
The Ties that un-Bind: Decoupling IP from web services and
sockets for robust addressing agility at CDN-scale

Marwan Fayed†, Lorenz Bauer†, Vasileios Giotsas†, Sami Kerola†,
Marek Majkowski†, Pavel Odinstov†, Jakub Sitnicki†, Taejoong Chung

★

,
Dave Levin‡, Alan Misloveø, Christopher A. Wood†, Nick Sullivan†

† Cloudflare, Inc. ★ Virginia Tech ‡ University of Maryland ø Northeastern University

ABSTRACT
The couplings between IP addresses, names of content or services,
and socket interfaces, are too tight. This impedes system manage-
ability, growth, and overall provisioning. In turn, large-scale content
providers are forced to use staggering numbers of addresses, ulti-
mately leading to address exhaustion (IPv4) and inefficiency (IPv6).

In this paper, we revisit IP bindings, entirely. We attempt to evolve
addressing conventions by decoupling IP in DNS and from network
sockets. Alongside technologies such as SNI and ECMP, a new
architecture emerges that “unbinds” IP from services and servers,
thereby returning IP’s role to merely that of reachability. The archi-
tecture is under evaluation at a major CDN in multiple datacenters.
We show that addresses can be generated randomly per-query, for
20M+ domains and services, from as few as ∼4K addresses, 256
addresses, and even one IP address. We explain why this approach
is transparent to routing, L4/L7 load-balancers, distributed caching,
and all surrounding systems – and is highly desirable. Our expe-
rience suggests that many network-oriented systems and services
(e.g., route leak mitigation, denial of service, measurement) could be
improved, and new ones designed, if built with addressing agility.

CCS CONCEPTS
• Networks → Network design principles; Network services;
Network manageability; Naming and addressing.

KEYWORDS
addressing, provisioning, content distribution, programmable sockets

ACM Reference Format:
Marwan Fayed, Lorenz Bauer, Vasileios Giotsas, Sami Kerola, Marek Ma-
jkowski, Pavel Odinstov, Jakub Sitnicki, Taejoong Chung, Dave Levin, Alan
Mislove, Christopher A. Wood, Nick Sullivan. 2021. The Ties that un-Bind:
Decoupling IP from web services and sockets for robust addressing agility at
CDN-scale. In ACM SIGCOMM 2021 Conference (SIGCOMM ’21), August
23–28, 2021, Virtual Event, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3452296.3472922

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8383-7/21/08. . . $15.00
https://doi.org/10.1145/3452296.3472922

Interfaces &
Sockets

IP Address

Hostnames
Communication Binding

(requests/responses)

Connection Binding

Figure 1: Conventional IP bindings to names, interfaces, and
sockets, create transitive relationships between them that are
difficult to track and reason about, which hinders changes to
any binding without risking others.

1 INTRODUCTION
Unlike with most clients and carriers, limitations exist on hosting-
and content-service providers (CDNs) because of decades-old con-
ventions that tie IP addresses to resources. Hostnames and domains
are typically mapped to a set of IP addresses. DNS will lookup
and return any IP in the set to load-balance or to geo-select [9, 56]
services, but the set itself is static and unchanging. Similarly, net-
work interfaces and sockets are mapped to single IP addresses and
address-port pairs, respectively [70]; once assigned to interfaces and
sockets, addresses are also typically static and unchanging.

This legacy of IP-to-name and IP-to-server bindings persist in
IPv6, and have in turn created a perception that possessing a large
number of IP addresses is a necessity to operate large-scale CDN
services. Indeed, large CDNs have acquired a massive number of
IP addresses: At the time of this writing, Cloudflare has 1.7M IPv4
addresses [12], Akamai has 12M [1], and Amazon AWS has over
51M [3]! Corresponding proportions of the IPv6 space arguably
exceed one’s ability to imagine. This trend might lead one to con-
clude that many IP addresses are key to scale worldwide, provide
reachability, implement sophisticated traffic engineering policies,
and ensure consistent server selection across multiple TCP connec-
tions. In the absence of address space, a CDN’s ability to be flexible,
adaptive, and innovative would appear to be inversely proportional
to the growth of its software and hardware resources.

Implicitly, IP address bindings also constrain service provisioning.
For example, different customers have different SLAs or expecta-
tions when it comes to availability and quality of service; client
behaviours and connection patterns may also change over time;
the service operator may change or release new service offerings.
Among the available service provisioning mechanisms, the only rep-
resentation that assuredly connects these dimensions is an IP address.
This makes address changes necessarily slow to plan and costly to
execute. The result is an operational bottleneck since changes in any

https://doi.org/10.1145/3452296.3472922
https://doi.org/10.1145/3452296.3472922

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Fayed, et al.

dimension may have impact on otherwise independent dimensions,
a relationship that is shown by Figure 1 and explored further in §2.2.

How, then, can a CDN operate, evolve, or even launch, without
ever-growing address space? What is the smallest number of IP ad-
dresses required to operate at scale? Can the bottleneck be broken by
decoupling IP addresses from resources? To do so, must we resort to
clean-slate Internet architectures [23, 29, 35], or are more immediate
deployments possible? What if IP usage could be separated into
control and data planes in keeping with the networks that rely on it?

In this paper we describe efforts at Cloudflare to improve address-
ing agility for scale by decoupling IP from names and sockets. This
has the effect of transforming addresses from a resource constraint
to a resource that can be scheduled, and reduces operational bottle-
necks. We note that the emergence of virtual IP- and name-based
hosting techniques (§2.3) challenges the need for static IP bindings
at all. This observation motivates us to identify and re-architect the
binding mechanisms themselves: DNS for clients and sockets for
services. Our contributions are as follows:

(1) We re-architect authoritative DNS to match on policies in-
stead of names, then select from an address pool assigned to
that policy (§3.1, §3.2).

(2) We design and have open-sourced sk_lookup, a pro-
grammable sockets mechanism to resolve socket inflexibility
– removing limitations on IP+port pair selection, and enabling
IP+port re-assignment to existing listening sockets (§3.3).

(3) We evaluate the architecture at scale on live traffic at multiple
datacenters and random per query address selection for 20M+
hosts and services – more than 15% of all websites [67] –
from a pool of ∼4K, 256, and even a single IP address (§4,
§5).

(4) We state why this works for any service that controls its
authoritative DNS and connection termination (§3.4); ex-
plain why changes are completely transparent to BGP routing,
L4 load-balancing, caching, and other surrounding systems
(§4.3,§5.1); alongside implications for future (§4.4, §5.2).

(5) We begin to explore the power of policy-driven IP selection
by describing fast route leak detection and mitigation for a
global anycast network, and more (§6).

In deployment datacenters, our architecture has been serving all
production traffic that satisfies the given policy since July 2020. In
addition to varying the number of addresses in use (from ∼4K to 1),
the scale of the deployment show that random per-query addressees
can be generated at rates of 1000s per second.

The architecture is designed to be transferable. The only require-
ments are that a service provider controls its own (i) authoritative
DNS, and (ii) connection termination. DNS is necessary to establish
address bindings and communicate changes to clients, while con-
nection termination is needed to ensure that processes can accept
connections as intended. This means that our architecture general-
izes to, for example, university web services as much as it works for
many (but not all) types of CDNs and web services.

Of course, many of the observations we make in designing this
new architecture have been made by others [5, 33, 50, 56, 57] (we
review additional related work in §7), but, to our knowledge, ours
is the first to unbind IP addresses in practice, and to be deployed at
large scale to real-world clients. This work raises no ethical issues.

Figure 2: The client-to-origin path can consist of as many as 3
separate connections, with up to 4 out of 6 IP addresses managed
by a single CDN.

2 HOW DID WE GET HERE?
In this section we describe address use in CDNs at a high-level,
alongside their challenges. We argue that recent advances have pro-
vided the foundations to revisit conventional notions of address use.

2.1 The perceived need for address space
In the CDN space, the server label is delineated from its instantia-
tions, most often ascribed to their function as on the edge or being
the origin. A server is any machine that terminates a connection. Ori-
gin servers hold the ground truth. Finally, edge servers sit on the path
between client and origin, typically inserted as reverse proxies [17].

Figure 2 captures the relationship between devices in different
CDN and hosting architectures. The conventional end-to-end connec-
tion is represented by the top dotted edge, in which client requests
are routed directly to origins whose IP addresses must be advertised
over BGP. The lower dashed connection represents the edge-service
model. Increasingly, edge services are implemented as reverse prox-
ies, i.e., clients connect to an edge service IP address returned by
DNS. If the edge service is unable to satisfy the request, a second
connection is initiated by the edge service to the origin. Finally,
customers of edge services may wish to transit connections to the
origin over the edge service’s private infrastructure, as indicated by
the middle dash-dot line in Figure 2.

In each model represented by Figure 2, origin connections and
edge connections that cross the edge boundary need public IP ad-
dresses. These IP addresses (at origins and at the edge), returned
by DNS, can be dedicated but are most often shared with other ser-
vices. Two observations can be drawn about connections on today’s
Internet: The client-to-origin path often differs from the original
end-to-end model [54]; and that those origin connections consist of
no fewer than three public addresses between two entities.

One obvious way to support additional connections is with addi-
tional IP space. Indeed, from data and methodology described by
Giotsas et al. [26], we find that ASes that self-identify as Enterprise
and Content rely on IP transfers to grow their IP space an order
of magnitude more than traditional broadband ASes. On appear-
ance it seems that more services and more interfaces need more IP
addresses, a notion this paper suggests can be mitigated.

2.2 The IP bindings bottleneck stifles innovation
Address management is a challenge for any large network, and has
long been a subject of research. Among network operators, ISPs,
and other traditional consumers of large address space, addresses
are associated with points on a path.

The Ties that un-Bind: Decoupling IP from web services and sockets. . . SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

Among large CDNs and hosting services, the conventions of IP
assignment have exposed an implicit yet long-standing resource-
binding architecture, depicted in Figure 1. Its similarity to the semi-
nal ‘narrow waist’ representation of IP is intentional and unavoidable.
Above IP sits a service or website associated with a hostname that
is reachable via a designated address. Below IP are sockets that
manage client connections over network interfaces. In this manner it
is natural to associate an IP address with a software service, or an
IP address with hardware resources, or both. The unintended result
is a transitive relationship: Since hostnames are related to specific
IP addresses and IP addresses are related to specific machines, then
hostnames are specifically related to machines.

At CDN-scale this transitive property makes the bindings difficult
to reason about, and manifests as an operational bottleneck. Changes
are slow and costly because the address bindings impact planning
and provisioning, quality of customer (origin) services, client per-
formance, and more. In the CDN context IP addresses can stifle
innovation, which is the very opposite of their design [52, 59].

2.3 Enabling technologies: Protocol Multiplexing
Recent advancements have disentangled some of the conventional
bindings between IP addresses, the services they represent, and the
physical devices to which they are assigned. The advancements
inexorably link to the development of web hosting services and are
key enablers for our architecture.

Name-based virtual hosting CDNs used to assign unique IP
addresses to each website. This has diminished over time with the
adoption of name-based virtual hosting. The Host header in HTTP
enables a single application to provide independent yet identical
services. Similarly, the Server Name Indication (SNI) field in
TLS allows a server to host multiple HTTPS certificates on the
same IP+port. This effort was once stymied by slow adoption from
clients1, but client adoption has since changed dramatically. As of
2017, over 99% of TLS connections to major CDNs use the SNI
extension [49]. As a result, servers can now safely assume support
for SNI. In fact, some services mandate it: many Google services
are inaccessible by clients that do not support SNI [32, 60].

IP-based virtual hosting Recent advancements built atop equal-
cost multipath routing (ECMP) allow multiple instances of a sin-
gle service to sit behind a single public-facing IP, on multiple
servers [22]. Though often referred to as a virtual IP (VIP), this
model adheres to the IP’s original design allowing a single address
to interface with different network architectures [52]. It also has
the perhaps unintended effect of decoupling addresses from net-
work interfaces, so that the mapping between them is flexible and
dynamic.

On the client side, advancements in networking stacks and APIs
also encourage applications to move away from IP addresses and
towards names. Apple’s Network Framework APIs [4], for example,
support “connect-by-name” as the primary mechanism for establish-
ing UDP, TCP, and TLS connections. Similar APIs can be found in
standard libraries for modern programming languages such as Go.

1For years, Akamai limited its use of SNI to remains backwards-compatible with old
versions of Windows (e.g., Windows XP) that did not support it.

Query
arrives

H: Addr-1, Addr-2, …, Addr-k

DNS Process
1

2

Lookup Table

3

4

Lookup: H

Additional
logic (geo,
load-balance)
.
Construct and
return
A/AAAA.

(a) Conventional DNS uses name to lookup addresses.

Query
arrives For:

 - PoP location
 - account type
 Use: a.b.c.d/xx

1

Policy Configuration:

 Generate bitstring and
 append to prefix

2

Randomization function:

DNS Process

3
Construct and
return record.

(b) Our architecture matches policy without name; a random bit-
string is appended to a prefix representing the policy.

Figure 3: Policy-first DNS architecture shifts from matching
names to instead matching on attributes that represent a policy;
address pools are assigned to policies.

3 HOW DO WE GET OUT OF HERE?
Our overarching goal is to relax the bindings between IP addresses,
hostnames, and sockets. In later sections, we show that doing so
enables greater flexibility and innovation for network engineering
and services. To that end, in this section, we present two comple-
mentary designs that, together, completely decouple IP bindings.
First, we describe a modification to DNS that separate DNS records
from the addresses that populate them. This has the effect of creating
independent control and data channels for DNS.

Second, to escape from the rigidity of IP-to-socket bindings
we design a scalable and flexible programmable socket architec-
ture, sk_lookup. The sk_lookup design enables dynamic mapping
IP+port pairs in any or all combinations – an otherwise decades-long
constraint – to sockets. The implementation with BPF [28] was re-
cently accepted into the mainline Linux kernel [43, 44]. In a spirit
similar to the DNS changes, sk_lookup has the effect of separating
sockets into control and data channels.

3.1 DNS to Decouple IP–name bindings
We assume, for the purpose of presentation, that a service provider
originates an IP prefix announcement, and that the IP range is orders
of magnitude smaller than the set of hostnames associated with the
service. How then do we map or move hostnames to IP addresses?

The fan-out properties of L4 ECMP and consistent hashing
load-balancers ([22, 45]) may appear suitable. However, L4 load-
balancers are themselves constrained by (virtual) addressing. Alter-
natively, QUIC anticipates a desire to accept a connection on one IP
address, and receive a reply from another [34]. While novel, tangible

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Fayed, et al.

progress has yet to be made and use cases are restricted to QUIC,
rather than generalized across transport services.

Instead, IP addresses should be mapped where the binding to
hostnames occurs – that place is authoritative DNS. From the per-
spectives of the client, and the connection, the binding between
destination hostnames and IP addresses is due solely to DNS. Name-
to-IP mappings in DNS are generally static in nature, stored in some
form of a record or lookup table.

However, despite the existence of static lookup tables, the binding
is only known ‘on-query’. In other words the address is returned in
response to a DNS query—the last possible moment in the lifetime
of a request where a hostname can be bound to an IP address. Fig-
ure 3a shows conventional DNS, in which names may be mapped
to possibly multiple addresses for the purposes of path redundancy,
proximity selection, or load-balancing [9]. For all practical uses of
that mapping, the address(es)-to-name binding occurs at the moment
that DNS generates and returns the response.

This leads to the observation that addresses are bound to names at
the moment the response is returned, rather than within any record.
The separation is subtle, but important: DNS responses in today’s
architectures use a name to identify a set of of addresses, from which
a subset is selected based on some policy logic. We instead invert
this relationship, as represented in Figure 3b. Instead of IP addresses
pre-assigned to a name, our architecture begins with a policy that
may (or in our case, not) include a name. For example, a policy may
be represented by attributes such as location and account type (as in
our deployment described in §4). The attributes identify a pool of
addresses that represent the policy. The pool itself may be isolated
to that policy or have elements shared with other pools and policies.

Note that in this model, all addresses in the pool are equivalent.
Any address may be returned without inspecting the DNS query
name. Instead, IP addresses are computed and assigned at runtime or
query-time. The lifetime of the name-to-IP binding is upper-bounded
in time by the larger of connection lifetime and TTL in downstream
caches. The binding itself is otherwise ephemeral and can be changed
without regard to previous bindings, resolvers, clients, or purpose.

3.2 From Policy to Practice
The address pool can consist of any set addresses. In our design the
set of policy attributes is associated with an address pool described
by a prefix, w.x.y.z/b. From within the pool our design defaults
to random selection, as instantiated in §4. We note that IP random-
ization in and of itself is far from new [9] and is implemented by
CDNs, albeit limited to a few addresses [2, 13]. Alongside, domains
are increasingly co-hosted; recent studies show 20% of observed
domains are co-hosted with more than 1K other domains onto a sin-
gle IP address, up from 6% in 2007[31]. We view our architecture,
which foregoes all notions of fixed IP-to-name ratios, as the next
logical step change in this evolution.

The DNS architecture is described by Figure 3b and takes the
following approach:

(1) A query arrives for an A or AAAA record.
(2) Any processing, validation, or logging (e.g., for accounting

or debugging), remains unchanged.
(3) Attributes match to a policy (specific examples §4, §5, and

§6) that identifies a prefix.

(4) Given a prefix of length 𝑏, generate a random bitstring of
32 − 𝑏 (for IPv4) or 128 − 𝑏 (for IPv6).

(5) Respond with the address that is the concatenation of the
prefix with the random bitstring.

This approach makes no assumptions about query patterns or
contents. For example, consider three hostnames ℎ𝑖 , ℎ 𝑗 , ℎ𝑘 . The
randomly generated addresses returned for any of (ℎ𝑖 , ℎ 𝑗 , ℎ𝑘) and
(ℎ𝑖 , ℎ𝑖 , ℎ𝑖) are equivalent: IP addresses are 𝑖 .𝑖 .𝑑 irrespective of order-
ing or frequency. As a result, all hostnames will appear on all of the
addresses in the pool given a sufficient window of time.

We place no bounds on the number of hostnames that may be
mapped onto the IP pool since this mapping is carried by SNI and
HTTP Host (see §2.3). Nor do we put limits on the prefix length.
CDNs and hosting services already bind multiple hostnames to indi-
vidual IP addresses. SNI enables hostnames to exceed IP addresses
by orders of magnitude. Our own evaluations later will show this
works at a ratio of 20+ million hostnames to 1 single address.

The flexibility generated by a policy- rather than name-based
DNS architecture is instantiated by later sections. However, the
inflexibility of sockets is a barrier to a complete decoupling of IP
addresses that must first be resolved.

3.3 From listen to lookup: Re-engineering the
sockets stack for scale

The inflexibility of standard BSD-style socket implementations is
both known and the subject of research [66]. Perhaps less well known
is that sockets increasingly are barriers to services at scale. Briefly
stated, it is exceptionally challenging to set up network services to
listen on hundreds of IP addresses without causing the network stack
to buckle, and even break.

Broadly speaking, the way that sockets are bound to IP+port pairs
has three limitations: (i) Each new socket consumes memory, and in-
creases the search time to find the right socket for an arriving packet;
(ii) any IP+port pair selection artificially restricts other IP+port pair
selections; (iii) once bound, sockets are unchangeable and inexorably
tie the software interface to the IP+port.

We propose a new design: programmable socket lookups. Our
implementation, BPF sk_lookup, is open-source and was recently
accepted into the mainline Linux kernel [43, 44]. A brief overview
is helpful to understand socket limitations.

Standard sockets primer and problems The default association
between an IP+port and a service is one-to-one. The service appli-
cation, itself, must open one socket for each transport protocol (be
it TCP or UDP) it wants to support. For example, an authoritative
DNS service would open up two sockets (a.b.c.d:53/tcp and
a.b.c.d:53/udp). Each socket is given its own file descriptor.

The 1:1 mapping means that CDN services must have at least one
listen socket for each IP address in use, as depicted in Figure 4a.
For example, 4096 sockets are needed to listen on any single port
(e.g., 80) for each IP address in an advertised /20—before doubling
in number to accommodate both TCP and UDP.2 The associated
memory and look-up performance penalties do not go unnoticed.

2Admittedly this approach, while naïve, has an isolation advantage: a UDP flood attack
on any IP in the range has no impact on the receive queues of sockets bound to the
remaining IP addresses in the range.

The Ties that un-Bind: Decoupling IP from web services and sockets. . . SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

(a) The standard socket model scales
linearly in memory and incurs perfor-
mance penalties with large numbers.

(b) The bind-to-any INADDR_ANY catch-all ad-
dress is inflexible and a security hazard.

(c) An sk_lookup example: Packets arriving on
192.0.2.0/24:53 to socket sk:2, while traffic on
203.0.113.1 to any port number lands in socket sk:4.

Figure 4: Sockets are unscalable, inflexible, and static. sk_lookup solves this by decoupling IP+port pairs from listening sockets.

Alternatively, the sockets API comes with an ‘any’ facility as
INADDR_ANY or the 0.0.0.0 wildcard address. A socket created
with the ‘any’ facility will respond on all addresses assigned to the
server, but specified to one port number. As shown in Figure 4b, com-
pared to the naïve “one address, one socket” model, INADDR_ANY
provides a single catch-all listening socket for the whole IP range
on which connections are accepted. It works by being the last in a
chain of lookups for more specific sockets, as shown in Figure 5a.

The INADDR_ANY facility deserves closer inspection in a CDN
context. One advantage of binding to 0.0.0.0 is that applications
become address-agnostic, allowing for addresses to be added or
removed after socket binding without need for an application re-
configuration or restart. Conversely, this catch-all creates a security
vulnerability: Listening on more addresses than needed may other-
wise expose an internal-only service to external traffic that has no
firewall or socket filter in place. Furthermore, one socket has one
receive queue, so an attack on any IP address will cause legitimate
packets on other IP addresses to be dropped3.

Perhaps the greatest downside, however, is loss of flexibility in
services. In particular, what should happen if another service is later
bound to a specific address and port pair? In Linux, for example, a
service that listens on the wildcard INADDR_ANY address claims the
port number exclusively for itself. Attempts to listen on a specific IP
and a port bound to the wildcard-listening socket will fail.4

Unfortunately the sockets API does not allow us to express a
setup in which two services share a port and accept requests on
disjoint IP ranges. Nor does it offer a facility to listen on all ports
simultaneously for any IP address or range. Nor does it allow for a
socket’s IP+port bindings to be altered.

On appearance these may seem like corner cases that can be
resolved with a new socket option, but at scale cases such as these
are common. Consider, for example, services that share the same
port number but otherwise respond to requests on non-overlapping
IP ranges. One prominent instance occurs when a recursive DNS
resolver runs side-by-side with the authoritative DNS service.
sk_lookup: Programmable socket lookup The inflexibility of
sockets at scale motivates us to re-evaluate and re-engineer socket
bindings. In lieu of 1-to-1 or all-to-1 address to socket bindings,
the ideal is a programmable and flexible facility that matches an
incoming packet with a listening socket, ignoring the file descriptor
3The Linux kernel offers protections in the TCP stack, but UDP requires special care.
4See https://man7.org/linux/man-pages/man2/listen.2.html#ERRORS.

(a) Programmable sk_lookup is injected on the standard socket
lookup path after connected sockets are matched, but prioritized
ahead of IP+port listeners.

(b) sk_lookup program is a set of matches and actions.

Figure 5: BPF sk_lookup in the kernel.

to which the socket may have been bound. Our design is captured
by Figure 5a, in which a program is executed on packet arrival and
identifies the appropriate socket receive queue. One novel aspect of
our design is that it leaves sockets untouched. We label the design as
sk_lookup, and implement the program using BPF [28].

The program itself takes a BPF map structure for reference and is
injected onto the TCP socket lookup path. As shown in Figure 5a, its
execution is second stage, triggered after the lookup path attempts to
match a connected socket (4-tuple) and before looking for a listening
socket (2-tuple). The program structure resembles a firewall rule,
as shown in Figure 5b, and consists of a set of match statements
followed by an action. The map is populated by a socket activation
service that receives a file descriptor for any socket created. Upon
receipt of a file descriptor the service updates the BPF map.

https://man7.org/linux/man-pages/man2/listen.2.html#ERRORS

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Fayed, et al.

The Linux kernel patch [43, 44] was accompanied by rigorous
performance evaluations required for acceptance into the mainline,
also public [62, 63] but omitted for space. Results indicate penalties
of ∼1-5% from baseline measures of packets per second (∼1M TCP
and ∼2.5M UDP) and CPU usage. This is regarded a positive result
in exchange for the increased flexibility.

sk_lookup is proving to be a powerful construct at CDN-scale.
In addition to enabling our efforts to completely decouple IP from
names and resources, sk_lookup is anticipated to be a crucial tool
for multiple streams of future investigation.

3.4 Generalizability, Transferability, and Benefits
One question that arises is whether these mechanisms generalize to
other domains. The short answer is yes, as described below.

Generalizability and Transferability This approach generalizes
to any listening service that uses HTTP, TLS, or other name-based
multiplexing, and that meets the following two requirements:

i. Control of authoritative DNS – the service operator must be
able to execute its policy-based selection when responding
to a query (as in our deployment), or populate authoritative
DNS records with policy mappings generated off-line.

ii. Control of connection termination or, at a minimum, the
ability to listen on the selected address(es) and ports.

The above pair of requirements defines the transferable domain as
being any service operators that manage its own authoritative DNS
and connection termination, irrespective of size.

We emphasize that the use of anycast and sk_lookup are optional.
sk_lookup injects flexibility into socket-to-process mappings and
efficiency in IP:port pair allocations at scale, as discussed in §3.3. In
§6 we describe ways that addressing agility can be combined with
anycast to build new features and systems.

Outcomes: Operational and Address Efficiency The initial moti-
vation for this work was to improve address agility, while simultane-
ously reducing planning and execution costs associated with address
management. We observe that large changes in address usage need
take only as long as necessary for stakeholders to agree, and min-
utes or seconds more to execute. Alongside, “more address space is
needed” thinking and impulses (as well as their costs) are no longer
conventional as the operations grow. For business reasons we are
unable to reveal exact measures, but engineer-months or weeks are
evolving into hours and minutes. The degree of flexibility, and the
reasons this system works, are demonstrated in §4.

In addition, a third qualitative observation is unanticipated yet
proving to be beneficial: Engineers are learning to ignore IP ad-
dresses as constraints, and instead treat them as resources that can be
scheduled. When designing new features and systems for managing
infrastructure, IP addresses are being treated as an after-thought.
The process no longer begins by asking about address availability or
usage as a way to limit design possibilities. Instead, algorithms and
solutions are designed with generic identifiers, each representing a
unique property, attribute, or policy. In the final design, the identifier
corresponds to an IP address. The demotion of the IP addresses from
a first class object in this manner has enabled us to reason about new
systems or improve existing ones, as described in §6.

In the next sections we deploy our architecture, evaluate the one-
address hypothesis, and then begin to use the architecture to build
features that have no obvious alternative designs.

4 AT SCALE: RANDOMIZE 20M TO /24
The previous section described two halves of an architecture that
completely decouples IP addresses from names and servers. Together
they enable a CDN to treat addresses as a flexible and dynamic
resource: Rather than a constraint that must be pondered, addresses
form a resource pool that can be scheduled, removed, and re-added.

Here, we pose the question: Are there limits to address usage or
rates of change as a CDN or service provider scales? We note that all
standard measures of our system’s performance reduce to sets of be-
fore and after evaluations that are indistinguishable. This is expected
since the first order evidence of success in our system is the ab-
sence of breakage. For this reason, otherwise standard performance
measures are uninteresting and omitted for space.

We first present and evaluate the random selection strategy, fol-
lowed by single-address evaluation in §5.

Randomize IP addresses Rather than bind a service to a set of IP
addresses, for all websites and services that match the policy – more
than 20 million in our deployment – this solution randomly selects
an IP address per-DNS query as described in §3.2. At any point in
time, any website or service hosted by a CDN could take on any of
the IP addresses. Our operational deployment shows that this has no
negative impact on performance, and can enable improvements.

4.1 Production Edge Evaluation Architecture
The Cloudflare network is comprised of points of presence (PoPs)
across more than 200 cities in over 100 countries, and direct inter-
connects with over 9500 distinct networks.

From a networking perspective, the standard CDN service offer-
ings are characterized by two properties. First, the network operates
as a reverse proxy on behalf of its customers’ origin servers, whose
hostnames are registered with Cloudflare’s authoritative DNS. This
enables Cloudflare to return its own IPs in response to DNS queries,
and terminate connections on behalf of customer origins.

In addition, Cloudflare uses anycast—not just for DNS service—
but for all of its web services. Accordingly, a DNS query at all
PoPs for a customer origin will receive the same IP address in
response. While the use of anycast is most commonly associated
with reachability, its use for content provides an additional benefit:
Identical network configurations are mirrored across all PoPs and
datacenters, which facilitates deployment and management.

Each PoP in the network is co-located with a datacenter. The
data center architecture and software stack are both architected for
simplicity. In particular, the server software stack is uniform by de-
sign, as encapsulated by the blue-dashed line in Figure 6. Rather
than different servers with different services, each server mirrors a
single software stack and offers all services—every server executes
distributed denial-of-service, layer-4 load balancers, connection ter-
mination, and the full suite of application processes. Every machine
also participates in the distributed cache. Servers logically sit be-
tween an ECMP router at the ingress, and an origin gateway at egress.
The ECMP router doubles as the datacenter’s first-pass stateless load

The Ties that un-Bind: Decoupling IP from web services and sockets. . . SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

Figure 6: The edge architecture is designed for simplicity: Servers share a uniform software stack, as encapsulated by the dashed line. An
ECMP router with consistent hashing fans connections out to servers. An additional L4 load balancer between them precedes connection
termination and application suites. All servers participate in the distributed cache. Our changes are entirely transparent. Only authoritative DNS
is touched and, separately, sk_lookup is installed automatically with the Linux kernel. DoS protections, L4LB, caching, and all surrounding
systems are unchanged.

balancer that, similar to previous systems [22, 45, 48], hashes pack-
ets in a consistent manner to spread connections between servers.

Specific component details are out of scope and left for future
work. Most notably, the datacenter architecture is composed of famil-
iar service architecture components. We emphasize that no changes
were required to surrounding components; our changes are scoped
to DNS and otherwise are completely transparent.

4.2 Experimental Setup with Live Traffic
Our architecture is currently deployed across the whole CDN in
keeping with the uniform software stack. It is currently active, at
scale, and is expected to remain active beyond final submission of
this work while we investigate new systems described in §6. Our
system has been running as follows:

• 6 PoPs/DCs at 8 IXPs serving 5 contiguous timezones;
• 100% of DNS responses for 20+ million hostnames;
• ∼5-6K DNS queries per second (mean)
• ∼35-40K HTTP requests per second (mean);
• active from 2020-07;

at each PoP, the following socket and network configuration:

• One /20 (IPv4) and one /44 (IPv6) address pool;
• Both prefixes advertised from all PoPs (anycast);
• connection termination listening on ports 80, 443, and 11

others [16] for the entire /20 and /44 ranges.

The timetable for in-use portion of addresses within the /20:

• 2020-07 to 2021-01, 4096 addresses (the full /20);
• 2021-01 to 2021-05, 256 addresses (/24);
• from 2021-06, on-going, 1 single IPv4 address (/32) in a

mid-sized datacenter (see §5).

We emphasize that our architecture is a drop-in software modification
to existing production architecture and systems. The deployment
uses the complete set of production servers and infrastructure, and
all surrounding systems are both unchanged and unaffected—all
existing measures of performance were found to be indistinguishable.

The breadth and duration of the deployment allay any concerns
about scale or feasibility – for more than 1 year, clients have initiated
∼500 million DNS queries per day, followed by ∼3-4 billion HTTP
requests, to addresses selected per-query purely at random. For
comparison, the same hostnames at all remaining 200+ data centers
were mapped across 18 /20s. The reduction in address usage is 94.4%
for the /20, and 99.7% for the /24. A /24 is the minimum permissible
address range in BGP. In §5 we reduce IP usage to /32, and describe
ways that the ‘leftover’ addresses from the required /24 might be
used for services and resilience in §6.

A comment on the operational benefits. The reduced address
space is evident. However, before describing why this works, one
particular observation may be of value to the wider community. The
per-query rate of change of IP addresses made evident by this work
is changing address management internally. From an operational
perspective, address management is decreasingly concerned with
hostnames and servers. In return, network and address management
is increasingly focussed on the use of IP addresses for their intended
purposes—routing, reachability, and quality-of-service— resulting
in improvements on engineering time, flexibility, and ingenuity.

4.3 Why does this work, and why do it?
We first remind our reader that our changes to DNS are entirely trans-
parent. The surrounding systems, software stack, and configurations
are untouched. In addition, all performance metrics are identical
and indistinguishable, and omitted accordingly. Here, we explain
the reasons that randomization works, and its benefits.

Routing is unchanged. Reachability between autonomous systems
(ASes) is evaluated over prefixes advertised by the AS that either
owns the addresses or is permitted to advertise them. Furthermore,
forwarding is decided by longest-prefix match. Since BGP routing
succeeds at the granularity of IP prefixes, the semantics of a pre-
fix used for randomized addresses is identical to prefixes used for
statically bound IPs.

Smaller prefixes are harder to leak or hijack. To mitigate against
routing table inflation, a best-practice convention among network

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Fayed, et al.

10
0

10
1

10
2

10
3

10
4

10
5

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

N
o
.
o
f
R

e
q
u
e
s
ts

 p
e
r

IP

B
y
te

s
 T

ra
n
s
fe

rr
e
d
 p

e
r

IP

IP Addresses in 2 /20s sorted by load

Requests (y1-axis)
Bytes (y2-axis)

(a) Pre-agility: two (of 18) busiest /20s.

10
0

10
1

10
2

10
3

10
4

10
5

10
3

10
4

10
5

10
6

10
7

10
8

10
9

N
o
.
o
f
R

e
q
u
e
s
ts

 p
e
r

IP

B
y
te

s
 T

ra
n
s
fe

rr
e
d
 p

e
r

IP

IP Addresses in single /20 sorted by load

Requests (y1-axis)
Bytes (y2-axis)

(b) Per-query random addressing in a /20.

10
4

10
5

10
7

10
8

10
9

N
o
.
o
f
R

e
q
u
e
s
ts

 p
e
r

IP

B
y
te

s
 T

ra
n
s
fe

rr
e
d
 p

e
r

IP

IP Addresses in /24 sorted by load

Requests (y1-axis)
Bytes (y2-axis)

(c) Per-query random addressing in a /24.

Figure 7: Load across IP addresses at a medium-popularity facility, serving 20M+ hostnames, approximately 10% of websites [67].
(a) In the two busiest (out of 18) /20 prefixes without addressing agility; (b) Randomizing over a single /20 with addressing agility; and (c)
Randomizing over a single /24 with addressing agility. Data is comprised of 1% of all requests taken over 24 hours. The 𝑥-axis is IP addresses
in descending order of number of requests each IP address receives. This shows that, in today’s CDNs, per-IP address load is far from uniform –
but can be made uniform by decoupling IP addresses from names.

operators is to refrain from advertising narrower than a /20 prefixes
without good reason (/48 in IPv6 [72]). However, larger prefix ad-
vertisements increase the likelihood, and decrease the visibility, of
narrower sub-prefixes that leak or are hijacked. It is for this reason
that some prefixes are advertised as /24s, e.g., Cloudflare’s public
DNS resolver [14]—by advertising the narrowest prefix permitted
by BGP, the resolvers are resilient to hijacks. We revisit route leak
detection and mitigation in §6.

Since a single /20 can be used to reach limitless hostnames and
services, then larger or more blocks may be unnecessary. Our eval-
uations show that a /24 (256 or fewer addresses) is equivalent to a
/20 in this respect. The implication of our deployment is that a CDN
could operate with fewer addresses and simultaneously, as if for free,
increase its resilience to route leaks and hijacks – without inflating
Internet route and forwarding tables.

ECMP and consistent hashing are unaffected An ECMP group
connects a single virtual IP to multiple servers. Alongside, consistent
hashing ensures that all packets for a connection are forwarded to a
single server. At scale in operational settings, the number of ECMP
groups can grow to tens of thousands. Such numbers are difficult to
manage, and also exposed limits of router software [38]. The flexible
address assignment enabled by our architecture may facilitate ECMP
changes. However, our architecture exists independently from ECMP
and consistent hashing, for which complexities are dominated by
numbers of servers and not IP addresses.

Distributed caches and filesystems are unaffected Our architec-
ture and its addressing are isolated from cache systems. In the CDN
architecture, as indicated by Figure 6, every server participates in the
distributed cache. Both internal addressing schemes, and distributed
filesystems are untouched.

DNS changes are trivial; opportunities and challenges shift to
policies. Our experience shows that necessary changes to DNS
are relatively small, and otherwise eclipsed by planning and execu-
tion costs associated with changes to hostname-IP bindings, sockets,
ECMP, quality of service routing and resourcing. In addition, poli-
cies can be designed and executed independent and irrespective of
IP addresses. This contrasts with the convention of designating ad-
dresses in DNS records and systems as proxies for a desired policy.
In our evaluation deployment the policy is expressed as datacenter

locations and account type. A match on both attributes then triggers
randomized addressing—hostnames are completely ignored. Queries
that do not match are resolved as normal. This approach enabled
code changes to be deployed globally, so that a single codebase
could be maintained during evaluation instead of two.

One question that has emerged is how best to design and allow
more expressive policies? Safe and verifiable policy expression and
processing is left for future work.

“Shared fate benefit, shared load” Our architecture also facilitates
provisioning. Different hostnames will incur different loads that may
change over time and are hard to predict a priori. Since IP addresses
are shared between hostnames and services, and IP addresses can be
associated with physical resources, the choice of address can affect
wider services. Given any set of candidate addresses, our system’s
answer to “which IP addresses should be assigned?” is all of them.

This idea is borne out of one non-standard performance metric—
measures of load per IP address equalize. The effect is shown by
Figure 7, which plots dual measures of requests-per-IP (𝑦1-axes)
and bytes-per-IP (𝑦2-axes) in a medium-sized datacenter before and
after our architecture is deployed. Notably, the equalization emerges
without a priori engineering or post-analysis. This is an artefact of
the address randomization, itself.

Figure 7a shows dual measures of per-IP load before our system
was deployed. Measurements are drawn from 1% samples taken
over the two most loaded prefixes (out of 18) in a medium-sized
datacenter over a 24 hour period in June 2020. The 8192 individual
IP addresses are sorted on the 𝑥-axis from most- to least-loaded by
number of requests per address indicated by the 𝑦1-axis. Correspond-
ing values for bytes transferred over each address are plotted in place,
and indicated by the 𝑦2-axis. The differences between most and least
loaded addresses are ∼4–6 orders of magnitude. Excluded from Fig-
ure 7a is the observation that these differences only increases when
including the remaining 16 prefixes allocated to hostnames that fall
under our test policy.

The same measurements captured during our deployment reveal
a sharp contrast. Recall from §3.2 that our deployment responds
to each DNS query, independent of the hostname, with an address
selected at random from the address pool. Figure 7b shows that
random addressing within a /20 reduces the load gaps to less than

The Ties that un-Bind: Decoupling IP from web services and sockets. . . SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

2 and 3 orders of magnitude in the same day of week 24hr period.
Figure 7c shows that random addressing from a smaller /24 closes
the load gaps to near uniform levels of magnitude, and to factor of
less than 2 in absolute terms.

Absent randomization, reliable a priori predictions about the pop-
ularity or usage of hostnames is difficult, if not impossible. This has
consequences on most aspects of provisioning. The use of all ad-
dresses in a set of any size precludes the need to plan or provision on
the basis of popularity. Instead, a natural and effective load balancer
emerges by simultaneously yet dynamically binding all hostnames to
all available addresses in uniformly distributed manner, irrespective
of request patterns and demands.

4.4 Implications and Potential Pitfalls
For the sake of completeness we raise the following implications
of IP randomization, identify concerns, and resolve most. Later we
show that placing services behind a single address works, resolves
any potential pitfalls, and may improve application performance.

TTL Values and Individual Behaviors Any dependency on DNS
responses to somehow shape ensuing request patterns should be
avoided. This is because DNS responses are cached both at recursive
and local client stub resolvers. The subsequent traffic generated by
any single authoritative response is determined by the number and
behaviour of downstream resolvers and clients. For well-behaved
resolvers, TTLs provide some granularity of control. Recent ev-
idence suggests, however, that resolvers commonly modify TTL
values [46, 47]. Even so, agile IPs do open opportunities to investi-
gate resolver behaviors by changing TTL at the authoritative DNS
and comparing addresses that are returned with addresses used to
connect. We revisit this observation in §6.

Denying Denial of Service (DoS) Denial of service attacks can
target IP addresses (layer-4 attack) or hostnames (layer-7 attack).
Identifying the layer of the attack may, on appearance, seem more
difficult if randomizing IPs. We argue the root of the challenges lay,
not with randomization, but with the multiplexing of many hosts
onto individual IPs that exist independently of our scheme.

We also posit that an agile addressing architecture is a natural
fit for DoS mitigation for two reasons. First, the total load for all
affected services is immediately shared equally by all reachable
servers. Since our architecture operates at layer-3, separately and
isolated from L4 and L7 balancers, the impact of attacks is less
pronounced at higher protocol layers.

In addition, many DoS mitigations at CDN scale work by tem-
porarily changing hostnames to address assignments, and dropping
or directing packets destined to the affected IP addresses elsewhere.
In this way, DoS mitigations need the ability to quickly assign differ-
ent IP addresses to names and servers. We exploit this observation
in §6 to sketch a DoS mitigation mechanism built using addressing
agility to quickly identify DoS targets and mitigate attacks.

HTTP Connection Coalescing HTTP/2 [7] supports connection
reuse, and permits resource requests on domains that differ from
the domain used to connect. There are two conditions under which
connection reuse for a target resource is allowed:

(1) The target resource URI authority matches that of the certifi-
cate associated with the connection.

(2) The URI host resolves to the same IP address as the given
connection.5

IP address randomization may prohibit the second condition. There
are several reasons why this may not be a problem in practice. First,
browsers and operating system stacks are increasingly narrowing
the context in which connection state may be shared. Connection
reuse is often limited to a single process and, depending on appli-
cation characteristics, within certain contexts of that process (e.g.,
tab-isolation). In §5.2 we show opportunities potentially missed
by randomization across many addresses are instead exploited by
use of one address. Note that HTTP/3 [8] does not require IP ad-
dress matching, so randomization would not affect coalescing those
connections.

Non-TLS or HTTP based Services Applying our architecture
more broadly than to TLS and HTTP(S) presents a potentially sep-
arate yet surmountable set of challenges. One service that might
be adversely affected by randomized IPs is ssh, which maintains a
known_hosts file that stores the hostname-to-IP address mapping,
and issues a warning when the IP address used to connect is different
than is stored in the file. This association, while understandable, is
outdated and already broken given that many DNS records presently
return more than one IP address.

5 ONE ADDRESS TO SERVE THEM ALL
If millions of names and services can be hosted behind ∼4K ad-
dresses, and 256 addresses, then why not 1 address? We conducted
one additional experiment to evaluate feasibility.

Map everything to a single IP address Our deployment indicates
that as more services and machines reuse the same IP address, the
benefits continue to improve. We show that extending this to its
logical conclusion—a single IP address for the entire set of services—
is feasible, perhaps even preferable.

In early 2021 we parameterized a 24-hour trial at the datacenter
used in Figure 7 to return a “random” IP address from a set of size 1
(i.e., a /32). Its success has motivated an extended trial—from June
2021 and scheduled to continue after final submission, this medium-
sized datacenter has been serving the same 20+M hostnames and
services with a randomized address set of 1.

We stress that all available system and performance metrics re-
mained unchanged. This experiment suggests that, services and
hostnames being equal, an autonomous system’s content and hosting
services can be bound to a single IP address. The result is newfound
levels of flexibility and granularity of control that enable entirely
new systems and visibility, as described in §6. Below we argue that
one-address also amplifies all benefits that are ascribed to random-
ization over a larger set, and additionally resolves potential pitfalls
of randomization identified in §4.4.

5.1 Why one address works, too
The explanations in §4.3 equally apply to one address. It is instructive
to restate those reasons in this context, and clarify differences.

5Not all browsers implement this check the same. Some browsers require the IP ad-
dress set for the new host to contain the IP address used for the existing connection,
whereas others assume transitive properties among IP address sets that have intersecting
addresses between them.

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Fayed, et al.

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

100 101 102

p
(x

 <
=

 X
)

Requests per Connection

Rest of World (TCP)
One IP (TCP)

Rest of World (QUIC)
One IP (QUIC)

Figure 8: Preliminary evidence of connection coalescing: Placing
all services on one IP address increases requests per connection
relative to address to name bindings used in the rest of the CDN.

Routing and traffic engineering are unchanged, IP space is liber-
ated This argument is identical to IP randomization. One in-use IP
address has no effect on inter-domain routing, which admits a maxi-
mum of /24 and /56 prefix lengths. Once inside the autonomous sys-
tem, a packet is correctly forwarded to its destination. One-address
also makes it easier to reason about IP space and traffic engineering—
an otherwise challenging endeavours at CDN-scale.

The reachability of innumerable services behind one-address also
has implications for smaller or non-CDN operators: (i) Few ad-
dresses are required to function, even one; irrespective, (ii) standard
sockets are sufficient without the use of sk_lookup (see §3.4).

IPv6 Applicability The abundance of IPv6 prefixes and addresses
makes reasoning about its bindings difficult. One argument against
binding to a single IPv6 address is that there is no need, i.e., address
exhaustion is unlikely. This is a pre-CIDR position that, we claim, is
benign at best and irresponsible at worst. In lieu of asking why use a
single IPv6 address, we should be asking why not? and reject any
answer that reduces to, “because there is no need.”

Connection Coalescing The potential scale of service under
scrutiny notwithstanding, we note that one-address preserves any
semantics ascribed to IP addresses such as SSH’s known_hosts.

We expect connection coalescing will increase when all services
sit behind one address (assuming target URIs match certificates).
The evidence for coalescing is preliminary, yet favourable. Figure 8
shows requests per connection for services on one address, and
standard addressing used by the CDN in the rest of the world.

Measurements were conducted over a 7-day window in June 2021,
and consist of a 1% sample of all connections over all TCP and QUIC.
For this reason, samples at the ‘One IP’ datacenter are skewed by
connections not on the one IP address, as well as connections from
HTTP/1 and older browsers that do not support connection reuse.
Despite the additional noise, a 2-sample Anderson–Darling test [55]
suggests a significant difference. We tested the hypothesis that the
observations from the ‘One IP’ data center, and the “Rest of World”
data centers can be modelled as coming from a single population.
According to our results, the hypothesis can be rejected with 99.9%
confidence since the returned test value 𝐴𝐷 = 3532.4 is higher than
the critical value 𝐴𝐷𝑐𝑟𝑖𝑡 = 6.546 for significance level of 0.001.

5.2 Upstream Implications and Opportunities
One-address is functionally equivalent to both conventional address-
ing and IP randomization. Even so, and in contrast to IP randomiza-
tion, one-address does raise the possibility of upstream effects that
deserve consideration. None have presented in our evaluations so
far, nor in communications with upstream networks.

Upstream Routing Errors are Immediate and Total If all traffic
arrives on a single address (or prefix), then upstream routing errors
affects all content equally. This criticism has two responses. First,
this is an address diversity problem that exists independent of the way
addresses are used or the scale of operation, as are resolutions. For
example, one solution is to allocate two addresses in DNS records
from non-overlapping prefixes [15].

Alongside, our architecture provides fast mitigation. The per-
query rate of address change (see §4) means that addresses can be
changed en masse by changing affected address pool attached to any
policy. The changes will be immediate for new queries, and cached
records will update in a time that is upper-bounded by TTL.

Upstream DoS Protections The concentration of prefix- or many
prefixes-wide traffic to a single address might be mistakenly inter-
preted by an upstream observer as a denial of service attack. An
ISP could conceivably respond by triggering a well-meaning protec-
tion in the form of rate-limiting, or block. This can be prevented by
means of communication and community engagement.

Port exhaustion in IPv4 NAT is accelerated, as is a push to
IPv6 From the client-side, the number of permissible concurrent
connections to one-address is upper-bounded by the size of a trans-
port protocol’s port field. For TCP this is no longer an issue [21, 42].

In UDP (QUIC), however, the only way to reuse ports is with
SO_REUSEPORT. This could cause carrier-grade NATs to exhaust
available UDP ports, or lose the IP+port pair uniqueness that is
required for address translation. One option may be to incorporate
other transport-protocol headers into the NAT binding function, such
as QUIC connection identifiers, but these are decreasingly available
as encrypted transport becomes increasingly dominant.

To the best of our knowledge this is the only drawback to one-
address, and is also immediately resolved by migrating to IPv6.

Opportunities opened by one-address at the Client Running a
CDN on a single IP address may enable the fascinating new space
of client-side optimizations that arise as a result. Standard tasks
like DNS lookups and establishing TCP connections can comprise
large fraction of page load times (7% and 53%, respectively) [65].
When all content is served from the same IP address, a client can
potentially avoid these performance hits.

For example, one-address could be used to reduce stresses on
DNS. CDNs commonly use low DNS TTLs to permit rapid load
rebalancing. Under one-address, a CDN can adopt long-lived ex-
piries akin to root DNS servers, thereby extending cache duration
and reducing frequency of client DNS requests. An interesting area
of future work is to preemptively inform clients that the one-address
CDN hosts a particular domain. One possibility is to explore a new
form of HTTP resource hint that merely indicates the one-address
CDN host (making a DNS lookup unnecessary). Another possibility
is to use compact filters to represent all of the hostnames hosted by
the CDN [41]. We leave such optimizations for future work.

The Ties that un-Bind: Decoupling IP from web services and sockets. . . SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

Figure 9: An example BGP leak of an anycasted prefix, based on
an actual incident that affected DNS performance. CDN origi-
nates an anycasted prefix from multiple PoPs to regional peers. 𝐴𝑆3,
preferring customer routes, leaks the prefix to 𝐴𝑆2. Performance de-
grades for US clients routed to Europe, but the leak goes undetected.
A policy to map each PoP’s DNS responses to a unique address in
the range would enable every CDN location to monitor requests on
unexpected IPs in that range, and flag potential route leaks. Services
can be immediately moved to a different prefix with agile addressing.

TCP connection establishment and longevity is another area of
possible investigation. When all hostnames are multiplexed over the
same IP address, is it necessary to maintain more than one long-lived
TCP connection? Instead, would it not be possible for each client to
simply open a single TCP connection to a one-address CDN and use
that connection to issue all of its requests? This could have upside
in terms of simplicity and performance: the general understanding
is that maintaining a single connection yields better performance
than opening multiple, short-lived ones. Moreover, there are ongoing
efforts to be able to negotiate distinct TLS sessions over a given
TCP connection. However, there are some potential concerns: TCP
connections offer a convenient unit of isolation across different
customers of the CDN. An interesting area of future work would be
to provide stronger isolation guarantees above the transport layer.

6 DISCUSSION: LOOKING AHEAD
Perhaps the most exciting aspect of our architecture is that it opens
pathways to new agile systems designed for added visibility into
outside network effects and behaviours, as well as for granularity of
control. In this section we describe initial ideas that, while concrete,
abstract away many details and are without implementation. All
are currently being pursued or under investigation, and expected to
appear as future work. Each has helped to elucidate our architecture’s
merit – and the value of decoupling IPs from names and sockets.

For ease of presentation we sketch each system assuming one-
address datacenters, unless stated otherwise. We also emphasize
that in each of these designs a single-address set for some policy is
functionally equivalent to a random selection from any disjoint set.
For example, an IPv4 /32 may be comfortably substituted with a /28.

Route Leak Detection and Mitigation for Anycast Figure 9 de-
scribes a route leak on an anycast system based on actual events.
The timely detection and mitigation of traffic misdirection is cur-
rently one of the hardest issues in network operations. In an anycast
network, addressing agility offers a foundation for fast route leak de-
tection and mitigation, and starts with the observation that different
PoPs can return distinct IPs within a single anycast prefix.

We illustrate by example. Assume all PoPs in the network adver-
tise and accept connections on the same /24 (as shown in §4.3). A
policy can be expressed in DNS so that each PoP expects to receive
traffic on a unique address. Say the policy returns *.*.*.25 in re-
sponse to all queries routed to PoP-A, similarly *.*.*.26 for all
queries routed to nearby PoP-B, and *.*.*.78 for PoP-X that is
far from both A and B. As a consequence all or most of the ensuing
request traffic at each PoP should arrive on its corresponding IP.
PoP-A may see a small amount of traffic arrive on *.26, but should
see none on *.78. Conversely, PoP-X should expect little-to-no
traffic on *.25 or *.26. A violation of these expectations in either
direction is an indication of traffic misdirection. We expect network
issues to be visible at DNS TTL timescales.

In this setup, our architecture makes mitigation trivial: Keep
the policy, but change the prefix. Observe that the policy in this
case is unchanged, since only the *.*.* portion is different. If the
mitigation prefix is already advertised and known to the Internet,
then mitigation is complete also at DNS TTL timescales.

Denial of Service (DoS) Mitigation at the Speed of TTLs An
important ability in DoS mitigation is to be able to distinguish the at-
tack vector as layer 3/4 (e.g., UDP or SYN floods) or layer 7 (named
services). One of the tools for diagnosis, as well as mitigation, is to
re-bind a named service to a different IP address.

Addressing agility enables an otherwise naïve 𝑘−ary search as a
fast, powerful foundation for mitigation. For ease of presentation,
start with all 𝑛 services sit behind one address (or narrow prefix) in
a range. For example, a.b.c.1/32 from a.b.c/24, then proceed:

(1) An attack is detected; set DNS TTL to small value, 𝑡 .

Begin an 𝑘−ary search:

(2) Partition 𝑛 affected services randomly into 𝑘 disjoint sets,
each of size ⌈𝑛

𝑘
⌉;

(3) Map each set to the 𝑖𝑡ℎ address in the range where 𝑖 ∈ {0..𝑘 −
1}, e.g., for 𝑘 = 32, place 𝑛

𝑘
services on each of a.b.c.1,

a.b.c.2, . . . , a.b.c.32.

If the attack follows a slice then there is a named target; repeat
from (2) on the affected slice. Otherwise the attack continues on the
starting address, meaning that it is layer 3/4. Assuming DNS caches
respect TTL values, then the worst case time to isolate the attack
from services is TTL+𝑡 (log𝑘 𝑛).

Measurement Opportunities Initially, our live deployment was
limited to a single medium datacenter, DC1 for testing and debugging.
To ensure reachability in the event of a failure, the BGP prefix 𝑝

used in our test was also advertised from a datacenter, DC2, 600km
away. Accordingly, web services at DC2 were configured to accept
connections on 𝑝 addresses, but DNS at DC2 was unaltered and
returned addresses in accordance with the rest of the world. In other
words, DC2 had little expectation of ingress traffic via 𝑝 addresses.

Despite DC2’s intended purpose as a failover, DC2 received sig-
nificant legitimate traffic on the IP addresses that could only be
learned via DNS queries to DC1. We hypothesize that this happens
because the DNS queries of some clients closest to DC2 are handled
by ISP resolvers that are closest to DC1. Surprisingly, the proportion
of affected traffic was substantially higher for IPv6 than for IPv4.

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Fayed, et al.

This opens new and otherwise infeasible measurement directions,
for example, elucidating Internet routing paths and maps. These are
opportunities are left for future investigation.

Traffic tuning across anycast datacenters The route leak detec-
tion and mitigation mechanism described above gives evidence that
addressing agility could be used to build route leak detection and
mitigation for anycast networks. We posit that similar mechanisms
await that can shift traffic between datacenters in an anycast network
using map-colouring [27]. In this use case a colour is equivalent to a
BGP prefix announcement, such that each datacenter in an anycast
network advertises only one colour (or prefix) from the set. Afore-
mentioned measurements may help to identify the smallest number
of colours needed to achieve some property, for example, region
isolation or traffic tuning zones with nearby datacenters.

7 RELATED WORK
Decoupling Content Names from Hostnames Our proposal that
merges multiple hostnames into a single IP address leveraging any-
cast is very similar to a wide range of work that seeks to decouple
what content is from where it is hosted.

One broad initiative to this end was the set of clean-slate net-
work architectures from the early 2000s to address concerns such
as the impending shortage of IPv4 addresses and poor IP-based sup-
port for mobility, replicated content, and middleboxes. DONA [40],
TRIAD [29], IPNL [23], FARA [11], HIP [36], DOA [6, 69], i3 [64],
and SNF [37] are but a handful of example systems that demon-
strated it was possible to decouple hostnames from content names.
Most of these architectures require extensive changes to the existing
network, some even taking a clean-slate approach. Conversely, we
sought to achieve many of the same goals in today’s Internet, without
any additional deployments at clients or routers.

A more recent initiative that decouples content from location is
Information-Centric Networking (ICN) [18, 19, 24, 35]. Prominent
examples are Name Data Networking (NDN) [71], Network of In-
formation (NetInf) [20], and the eXpressive Internet Architecture
(XIA) [30]. These clean-state network architectures route based on
the name of the content by completely removing host identifiers.

Today’s CDNs can be viewed as a sort of ICN [35]: by employing
aggressive caching, geo-replication, and traffic engineering, virtu-
ally any of a CDN’s PoPs can be used to service a user’s request.
However, none decouple names and addresses to the extent that ICN
architectures do; CDNs still use a large number of IP addresses,
effectively resulting in a few content names mapping to any given
IP address. While there are various designs that facilitate the deploy-
ment of ICN systems (such as the use of overlays), they are still not
compatible enough with the current existing Internet architecture to
have met our operational needs.

We believe our system can be viewed as an evolutionary step to-
wards ICN that is (surprisingly) deployable today; our design would
comprise only one IP address per ASN but can still provide service
and content regardless of which hosts end-users communicate with.
Of course, the scope of our problem is also considerably smaller than
these drastic redesigns of the Internet. Where they sought to address
naming concerns for all hosts and all protocols, we seek the far more
modest goal of serving our customers’ content on machines we con-
trol. Moreover, we seek only to operate over a small set of protocols

(HTTP and HTTPS) that already permit transmitting content names
(through Host headers and SNI). As a result, we did not have to
design new packet headers or architectural components to translate
between namespaces like many of these prior works [23, 29, 40, 64]:
standard HTTP(S) clients already include them.

One trade-off prior architectures faced was between human-
understandable names but less efficient to route (e.g., FQDNs), and
being opaque (e.g., the flat namespace of a DHT is unhelpful to
users) but more efficient to route [10, 25, 39, 64, 68]. Our system
makes no such tradeoff; we maintain the namespace familiar to users
(FQDNs) and still achieve highly optimized performance. This, too,
is because our system need not provide an Internet-wide solution.

IP Randomization and Re-use One study shows surprising vari-
ability in IPv4 usage and activity varies across measures of reacha-
bility and load, as well as inferring evidence of restructuring [53].
There exist multiple attempts to improve multiplexing over IP, or
re-imagining addressing all together. One example explores combi-
nations of NAT, DNS, and DHCP within datacenters to multiplex a
large number of execution environments onto a smaller number of IP
addresses [61]. A more radical proposition reimagines addressing en-
tirely with variable length addresses [51] or adds an additional layer
on top of the network layer to remove IP bindings [23, 29, 40, 58].
Our design is more immediately deployable and, as above, is made
possible by the fact that we are able to make several simplifying
assumptions as compared to work that seeks to rearchitect the entire
Internet. That said, our hope is that by demonstrating that even one
significant step towards these loftier goals can be accomplished in a
performance-sensitive production environment will breathe renewed
interest into these fascinating endeavors.

8 CONCLUDING REMARKS
In this paper, we have presented the design, implementation, and
experiences from an operational deployment of an architecture that
drastically improves addressing agility of CDN services at scale.
We use the architecture to bind addresses at query time, in response
to attributes rather than names, and change bindings with every
query. Our architecture is reminiscent of more audacious redesigns
of Internet naming in that it decouples IP addresses (location) from
hostnames (content), but because our architecture need not apply to
the entirety of the Internet nor to all protocols, we were able to lever-
age existing application-layer mechanisms (like SNI), facilitating
immediate deployment. Our year-long deployment shows that few
IP addresses are needed and that, by disassociating addresses from
names and sockets, just a few addresses can lead to exciting new
applications like route leak detection and greater resilience to attack.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd, Anja Feld-
mann, for their helpful feedback. Special thanks are due to Tom
Arnfeld, Wesley Evans, Jérôme Fleury, John Graham-Cumming,
Ólafur Guðmundsson, Martin Levy, Kari Linder, Justin Paine, Ethan
Park, Edo Ryker, Alissa Starzak, Tom Strickx, Luke Valenta, David
Wragg, and more, whose collective input enabled or informed this
work. This work was supported in part by NSF grants CNS-1900879,
CNS-1901325, CNS-2051166, and CNS-2053363.

The Ties that un-Bind: Decoupling IP from web services and sockets. . . SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

REFERENCES
[1] Akamai IP Ranges. https://bgp.he.net/search?search%5Bsearch%5D=Akamai&

commit=Search.
[2] AWS: Multivalue Answer Routing. https://aws.amazon.com/premiumsupport/

knowledge-center/multivalue-versus-simple-policies/. Last access: 2020/06.
[3] Amazon. AWS IP address ranges. https://docs.aws.amazon.com/general/latest/gr/

aws-ip-ranges.html.
[4] Apple, Inc. Network Framework. https://developer.apple.com/documentation/

network/, June 2020.
[5] J. T. Araujo. Addressing IPv6: A CDN Perspective. https://ripe74.ripe.net/

presentations/presentation-archive/, May 2017.
[6] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker, I. Stoica, and

M. Walfish. A Layered Naming Architecture for the Internet. In ACM SIGCOMM,
2004.

[7] M. Belshe, R. Peon, and M. Thomson. Hypertext Transfer Protocol Version 2
(HTTP/2). RFC 7540, May 2015.

[8] M. Bishop. Hypertext Transfer Protocol Version 3 (HTTP/3). Internet-Draft
draft-ietf-quic-http-29, Internet Engineering Task Force, June 2020. Work in
Progress.

[9] B. Briscoe. RFC1794: DNS Support for Load Balancing. https://tools.ietf.org/
html/rfc1794, Apr 1995.

[10] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, I. Stoica, and S. Shenker.
ROFL: Routing on Flat Labels. In ACM SIGCOMM, 2006.

[11] D. Clark, R. Braden, A. Falk, and V. Pingali. FARA: Reorganizing the Addressing
Architecture. In ACM SIGCOMM Workshop on Future Directions in Network
Architectures (FDNA), 2003.

[12] Cloudflare. IP Ranges. https://www.cloudflare.com/ips/.
[13] Cloudflare Blog. What is round-robin DNS? https://www.cloudflare.com/learning/

dns/glossary/round-robin-dns/. Last access: 2020/06.
[14] Cloudflare Blog. Fixing reachability to 1.1.1.1, globally.

https://blog.cloudflare.com/fixing-reachability-to-1-1-1-1-globally/, 2018.
[15] Cloudflare Blog. The Technical Challenges of Building Cloudflare WARP. https:

//blog.cloudflare.com/warp-technical-challenges/, October 2019.
[16] Cloudflare Technical Documentation. Network Ports Compatible with Cloud-

flare. https://support.cloudflare.com/hc/en-us/articles/200169156-Identifying-
network-ports-compatible-with-Cloudflare-s-proxy.

[17] Cloudflare Technical Documentation. What Is A Reverse Proxy? Proxy Servers Ex-
plained. https://www.cloudflare.com/en-gb/learning/cdn/glossary/reverse-proxy/.

[18] M. D’Ambrosio, C. Dannewitz, H. Karl, and V. Vercellone. MDHT: A Hierarchical
Name Resolution Service for Information-centric Networks. In ACM SIGCOMM
Workshop on Information-Centric Networking (ICN), 2011.

[19] M. D’Ambrosio, P. Fasano, M. Marchisio, V. Vercellone, and M. Ullio. Providing
Data Dissemination Services in the Future Internet. In IEEE Global Communica-
tions Conference (GLOBECOM), 2008.

[20] C. Dannewitz, D. Kutscher, B. Ohlman, S. Farrell, B. Ahlgren, and H. Karl.
Network of information (netinf)–an information-centric networking architecture.
Computer Communications, 36(7):721–735, 2013.

[21] E. Dumazet and D. S. Miller. inet: add IP_BIND_ADDRESS_NO_PORT to
overcome bind(0) limitations. https://git.kernel.org/pub/scm/linux/kernel/git/
torvalds/linux.git/commit/?id=90c337da1524863838658078ec34241f45d8394d,
June 2015.

[22] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov, E. Mann-Hielscher,
A. Cilingiroglu, B. Cheyney, W. Shang, and J. D. Hosein. Maglev: A Fast and
Reliable Software Network Load Balancer. In Symposium on Networked Systems
Design and Implementation (NSDI), 2016.

[23] P. Francis and R. Gummadi. IPNL: A NAT-Extended Internet Architecture. In
ACM SIGCOMM, 2001.

[24] A. Ghodsi, T. Koponen, B. Raghavan, S. Shenker, A. Singla, and J. Wilcox.
Information-Centric Networking: Seeing the Forest for the Trees. In Workshop on
Hot Topics in Networks (HotNets), 2011.

[25] A. Ghodsi, T. Koponen, J. Rajahalme, P. Sarolahti, and S. Shenker. Naming in
Content-Oriented Architectures. In ACM SIGCOMM Workshop on Information-
Centric Networking (ICN), 2011.

[26] V. Giotsas, I. Livadariu, and P. Gigis. A First Look at the Misuse and Abuse of
the IPv4 Transfer Market. In Passive and Active Measurement (PAM). Springer
International Publishing, 2020.

[27] G. Gonthier. Formal proof–the four-color theorem. Notices of the AMS,
55(11):1382–1393, 2008.

[28] B. Gregg. Performance Superpowers with Enhanced BPF. Santa Clara, CA, July
2017. USENIX Association.

[29] M. Gritter and D. R. Cheriton. An Architecture for Content Routing Support in
the Internet. In Proceedings of the USENIX Symposium on Internet Technologies
and Systems, USITS’01, USA, 2001. USENIX Association.

[30] D. Han, A. Anand, F. Dogar, B. Li, H. Lim, M. Machado, A. Mukundan, W. Wu,
A. Akella, D. G. Andersen, et al. {XIA}: Efficient Support for Evolvable Internet-
working. In Presented as part of the 9th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 12), 2012.

[31] N. P. Hoang, A. A. Niaki, M. Polychronakis, and P. Gill. The Web is Still Small
after More than a Decade. ACM SIGCOMM Computer Communication Review
(CCR), 50(2):24–31, May 2020.

[32] R. Holz, J. Hiller, J. Amann, A. Razaghpanah, T. Jost, N. Vallina-Rodriguez,
and O. Hohlfeld. Tracking the Deployment of TLS 1.3 on the Web: A Story
of Experimentation and Centralization. SIGCOMM Comput. Commun. Rev.,
50(3):3–15, July 2020.

[33] G. Huston. The Architecture of the Internet or Waist Watching in IP. APNIC
Labs Presentation Archive, https://labs.apnic.net/presentations/store/2004-05-04-
waistwatching.pdf, May 2004.

[34] J. Iyengar and M. Thomson. QUIC: A UDP-Based Multiplexed and Secure Trans-
port. https://tools.ietf.org/html/draft-ietf-quic-transport-28#section-9.6, May
2020.

[35] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L.
Braynard. Networking Named Content. In Proceedings of the ACM Conference on
Emerging Networking Experiments and Technologies, CoNEXT ’09, New York,
NY, USA, 2009. Association for Computing Machinery.

[36] P. Jokela, P. Nikander, J. Melen, J. Ylitalo, and J. Wall. Host Identity Protocol -
Extended Abstract. In Wireless World Research Forum, 2004.

[37] A. Jonsson, M. Folke, and B. Ahlgren. The Split Naming/Forwarding Network
Architecture. In Swedish National Computer Networking Workshop, 2003.

[38] Juniper Networks. What’s New in Release 19.2R2: Routing Proto-
cols. https://www.juniper.net/documentation/en_US/junos/information-
products/topic-collections/release-notes/19.2/topic-147567.html#rn-junos-qfx-
new-and-changed-features, May 2020.

[39] C. Kim, M. Caesar, and J. Rexford. Floodless in SEATTLE: A Scalable Ethernet
Architecture for Large Enterprises. In ACM SIGCOMM, 2008.

[40] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker,
and I. Stoica. A Data-Oriented (and Beyond) Network Architecture. In ACM
SIGCOMM, 2007.

[41] J. Larisch, D. Choffnes, D. Levin, B. M. Maggs, A. Mislove, and C. Wilson.
CRLite: A Scalable System for Pushing All TLS Revocations to All Browsers. In
IEEE Symposium on Security and Privacy, 2017.

[42] Linux Foundation. ip(7) — Linux manual page, see entry for
IP_BIND_ADDRESS_NO_PORT. Linux Programmer’s Manual, 2021.

[43] BPF sk_lookup merge commit. Linux kernel 5.9, https://github.com/torvalds/
linux/commit/e57892f50a07953053dcb1e0c9431197e569c258, 2020.

[44] Support for running bpf programs on socket lookups. Linux kernel
5.9, https://kernelnewbies.org/Linux_5.9#Support_for_running_BPF_programs_
on_socket_lookups, December 2020.

[45] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. SilkRoad: Making Stateful Layer-4
Load Balancing Fast and Cheap Using Switching ASICs. In ACM SIGCOMM,
2017.

[46] G. Moura. DNS TTL Violations in the Wild - Measured with RIPE At-
las. https://labs.ripe.net/Members/giovane_moura/dns-ttl-violations-in-the-wild-
with-ripe-atlas-2, Dec 2017.

[47] G. C. M. Moura, J. Heidemann, R. d. O. Schmidt, and W. Hardaker. Cache Me If
You Can: Effects of DNS Time-to-Live. In ACM Internet Measurement Conference
(IMC), 2019.

[48] U. Naseer, L. Niccolini, U. Pant, A. Frindell, R. Dasineni, and T. A. Benson.
Zero Downtime Release: Disruption-Free Load Balancing of a Multi-Billion User
Website. In ACM SIGGCOMM, 2020.

[49] E. Nygren. Reaching Toward Universal TLS SNI.
https://blogs.akamai.com/2017/03/reaching-toward-universal-tls-sni.html,
2017.

[50] T. Pauly, B. Trammell, A. Brunstrom, G. Fairhurst, C. Perkins, P. S. Tiesel, and
C. A. Wood. An Architecture for Transport Services. Internet-Draft draft-ietf-
taps-arch-10, Internet Engineering Task Force, Apr. 2021. Work in Progress.

[51] S. Ren, D. Yu, G. Li, S. Hu, Y. Tian, X. Gong, and R. Moskowitz. Routing
and Addressing with Length Variable IP Address. In Proceedings of the ACM
SIGCOMM 2019 Workshop on Networking for Emerging Applications and Tech-
nologies, NEAT’19, pages 43–48, New York, NY, USA, 2019. Association for
Computing Machinery.

[52] RFC 791: Internet Protocol. https://datatracker.ietf.org/doc/html/rfc791, Sept.
1981.

[53] P. Richter, G. Smaragdakis, D. Plonka, and A. Berger. Beyond Counting: New
Perspectives on the Active IPv4 Address Space. In ACM Internet Measurement
Conference (IMC), 2016.

[54] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system design.
ACM Trans. Comput. Syst., 2(4):277–288, Nov. 1984.

[55] F. W. Scholz and M. A. Stephens. K-sample Anderson–Darling tests. Journal of
the American Statistical Association, 82(399):918–924, 1987.

[56] K. Schomp and R. Al-Dalky. Partitioning the Internet Using Anycast Catchments.
SIGCOMM Comput. Commun. Rev., 50(4):3–9, Oct. 2020.

[57] K. Schomp, O. Bhardwaj, E. Kurdoglu, M. Muhaimen, and R. K. Sitaraman.
Akamai DNS: Providing Authoritative Answers to the World’s Queries. In ACM
SIGCOMM, 2020.

https://bgp.he.net/search?search%5Bsearch%5D=Akamai&commit=Search
https://bgp.he.net/search?search%5Bsearch%5D=Akamai&commit=Search
https://aws.amazon.com/premiumsupport/knowledge-center/multivalue-versus-simple-policies/
https://aws.amazon.com/premiumsupport/knowledge-center/multivalue-versus-simple-policies/
https://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html
https://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html
https://developer.apple.com/documentation/network/
https://developer.apple.com/documentation/network/
https://ripe74.ripe.net/presentations/presentation-archive/
https://ripe74.ripe.net/presentations/presentation-archive/
https://tools.ietf.org/html/rfc1794
https://tools.ietf.org/html/rfc1794
https://www.cloudflare.com/ips/
https://www.cloudflare.com/learning/dns/glossary/round-robin-dns/
https://www.cloudflare.com/learning/dns/glossary/round-robin-dns/
https://blog.cloudflare.com/warp-technical-challenges/
https://blog.cloudflare.com/warp-technical-challenges/
https://support.cloudflare.com/hc/en-us/articles/200169156-Identifying-network-ports-compatible-with-Cloudflare-s-proxy
https://support.cloudflare.com/hc/en-us/articles/200169156-Identifying-network-ports-compatible-with-Cloudflare-s-proxy
https://www.cloudflare.com/en-gb/learning/cdn/glossary/reverse-proxy/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=90c337da1524863838658078ec34241f45d8394d
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=90c337da1524863838658078ec34241f45d8394d
https://labs.apnic.net/presentations/store/2004-05-04-waistwatching.pdf
https://labs.apnic.net/presentations/store/2004-05-04-waistwatching.pdf
https://tools.ietf.org/html/draft-ietf-quic-transport-28#section-9.6
https://www.juniper.net/documentation/en_US/junos/information-products/topic-collections/release-notes/19.2/topic-147567.html#rn-junos-qfx-new-and-changed-features
https://www.juniper.net/documentation/en_US/junos/information-products/topic-collections/release-notes/19.2/topic-147567.html#rn-junos-qfx-new-and-changed-features
https://www.juniper.net/documentation/en_US/junos/information-products/topic-collections/release-notes/19.2/topic-147567.html#rn-junos-qfx-new-and-changed-features
https://github.com/torvalds/linux/commit/e57892f50a07953053dcb1e0c9431197e569c258
https://github.com/torvalds/linux/commit/e57892f50a07953053dcb1e0c9431197e569c258
https://kernelnewbies.org/Linux_5.9#Support_for_running_BPF_programs_on_socket_lookups
https://kernelnewbies.org/Linux_5.9#Support_for_running_BPF_programs_on_socket_lookups
https://labs.ripe.net/Members/giovane_moura/dns-ttl-violations-in-the-wild-with-ripe-atlas-2
https://labs.ripe.net/Members/giovane_moura/dns-ttl-violations-in-the-wild-with-ripe-atlas-2
https://datatracker.ietf.org/doc/html/rfc791

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Fayed, et al.

[58] S. Sevilla and J. J. Garcia-Luna-Aceves. Freeing the IP Internet Architecture from
Fixed IP Addresses. In IEEE International Conference on Network Protocols
(ICNP), 2015.

[59] J. F. Shoch. A note on Inter-Network Naming, Addressing, and Routing. IEN 19,
1978.

[60] M. Silverlock and G. Redner. Bringing Modern Transport Security to Google
Cloud with TLS 1.3. https://cloud.google.com/blog/products/networking/tls-1-3-
is-now-on-by-default-for-google-cloud-services, June 2020.

[61] R. P. Singh, T. Brecht, and S. Keshav. IP Address Multiplexing for VEEs. SIG-
COMM Comput. Commun. Rev., 44(2):36–43, Apr. 2014.

[62] J. Sitnicki. BPF sk_lookup - TCP SYN and UDP 0-len flood benchmarks. https:
//lore.kernel.org/bpf/87lficrm2v.fsf@cloudflare.com/, Aug 2020.

[63] J. Sitnicki. Run a BPF program on socket lookup. https://lore.kernel.org/bpf/
20200506125514.1020829-1-jakub@cloudflare.com/, May 2020.

[64] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Internet Indirection
Infrastructure. In ACM SIGCOMM, 2002.

[65] S. Sundaresan, N. Feamster, R. Teixeira, and N. Magharei. Measuring and Miti-
gating Web Performance Bottlenecks in Broadband Access Networks. In ACM
Internet Measurement Conference (IMC), 2013.

[66] B. Trammell, C. Perkins, T. Pauly, M. Kühlewind, and C. A. Wood. Post Sockets,
An Abstract Programming Interface for the Transport Layer. Internet-Draft draft-
trammell-taps-post-sockets-03, Internet Engineering Task Force, Oct. 2017. Work
in Progress.

[67] W3Techs Web Technology Surveys. Usage statistics and market share of cloudflare.
https://w3techs.com/technologies/details/cn-cloudflare last accessed 06/2021.

[68] M. Walfish, H. Balakrishnan, and S. Shenker. Untangling the Web from DNS. In
Symposium on Networked Systems Design and Implementation (NSDI), 2004.

[69] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris, and S. Shenker.
Middleboxes No Longer Considered Harmful. In Symposium on Operating Sys-
tems Design and Implementation (OSDI), 2004.

[70] J. M. Winett. Definition of a socket. RFC 147, https://rfc-editor.org/rfc/rfc147.txt,
May 1971.

[71] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, k. claffy, P. Crowley, C. Pa-
padopoulos, L. Wang, and B. Zhang. Named Data Networking. ACM SIGCOMM
Computer Communication Review (CCR), 44(3):66–73, July 2014.

[72] J. Žorž, S. Steffann, P. Dražumerič, M. Townsley, A. Alston, G. Doering, J. Palet,
J. Linkova, L. Balbinot, K. Meynell, and L. Howard. Best Current Operational
Practice for Operators: IPv6 prefix assignment for end-users - persistent vs non-
persistent, and what size to choose. https://www.ripe.net/publications/docs/ripe-
690, October 2017.

https://cloud.google.com/blog/products/networking/tls-1-3-is-now-on-by-default-for-google-cloud-services
https://cloud.google.com/blog/products/networking/tls-1-3-is-now-on-by-default-for-google-cloud-services
https://lore.kernel.org/bpf/87lficrm2v.fsf@cloudflare.com/
https://lore.kernel.org/bpf/87lficrm2v.fsf@cloudflare.com/
https://lore.kernel.org/bpf/20200506125514.1020829-1-jakub@cloudflare.com/
https://lore.kernel.org/bpf/20200506125514.1020829-1-jakub@cloudflare.com/
https://w3techs.com/technologies/details/cn-cloudflare
https://rfc-editor.org/rfc/rfc147.txt
https://www.ripe.net/publications/docs/ripe-690
https://www.ripe.net/publications/docs/ripe-690

	Abstract
	1 Introduction
	2 How did we get here?
	2.1 The perceived need for address space
	2.2 The IP bindings bottleneck stifles innovation
	2.3 Enabling technologies: Protocol Multiplexing

	3 How do we get out of here?
	3.1 DNS to Decouple IP–name bindings
	3.2 From Policy to Practice
	3.3 From listen to lookup: Re-engineering the sockets stack for scale
	3.4 Generalizability, Transferability, and Benefits

	4 At Scale: Randomize 20M to /24
	4.1 Production Edge Evaluation Architecture
	4.2 Experimental Setup with Live Traffic
	4.3 Why does this work, and why do it?
	4.4 Implications and Potential Pitfalls

	5 One Address to Serve Them All
	5.1 Why one address works, too
	5.2 Upstream Implications and Opportunities

	6 Discussion: Looking Ahead
	7 Related Work
	8 Concluding Remarks
	References

