
of such algorithms is challenging because their correctness often relies on subtle inter-
actions between processes that heavier use of locks would preclude. These proofs are
too long and complicated to do (and check) reliably “by hand”, so it is important to
develop techniques for mechanically performing, or at least checking, these proofs.

In this paper we describe a formal verification ofLazyList, a recent concurrent list-
based set algorithm due to Helleret al. [1]. Our proof shows that the algorithm is lin-
earisable to an abstract set object supportingadd, remove, andcontains methods. Lin-
earisability [2] is the standard correctness condition forconcurrent shared data struc-
tures. Roughly, it requires that each operation can be assigned a uniquelinearisation
point during its execution at which the operation appears to take effect atomically.

The LazyList algorithm is optimistic:add andremove operations attempt to locate
the relevant part of the list without using locks, and only use locks to validate the infor-
mation read and perform the appropriate insertion or deletion. Thecontains operation
uses no locks, and is simple, fast, and wait-free. Helleret al. present performance stud-
ies showing that this algorithm outperforms well known algorithms in the literature,
especially on common workloads in which thecontains method is invoked significantly
more often thanadd andremove [1].

The simplicity and efficiency of thecontains method is achieved by avoiding all
checks for interactions with concurrentadd andremove operations. As a result,contains



can decide that the value it is seeking is not in the set at a moment when in fact it is in
the set. The main challenge in proving that the algorithm is linearisable is to show that
this happens only if the sought-after value was absent from the setat some point during
the execution of thecontains operation.

We have proved that the algorithm is linearisable, using simulation between in-
put/output automata modelling the abstract behaviour of the set and the implementa-
tion. Our proof uses a combination of forward and backward simulations, and has the
interesting property that a single step of the implementation automaton can correspond
to steps by an arbitrary number of different processes in thespecification automaton.
We modelled the automata and encoded the proof obligations for simulations in the
PVS specification language [3, 4], and used the PVS system to check our proofs.

Apart from presenting the first complete and formal verification of an important new
algorithm, a contribution of this paper is to describe our ongoing work towards making
proof efforts like these easier and more efficient. The proofpresented in this paper builds
on earlier work in which we proved (and in some cases disproved and/or improved) a
number of nonblocking implementations of concurrent stacks, queues and deques [5–
8]. While we still have work to do in this direction, we have made a lot of progress in
determining how to model algorithms and specifications, andhow to approach proofs.
In this paper, we briefly describe some of the lessons learned. We have made our proof
scripts available athttp://www.mcs.vuw.ac.nz/reasearch/SunVUW/ , so
that others may examine our work in detail and benefit from ourexperience.

The rest of the paper is organised as follows. We describe theLazyList algorithm in
Section 2, and our verification of it in Section 3. We discuss our experience with using
PVS for this project in Section 4, and conclude in Section 5.

2 The LazyList Algorithm

The LazyList algorithm implements a concurrent set supporting three operations:

– add(k) addsk to the set and “succeeds” ifk is not already in the set.
– remove(k) removesk from the set and “succeeds” ifk is in the set.
– contains(k) “succeeds” ifk is in the set.

Each operation returnstrue if it succeeds; otherwise it “fails” and returnsfalse.
The algorithm uses a linked-list representation. In addition tokey andnext fields,

each list node has alock field, used to synchroniseadd andremove operations, and a
markedfield, used to logically delete the node’s key value (see Figure 1(a)). The list
is maintained in ascending key order, and there are two sentinel nodes,HeadandTail,
with keys−∞ and+∞ respectively. We assume that the list methods are invoked only
with integer keysk (so that−∞ < k < +∞).

As explained in more detail below, a successfuladd(k) operation inserts a new
node containingk into the list, and a successfulremove(k) operation logically removes
k from the set by marking the node containingk (i.e., setting itsmarkedfield to true),
before cleaning up by removing the node from the list. Thus, at any point in time, the
abstract set is exactly the set of values stored in thekey fields of unmarked node in the
list.



private class Entry {
int key;
Entry next;
boolean marked;
lock lock;

}
b

add(b)

Head

pred curr

Tail
a

b

c

remove(b)

Head

pred curr

Tail
ca

Fig. 1. (a) Declaration of list node type, (b) Inserting and removing list nodes

The add(k) andremove(k) methods (see Figure 2) use a helper methodlocate(k),
which setscurr to point to the first node with a key greater than or equal tok andpred to
point to the node whosenext field points to that node. Thelocate method optimistically
searches the list without using locks, and then locks the nodes pointed to bycurr and
pred. If both nodes are unmarked (i.e., theirmarkedfields arefalse) andpred.next is
equal tocurr (these tests constitute three separate atomic actions), the add or remove
operation can proceed; otherwise, the locks are released and the search is restarted.

After locate returns, anadd operation tests whethercurr.key equalsk. If not, then
k is not in the list, soadd creates a new node, setting itskey field tok and itsnext field
to point tocurr (see Figure 1(b)). It then sets thenext field of pred to point to this new
node, releases the locks oncurr andpred, and succeeds. Ifcurr.key is equal tok, then
k is already in the list, so theadd operation fails.

For a remove(k) operation, ifcurr.key equalsk after locate returns, thenremove
removes the node atcurr from the list and succeeds; otherwise,k is not in the list,
so remove fails. A successful removal is done in two stages: first the key is logically
removed from the set by setting themarkedfield of curr; then it is physically removed
by setting thenext field of its predecessor (pred) to its successor (curr.next) (see Figure
1(b)). Separating the logical removal of the key from the setand the physical removal
of the node from the list is crucial to the simplicity and efficiency of the algorithm:
because nodes are not removed before they are marked, observing an unmarked node is
sufficient to infer that its key is in the set.

A contains(k) operation makes a single pass through the list, starting from Head,
searching for a node with a key not less thank. If this node containsk and is not
marked,contains succeeds; otherwise it fails. This operation requires no locks and is
wait-free (i.e., it is guaranteed to complete within a finitenumber of its own steps, even
if processes executing other operations are delayed or stopcompletely).

Linearisation points A common way to prove that an algorithm is linearisable is to
identify a particular step of each operation as the linearisation point of that operation.
With some simple invariants showing there are no duplicate keys in the list, it is straight-
forward to assign linearisation points in this way foradd andremove operations, and
for successfulcontains operations.

Things are not so simple for failedcontains operations, however. If the node found
by the loop at lines 2 and 3 contains a key greater thank, or it is marked,contains(k)



contains(k) :
1 curr := Head;
2 while curr.key < k do
3 curr := curr.next;
4 if curr.key = k and
5 ˜curr.marked then

return true
else
return false

locate(k) :
while true do

1 pred := Head;
2 curr := pred.next;
3 while curr.key < k do
4 pred := curr;
5 curr := curr.next;
6 pred.lock();
7 curr.lock();
8 if ˜pred.marked and
9 ˜curr.marked and

10 pred.next = curr then
11 return pred, curr

else
12 pred.unlock();
13 curr.unlock()

add(k) :
1 pred, curr := locate(k);
2 if curr.key != k then
3 entry := new Entry();
4 entry.key := k;
5 entry.next := curr;
6 pred.next := entry;
7 res := true

else
8 res := false;
9 pred.unlock();

10 curr.unlock();
return res

remove(k) :
1 pred, curr := locate(k);
2 if curr.key = k then
3 curr.marked := true;
4 entry := curr.next;
5 pred.next := entry;
6 res := true

else
7 res := false;
8 pred.unlock();
9 curr.unlock();

return res

Fig. 2.Pseudo-code for lazy list algorithm

returnsfalse. But there is no step of thecontains operation at whichk is guaranteed not
to be in the set. In particular, when itskey or markedfield is checked, the node may
have already been removed from the list, and another processmay have added a new
node with keyk, so thatk is in the abstract set at that time. Thus the simple approach
of proving linearisability by defining a linearisation point for each operation at one of
its steps does not work for this algorithm.

The key to proving that LazyList is linearisable is to show that, for any failed
contains(k) operation,k is absent from the set atsome point during its execution. Our
proof shows that if acontains(k) operation fails, then eitherk is absent from the set
when it begins or that some successfulremove(k) operation marks a node contain-
ing k during the execution of thecontains(k) operation. Because there may be many
contains(k) operations executing concurrently, it is sometimes necessary to linearise
multiple failedcontains operations after the sameremove(k) operation. We found this
interesting, because our previous proofs have not requiredthis.



3 Verification

To prove that LazyList is a linearisable implementation of aset supportingadd, remove,
andcontains operations, we define two input/output automata (IOA) [9, 10]: a concrete
automaton ConcAut, which models the behaviour of the LazyList algorithm, and asim-
ple abstract automaton AbsAut, which specifies all correct behaviours of a linearisable
set. We usesimulation proof techniques [11] to prove thatConcAut implementsAbsAut.

3.1 I/O automata and simulation proofs

We now informally describe the IOA model and simulation proofs. In our verification,
we use a simplified version of IOAs, which is sufficient for this verification. See [9–11]
for a more detailed and formal discussion.

An IOA consists of a set of states and a set of actions. Each action has aprecon-
dition, which determines the set of states from which it can be executed, and aneffect,
which determines the next state after the action has been executed. The actions are di-
vided intoexternal actions, which define an interface to the automaton, andinternal
actions, which represent internal details. An automatonC implements an automaton
A if for every execution ofC, there exists an execution ofA with the same external
actions, which means thatC cannot be distinguished fromA by observing its external
behaviour.

One way to prove thatC implementsA is to consider an arbitrary execution of
C and to inductively construct an execution ofA with the same external actions in
the following fashion: Start from the initial state inC ’s execution, and then for each
action in turn, choose a (possibly empty) sequence of actions for A to execute such
that (i) the actions chosen constitute a valid execution ofA, (ii) wheneverC executes
an internal action, the sequence of actions chosen forA has only internal actions, and
(iii) wheneverC executes an external action, the sequence of actions chosenfor A

contains that same action and no other external actions. In this way, we ensure that the
constructed execution forA contains the same external actions as the execution ofC.
To describe this construction for an arbitrary execution, it is useful to define aforward
simulation, which is a relation between states ofC and states ofA such that given a
pair of states related by the simulation, and any action enabled in the state ofC, there
is a way to choose a sequence of actions forA that preserves this relation.

For some algorithms and their specifications, however, there is no way to define
such a forward simulation because for some action ofC, the actions ofA that we
should choose depend on future outcomes. As we describe later, LazyList is one such
algorithm. In such circumstances, abackward simulation can help. A backward simula-
tion is like a forward simulation except that instead of starting from the initial state and
working forwards to an arbitrary state of the automaton, we start at an arbitrary state
and work backwards towards the initial state.

For a backward simulation, we must be careful that while working backward, the
abstract prestate that we end up at is reachable (going forward) from the initial state.
Otherwise, we will not be able to construct an abstract execution that starts from the
initial state. There is no similar proof obligation for forward simulations because every
state resulting from executing an action from a reachable state is reachable by definition.



For this reason, and because thinking “backwards” seems less natural than thinking for-
wards, verifying backward simulations can be more challenging than verifying forward
simulations. Furthermore, just as forward simulations areinadequate for some proofs,
backward simulations are inadequate for others [11].

Therefore, when a backward simulation is necessary, it can be helpful to develop the
proof in two stages by defining an “intermediate” automaton,and proving that the con-
crete automaton implements the intermediate automaton using a forward simulation and
that the intermediate automaton implements the abstract one using a backward simula-
tion. We have taken this approach for this verification, as wehave used it successfully
in previous verifications, e.g. [6].

3.2 The abstract and concrete automata

We now describe informally the abstract and concrete IOAs that we use in this verifi-
cation; more detailed descriptions of the way we use IOAs to model specifications and
implementations can be found in [5–8].

The abstract automatonAbsAut models a set of processes operating on an abstract
set, in which each process is either “idle”, in which case it can invoke any operation on
the set, or is in the midst of executing an operation.

There are four actions inAbsAut for theadd method (see Figure 3). TheaddInv(k, p)
action models invocation of theadd method by processp with keyk, and theaddResp(b, p)
action models this method returning boolean valueb to processp. Between the in-
vocation and the response, the automaton requires exactly one “do” action, either a
doAddT(p) or a doAddF(p) action. The precondition of thedoAddT action requires
thatk is not in the abstract set, and its effect addsk to the set, and thedoAddF action
requires thatk is in the set, and its effect does not modify the set. Each of the remove
andcontains methods is similarly modelled with four actions.

Action Precondition Effect
add(k, p) a‘pc(p) = idle a‘pc(p) := pcDoAdd(k)
doAddT(k, p) pcDoAdd(k) AND

NOT member(k, a‘keys)
a‘pc(p) := pcAddResp(true)

doAddF(k, p) pcDoAdd(k) AND
member(k, a‘keys)

a‘pc(p) := pcAddResp(false)

addResp(r, p) pcAddResp(r) a‘pc(p) := idle

Fig. 3. AbsAut actions for theadd method

Per-processprogram counter variables constraint the order in which actions can be
performed, ensuring that each operation consists of an invocation action, ado action,
and a response action. These variables also connect the return value of the response
action to thedo action. For example, thedoAddT(p) action sets processp’s program
counter topcAddResp(true, p). Thus each operation is guaranteed to return a value
consistent with applying the operation atomically at the point at which thedo action



is executed. Because each operation “takes effect” atomically at the execution of its
internaldo action, all executions ofAbsAut are behaviours of a linearisable set. Thus,
proving thatConcAut implementsAbsAut proves that LazyList is a linearisable set im-
plementation.

The concrete automatonConcAut models a set of processes operating on a set imple-
mented by the LazyList algorithm. It has the same external actions asAbsAut, but rather
than modelling the application of the entire operation as a single atomic action,Con-
cAut has an internal action for each step of the algorithm corresponding to a labelled
step in the pseudocode shown in Figure 2. In fact, conditional steps in the algorithm
have two associated actions, one for each outcome of the step. For example, the precon-
dition of thecont2T(p) action (which models an execution by processp of line 2 of the
contains method when the test succeeds) requires thatp’s program counter ispcCont2
andcurr.key

p
< kp, and its effect setsp’s program counter topcCont3.

3.3 An intermediate automaton

As mentioned earlier, we cannot prove thatConcAut implementsAbsAut using a for-
ward simulation proof. The reason is that, to do so, we must identify a point at which
each operation “takes effect” and choose the correspondingdo action inAbsAut at that
point. However, as explained in Section 2, a failedcontains operation may not take ef-
fect at the point where it determines that it has failed: the point at which the sought-after
key is absent from the set may be earlier. A correct forward simulation proof would have
to choose thedoContFaction at a point where the key is absent from the set. However,
at that point, it is still possible that thecontains operation will returntrue, so choos-
ing doContFwould make it impossible to complete the proof because whenConcAut
executes the externalcontResp(true) action, the precondition for this action would not
hold in theAbsAut state (recall that we are required to choose the same action for AbsAut
when theConcAut action is external).

The intermediate automatonIntAut must eliminate the need to “know the future” in
order to choose appropriate actions in proving thatConcAut implementsIntAut using
a forward simulation. However, because backward simulations are more difficult than
forward ones, we prefer to keep the intermediate automaton as close as possible to
the abstract one. We achieved this by modifyingAbsAut slightly so that thecontains
operation can decide to returnfalse if the key it is seeking was absent from the set at
some time since its invocation (though it is still permittedto returntrue if it finds its
key in the set). We now explain how we achieved this.

The state ofIntAut is the same as that ofAbsAut, except that we augment each
processp with a boolean flagseenoutp. When processp is executing acontains(k)
operation,seenoutp indicates whetherk has been observed to be absent from the set
since the invocation of the operation.

The transitions ofIntAut are the same as those ofAbsAut, except that:

– ThecontInv(p, k) action setsseenoutp to false if k is in the abstract set, and totrue
otherwise.

– The doRemT(q, k) action, having performed its usual action of removingk from
the set, then setsseenoutp for every processp that is executingcontains(k).



– The precondition of thedoContF(k, p) action is modified to requireseenoutp to be
true instead ofk being absent from the set.

Thus thedoContF(p) action is enabled ifk was not in the set whencontains(k) was
invoked, or if it was removed later by some other processq performingdoRemT(q, k).
Therefore, in this automaton, acontains(k) operation can decide to returnfalse even
whenk is in the set, providedk was absent from the set sometime during the operation.
This is what we need in order to allow a forward simulation from ConcAut to IntAut.

3.4 The backward simulation

BecauseIntAut is so close toAbsAut, the backward simulation is relatively straightfor-
ward. Our simulation relation requires that the sets of keysin IntAut andAbsAut are
identical, and that each processp in AbsAut stays “in step” with processp in IntAut,
with one exception. InAbsAut, p may have already executeddoContF, indicating that it
will subsequently returnfalse, whereas inIntAut, p has not yet decided to returnfalse.
This is allowed only ifseenoutp is true, indicating that eitherk is absent from the
abstract set at the invocationcontInv(k, p), or is present at the invocation but is subse-
quently removed beforedoContF is performed. The backward simulation relation has
two components, one relating data and one relating program counters of processes. The
PVS definition of our backward simulation relation betweenIntAut statei andAbsAut
statea is shown below.

bsr(i, a): bool = i‘keys = a‘keys AND
FORALL p: (i‘pc(p) = a‘pc(p) OR

(i‘pc(p) = pcDoCont AND
a‘pc(p) = pcContResp(false) AND
i‘seen_out(p)))

In the backward simulation, for eachIntAut action, we choose the same action
for AbsAut, with the following exceptions. First, for adoRemT(k, p) action inIntAut
(which successfully removesk from the abstract set), we choose a sequence ofAbsAut
actions consisting of the samedoRemT(k, p) action, followed by onedoContF(k, p)
action for each processp that is executing acontains(k) operation that is enabled to
returnfalse in the post state ofAbsAut.

Second, because we choose thedoContFAbsAut action for acontains(k) operation
that returnsfalsein IntAut either at that operation’s invocation or in the sequence imme-
diately after adoRemTaction that removesk, doContFactions inIntAut are ignored
(i.e., we choose not to execute any action inAbsAut for a doContF in IntAut). This
corresponds to the intuition that, by the timeIntAut decides to returnfalse, the value
it is seeking may actually be in the abstract set: it is at the point at whichseenout is
set totrue that we know the value is absent, and therefore that is where we choose the
doContFaction forAbsAut.

3.5 The forward simulation

When defining the relationship between the states ofIntAut andConcAut, one option
is to represent the relationship directly in the simulationrelation. However, because



in this case the relationship is quite complex, we chose instead to reflect the state of
IntAut within ConcAut via the introduction of two auxiliary variables,aux keys and
aux seenout. Then, rather than constructing the simulation relation todirectly relate
theConcAut state and theIntAut state, we capture this relation as invariants ofConcAut,
and simply require that the auxiliary variables equal theircounterparts inIntAut. This
approach has the benefit of making it easier to check properties we intend to test with a
model checker.

ConcAut is augmented with the auxiliary variables in a straightforward manner:
aux keys is updated when a node is inserted into the list at line 6 of theadd method,
or is marked for deletion at line 3 of theremove method; andaux seenoutp is updated
when thecontains method is invoked by processp, or when another process executes
line 3 of theremove method to remove the same valuep is seeking.

With the addition of the auxiliary variables, the simulation relation is quite simple.
Like the backward simulation relation, it has two components, one relating data and one
relating program counters of processes. The first componentsimply requires that the
ConcAut auxiliary variables equal their respective counterparts in IntAut. The second
component is more complicated than in the backward simulation relation, because we
must relate each program counter ofConcAut to a program counter value inIntAut.

The proof is also quite straightforward: almost all of the proofs for the forward
simulation were dispatched automatically via the use of PVSstrategies. The only proofs
that required user interaction were those to show that whenever we choose ado action
for IntAut or a givenConcAut action, that action’s precondition holds inIntAut. These
proofs required the introduction of high-level invariantsof the concrete automaton—
one for each action corresponding to ado action in the intermediate automaton—that
show that at the point that we choose these actions in the simulation, their preconditions
hold in IntAut.

For one interesting example, we must show that when we choosedoContF(k, p) as
the action forIntAut, seenoutp is true. More specifically, we show thataux seenoutp
is true in the ConcAut state, and then use the simulation relation’s requirement that
aux seenout andseenout are equal to infer that theIntAut action is enabled.

Proving these invariants requires a number of other invariants and lemmas. Stating
and proving these properties accounts for the bulk of the work in this proof.

3.6 Invariants

We do not have space to describe all of the invariants and properties we proved. Instead
we choose a handful of interesting properties to discuss. The interested reader may
examine the proofs in detail by consulting our proof scripts, which are available at
http://www.mcs.vuw.ac.nz/reasearch/SunVUW/ .

Theaux keys accurate invariant states thataux keysis exactly the set of keys for
which there is a live node. (Alive node is one that has been inserted into the list, and has
not yet had itsmarkedbit set.) This property is mostly straightforward because akey is
inserted intoaux keyseach time a new node containing that key is inserted into the list
(thus becoming live), and removed fromaux keyseach time a node containing the key
is marked as deleted (thus ceasing to be live). The hardest part of this proof is showing
that marking a node with a certain key value ensures that no live node with that key value



exists. This is achieved using several additional invariants: live nodes in list says
that all live nodes are reachable fromHead; one from other says that if two different
nodes are both reachable fromHead then one of them is reachable from the other; and
later nodes greater and public says that if one node is reachable from another,
then it has a higher key. Together these three properties imply that there is at most one
live node for a given key value at any time, and therefore marking one falsifies the
existence of any such node, as required.

A contains(k) operation that returnstrue finds an unmarked node containingk.
Because the key field of a node does not change after it is initialised, if acontains(k)
operation finds a node containingk and then observes that the node is not marked,
it follows from aux keys accurate that k is in the abstract set when the node is
observed to be unmarked. Thus, when we choose thedoContTaction forIntAut given
acont5Taction inConcAut, the precondition fordoContTholds.

A contains(k) operation that returnsfalse is more interesting. When such an opera-
tion is invoked by a processp, if k is not in the abstract set, then byaux keys accurate

there is no live node containingk, so thecontInv(k, p) action setsseenoutp to true.
Therefore if the algorithm decides to returnfalse, we are justified in choosing thedo-
ContF action forIntAut because its precondition holds. Otherwise, there is a live node
containingk when thecontInv(k, p) action is executed, and this is still true when the
cont1 action readsHead unless the node has been marked, in which caseseenoutp
(andaux seenoutp) are set totrue, again justifying a subsequent execution ofdoContF
in IntAut. Otherwise, aftercont1 readsHead into currp, the live node is reachable from
the node indicated bycurrp variable. As explained below, this remains true asp walks
down the list towards the live node unless the live node is removed, settingseenoutp to
true. Thus, unlessk is not in the set whencontains(k) is invoked, or is removed before
p reaches it, thecontains(k) method returnstrue.

The above reasoning is captured in part by thecont val still in invariant, which
states that asp executes the loop at lines 2 and 3 of thecontains(k) method, either
aux seenoutp is true, or there is a path fromcurrp to a live node containingk. The
latter property is captured byleadsfrom (currp, n), which states that there is a non-
zero-length path fromcurrp to n. leadsfrom is defined usingleadsfromsteps as
follows to allow us to prove to PVS that inductive proofs overit are finite.

leadsfromsteps(c, n, m, w): INDUCTIVE bool =
n /= Tail AND ((w=1 AND c‘nextf(n) = m) OR

(w>1 AND c‘nextf(n) /= m AND
leadsfromsteps(c,c‘nextf(n),m,w-1)))

leadsfrom(c, n, m): bool = EXISTS w: leadsfromsteps(c, n, m, w)

A challenging part of the proof is proving thatleadsfrom (m,n) is falsified only if
node n is marked, and thereforecont val still in is not falsified by
leadsfrom (currp, n) becoming false. The intuition for this property is clear: changes
outside the path betweenm andn have no effect, and inserting or removing a node
from the list betweenm andn preserves theleadsfrom (m,n) property. Thus, only
removing a link ton can falsify leadsfrom (m,n), and it is easy to prove that this
occurs only ifn is marked. While the intuition for this property is straightforward, the



proof is somewhat involved because it requires various inductions over theleadsfrom

property to capture the effects of inserting and removing nodes in the middle of the list.
A key invariant that is used in many of the proofs, for example, capturing the ef-

fect of adding or removing a node, is thelocate works invariant, which captures
the properties that are guaranteed by thelocate method because it locks the nodes and
then validates the desired properties before returning toadd or remove. Specifically,
locate works tells us that when we return from a call tolocate, we have locks on ad-
jacent live nodes such that the key of the first node is smallerthan our key, and the key
of the second is greater or equal. Because we know (fromlive nodes in list and
later nodes greater and public ) that live nodes are in ascending order in the list,
we can determine by examining the key of thecurr node whether the value in question
is in the abstract set or not.

The locate works invariant also ensures, for example, that whenrem5 sets the
next field of itspred node to the value previously read from thenext field of its curr
node, thenext field of thepred node still points to thecurr node, thus ensuring that
the intended node is the one removed. Another invariantentry unchanged in rem

ensures that the value written to thenext field of thepred node is still thenext field of
thecurr node, showing that exactly one node (thecurr node) is removed.

4 Experience with PVS

We used PVS [4] to verify all the proofs discussed in this paper. As we are not experts
in the use of PVS, and we had no special support, our experience may be relevant both
to others considering using PVS to verify similar proofs, and as a comparison to others’
experience with different formal tools. In addition to our work with PVS, we collabo-
rated with David Friggens and Ray Nickson, who developed models for this algorithm
for use in the model checkers Spin and SAL [12, 13]. As well as model checking the en-
tire algorithm for small numbers of threads and small boundson the queue size, which
gave us some confidence that our proof attempt would eventually be successful, they
used these models to test some of the putative invariants we used in our proofs before
we actually proved them.

In approaching this verification, we worked mostly “top-down”, starting with the
simulation proofs and then proceeding with the invariants.We did not develop the basic
proof using PVS; rather, we figured out the top-level invariants informally, and prepared
a fairly detailed proof sketch of these invariants, and someof their supporting lemmas
and invariants, before formalizing them in PVS. We did not, however, work out all the
low-level lemmas and invariants that we knew would be helpful for the proofs, leaving
many of them to be stated and proved as necessary.

As mentioned earlier, introducing auxiliary variables in the concrete automaton
pushed the bulk of the work for this proof into the verification of invariants. The com-
plete verification contained 171 PVS proofs: 27 typecheck constraints, 29 lemmas for
the simulation proofs, and 115 invariants and supporting lemmas. Pushing most of the
work into the invariants reduced the state that had to be managed within a PVS proof,
because invariants are about a single automaton, while simulations are relations be-
tween two automata. Also, unlike simulation relations, invariants are straightforward to



check using model checkers, so this reduced the gap between our work and that of our
colleagues working with Spin and SAL.

PVS includes support for proof management, tracking which proofs have been done,
and marking lemmas as proven but “incomplete” if they dependon earlier lemmas that
have not yet been proved completely. This support helped us to work independently on
different lemmas, which was especially helpful as the authors were spread over three
countries. However, PVS manages changes at the file level—changes in the file in-
validate all proofs for lemmas in that file—so we often had to rerun proofs that were
unchanged. Finer-grained dependency tracking would have saved us considerable time.

PVS supports the creation of user-defined rules, calledstrategies, by combining
built-in rules. These strategies can be saved and used in other proofs (or several times in
a single proof). We used strategies extensively, for example, to set up the beginning of
invariant proofs, which almost always begin assuming the invariant holds on an arbitrary
reachable state and setting up as a goal that it holds after executing any action; to extract
parts of the precondition or effect of an action; and to handle the many “trivial” cases in
the forward simulation proof for concrete actions that did not correspond to any action
in the intermediate automaton.

As useful as strategies are, we found that in many cases it wasbetter to define a
lemma that captured a desired property than to design a strategy to prove it. There are
two advantages: First, PVS doesn’t have to do the proof each time—it just uses the
lemma. Second, often the way you state a property makes a significant difference in
how you are able to use it. With a lemma, you can easily controlhow a property is
stated. Another disadvantage of strategies is that they aremaintained in a single file, so
defining new strategies invalidates all proofs, even those for lemmas in different files.

One challenge in this verification was making proofs that PVScould check quickly.
In particular, in an invariant proof, we typically show thatthe property is preserved by
every action. Usually, only one or a few actions affect any ofthe variables mentioned
by the property, and only those actions need to be considered; the rest obviously pre-
serve the property. However, PVS must check all of those actions, and even a couple of
seconds for each action turns into minutes for 52 actions. Thus, we stated and proved
several “does not modify” lemmas, one for each variable, stating which actions actu-
ally modified that variable, and we used those lemmas extensively to avoid having PVS
consider each of the other actions separately.

We also found it helpful to define functions to describe things that we wanted to
refer to frequently, and especially that we might want to usein a strategy. For exam-
ple, in the forward simulation proof, we defined theaction corr function to return, for
any transition of the concrete automaton, the corresponding sequence of actions of the
intermediate automaton. We also definedpcin andpcout to return, for each action, the
program counters corresponding to the prestate and poststate respectively.

5 Concluding Remarks

We have developed the first complete and formal correctness proof for the LazyList
algorithm of Helleret al. [1]. We model the algorithm and specification as I/O Automata



in the PVS language, and proved that the algorithm implements the specification using
simulation proofs developed in and checked by the PVS system.

As in previous proofs we have done ([5–8]), we found that the outcome of an oper-
ation cannot always be determined before it takes effect. Our proof uses a combination
of backward and forward simulations to deal with this problem. An interesting aspect
of the proof, which we have not encountered in our previous proofs, is the need for
multiple operations to be linearised after an action of a different operation.

In a related manual verification effort, Vafeiadiset al. [14] consider a version of
the LazyList algorithm that is augmented by adding auxiliary variables and actions that
perform the abstract operation on an auxiliary set at the linearisation point of each op-
eration, and use the Rely-Guarantee proof method [15, 16], to show that the implemen-
tation and the abstract set behave the same way in every execution of this augmented
algorithm. Because it is impossible to correctly linearisea failed contains operation
without knowledge of the future, this approach cannot be used to prove the linearisabil-
ity of failed contains operations. Therefore, [14] only considers this case informally.
Both our proof and our colleagues’ model checking work confirmed our doubts about
some of the claims made about the linearisation points of failed contains operations in
an early draft of [14]. Our completely machine-checked proof for the LazyList algo-
rithm significantly increases confidence in the correctnessof the algorithm.

We have made out proof scripts available so that others may benefit from our ex-
perience (seehttp://www.mcs.vuw.ac.nz/reasearch/SunVUW/ ). We will
also test our hypothesis that substantial parts of our proofcan be reused to prove correct
several optimised versions of LazyList. In the longer term,we plan to continue refining
our proof methodology to make it easier and more efficient to develop fully machine
checked proofs for concurrent algorithms.

Acknowledgements:We are grateful to David Friggens and Ray Nickson for useful
conversations and for model checking various proposed properties.
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worked and Distributed Systems — FORTE 2004, 24th IFIP WG 6.1 International Confer-
ence, Madrid Spain, September 27-30, 2004, Proceedings. Volume 3235 of Lecture Notes in
Computer Science., Springer (2004) 97–114



7. Colvin, R., Doherty, S., Groves, L.: Verifying concurrent data structures by simulation.
In Boiten, E., Derrick, J., eds.: Proc. Refinement Workshop 2005(REFINE 2005). Vol-
ume 137(2) of Electronic Notes in Theoretical Computer Science., Guildford, UK, Elsevier
(2005)

8. Colvin, R., Groves, L.: Formal verification of an array-based nonblocking queue. In:
ICECCS 2005: Proceedings of the 10th IEEE International Conference on Engineering of
Complex Computer Systems, Shanghai, Chin (2005) 507–516

9. Lynch, N., Tuttle, M.: An Introduction to Input/Output automata. CWI-Quarterly2(3) (1989)
219–246

10. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996)
11. Lynch, N.A., Vaandrager, F.W.: Forward and backward simulations – part I: untimed sys-

tems. Information and Computation121(2) (1995) 214 – 233
12. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw.Eng.23(5) (1997) 279–295
13. de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N.,Sorea, M., Tiwari, A.: SAL 2. In

Alur, R., Peled, D., eds.: Computer-Aided Verification, CAV 2004. Volume 3114 of Lecture
Notes in Computer Science., Boston, MA, Springer-Verlag (2004) 496–500

14. Vafeiadis, V., Herlihy, M., Hoare, T., Shapiro, M.: Proving correctness of highly-concurrent
linearisable objects. In: Principles and Practice of Parallel Programming(PPoPP), New York,
USA (2006) Preliminary version: INRIA RR-5716 http://www.inria.fr/rrrt/rr-5716.html.

15. Jones, C.B.: Specification and design of (parallel) programs. In: 9th IFIP World Com-
puter Congress (Information Processing 83). Volume 9 of FIP Congress Series., IFIP, North-
Holland (1983) 321–332

16. Xu, Q., de Roever, W.P., He, J.: The rely-guarantee method for verifying shared variable
concurrent programs. Formal Aspects of Computing9(2) (1997) 149–174


