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EDITORIAL John de Rivaz

It's official - it's MARTIN'S MAPPING. Dr Barry
Martin has indicated that he feels that this
would be the most appropriate name for the
algorithm that is attributed to him and was
used in the program in issue 0. He says that
he does not feel that the name "Hopalong"

iven to the algorithm by Dr A.K. Dewdney °

n The Armchair Universe is suitable. Dr
Martin says that he will provide us with an
article some time in the future - an event
I am sure that all will look forward to.

When we took in the subscriptions, we asked
for readers suggestions. First may [ apologise
for an*’ that I left out, especially those that
sent letters and didn't write on their
subscription forms! Also apologies to any Drs

referred to as Mr - some of you Seem coy
about it - please make it clear when
submitting articles.

Mr David Billington asked for plenty of
practical examples, especally andscage
eneration. Personally I would also be
nterested in planet generation, especially

after seeing a picture of a Jupiter model in
an article on chaos in The Planetary Report.
Three dimensional fractal generation has also
been tried, such as the example pictures given
in Peter Sorenson's Fractals (Byte Septmber
1984.) But I know of no published algorithms
or programs for perspective drawings of them
on small computers. 3 i
a small listing for two dimensional slices.)

Mr 0O.J. Broadwa¥ asked if every illustration
in Fractal Report could include details of how
it was produced. If adhered to, this lofty
(and popular) ideal may result in fewer
pictures. However be sure that I will be doing
my best to encourage practical articles.

Mr Owen Cunningham had the following ideas:
1. Ban the Mandelbrot Set. 2. Ban articles
statin%‘ blatantly obvious facts. 3. Ban
algorithm-less articles. 4. Articles should use
proper English - foreign writers should hire
an interpreter, 5. All algorithms to be in
fseudo-code similar to PASCAL. In response

would point out that there is enormous
interest in the Mandelbrot Set, and personally
I have found new lideas in the articles
submitted very interesting. Facts that may
be blatantly obvious to some aren't so to
others. Once those others have learned these
facts, thef/ may well come up with something
sufficiently new to interest Mr Cunningham,
so I hope that he will bear with us in the
meantime. I will certainly encourage articles
with algorithms, but to ban those without
resgrdless of other considerations could be
a disservice to readers. As to proper English,
well as far as I am concerned what 1s important
is subject matter - I am sure that there are
manz' other publications that pravide
"deathless prose" to delight connoisseurs of
the language. Further on, we will come across
a gentleman who wants all programs in a
standard BASIC, ie the one he uses on his
machine. We can't please all of the people
all of the time! Mr Cunningham should like
QL SUPERBASIC, as it a{)pears to owe quite
a lot to PASCAL. Apart from all that Mr.
Cunningham said he liked it!

Mr Graham W. Griffiths asks for useful
a

})glications. This would indeed be interestin
if there is anything that could be explaine
within the space constraints of Fractal Report.
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The Byte article did give -

~SAE to Liam

Weather and Stock Market
been vaguely hinted at in the past. Given a
stock market or rainfall pattern as a series
of numbers over time, could an iteration he
produced to mimic these numbers? If so, it
would be interesting to see what it tells us
about the future.

Mr Vinay Gupta would prefer algorithms to
actual programs, as he says they can more
easily be converted. He would also like a
reading list for beginners. Yes, a reading list
may bhe a good idea, but I think that any
readers if given the choice would prefer more
articles. One possibility may be to produce
a reading list as a separate Fublicat!on, and
add to it as time goes on. It could be free
to -subscribers on re(i(uest. If Mr Gupta or
anyone else would like to produce such a
list, it would be most welcome. If more than
one person produces a list, then there may
be different books on each list, therefore a
more comgrehenswe list would result. However

I would llke to insist that mail order sources
and prices are given, otherwise people are
just frustrated. )

Mr G.O Lawton suggested a survey as to what
equipment people are using. Many have
volunteered this anyway, but we conld conduct
one next subscription time.

Mr Andy Lunness read issue 1 and claimed
that the program for z°n=1 didn't work. If
so, then how were the patterns produced® I
suggest that there may be a problem in
conversion. He was also worried by the fact
that Dr Saupe's article contained an algorithm
that called another algorithm not given in
the article, Quite so - you have tao get his
book The Science of Fractal Images!!!' He
would also have liked a program to accom any
Hersom's article. But he conclude by
sayl‘r}g tthatd ’chel rian ef of iartiicl%ies was
excellent, and apologised for nit picking, and
that he would back us all the w%y. g

Mr Paul McGilly mentioned a number of
popular ideas, such as a reading list, not
printing pictures without al§orithm details,
and requesting an article on fractal
landscapes. However a particularly bright idea
of his was to get volunteers with each type
of machine to collect public domain fractal
sofware onto one disk and offer it to readers
for a modest r:opxing‘ fee. He will start the
ball rolling with Atari ST software, which he
will send to people for §3 + a disk, or %4
without. For more details, his address is in
his article on page 8.

Mr Kenneth M. Murray and John B. Naylon
asked for 68000 assembler language routines.

As there are a fair number of QLs, Ataris
and Amigas and a few Macs amongst the
a bad idea.

readershiF, this may not be
However | would ask writers to make it very
clear when the operatin

frint.s, beeps and plots
nformation for conversion.

system is called for
and give enoungh

Mr Liam G.H. Proven has written about the
range of programs he can offer. We haven't
the space this issue to publish full details,
but he has many fractal and similar programs
for different machines, including IBM
CGA/EGA/VGA, Macintosh, Amstrad CW,
Spectrum. QL to be added soon. Prices range
for £2 to £6 ger disk, cartridge or cassette,
roven, Heathercliffe Software,
Imperial Terrace, Onchan, Isle of Man.

Mr Chris Reid asked for a letters page. Well,
I do slip a few letters in odd spaces from
time to time.
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Mr Alan Richardson also asked for book prices
and a book list. A separate publication as
indicated earlier would fit the bill, although
whether we would have two is doubtful.
Probably the best thing would be to flag
beginners' books, but what is suitable for
‘l:\egtinners is probably a matter of personal
aste,

Mr P. Sevenoaks asked for as many program
listings as possible. Like others he may have
difficulty In converting from algorithms,
witness our continuing plea by a parent
wanting to get his son off games.playins for
a C64 conversion of Martin's Mapping. (I don't
want to have to buy a €64 to do it myself!)

Mr Cyril Thomasson prefers articles of the
type written by John Sharp, with a program
and properly documented references, as
opposed to the Mark Datko type. Although he
found it enjofyable and romantic and
instructive, he found the unreferenced name
dropping (Hausdorff, Richardson and Kaluza)
annoying. This was partly my fault. Mr Datko

d send us a separate article consisting of
couple of pages of references, but many of
them were similar to Mr Sharp's, and I wanted
the space for more articles. As no prices or
availability information was given, the
references probably wouldn't have helped
anyone without easy access to a good
university library.

Mr David Tickle re&uested some good very
basic background. No doubt this would not
glease those wanting no articles abhout the
blatantly obvious!

Mr Masco Verchoven was the chap who wanted
everything in GW BASIC. Well, if you are going
to plck a common language, that is a goo
one to choose, but I think it could cut out
max:jy excellent articles, and displease many
readers who don't have or like PCs.

Dr Jules Verschueren wants us to concentrate
on practical programming. He says that general
information and reading matter'is easily found
in the scientific literature. Yes, I agree up
to a point, but a little background does make
Fractal Report more fun to read, and is
essential to those who don't have the time
or facilities to access other material.

Dr Keith Wood has a fractal suite in HD64180
assembler with 82716 graphics that runs on
the SC84 computer but he thinks that anyone
who has this machine probably knows already.
If he is wrong, and you want one, then we'll
pass on any enquiries.

Many of you expressed appreciation. However
the magazine sinks or swims by the efforts
of its readers. It is you the readers that
should be congratulated for subscribing and
submitting articles. Many similar special
interest sroups have extensive adfitorial
boards and run symposia ‘etc which only a
tiny fraction of the membership attends, yet
they are effectively paid for In part by "all
the readers of the newsletter.

Personally, as I don't like travel and only
enjoy meeting other people in small numbers
at a time, I hope to prove with Fractal Report
that just as good results can be achieved by
a simple straight forward honest-to-goodness
publishing cottage industry that concentrates
entirely on the written product. One da}* I
hope to see an original named set or m?p ng
or whatever first produced by a Fractal Re
reader inspired b%' previously published
articles in Fractal Report and publishing the
algorithm for the first time in Fractal Report!
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We have added another page ie 2 sides this
time to compensate for John's long editorial.
As at 14th June we have 184 subscribers inc.
exchange subscriptions with American groups
and free subs for contributors to Issue O,
So far, we have had subs from USA, Canada,
Australia, Eire, Holland, Belgium, Swftzerland,
France, Germany, Zimbabwe, Portugal and are
hoping to get ones from Iceiand, New Zealand
and Czechoslavakia. We have 6 female
subseribers and John is eagerly awaiting a
contribution from one of them! “We need 200
subs to make printing costs viable so we are
seeking more publicity, currently aiming at
secondary school teachers,

Apologies to Mr W.E.Thomson to whaose
surname we added a "g" in Issue 1. We try
not to make mistakes but the harder we try
the more we seem to make!

Dr Hugh Daglish recommends Martin's Mapping
trials usin%

X1 =Y - ..GN&X) * SIN(X) * SIN(X) and

X1 = Y = SGN(SIN(X)) * SIN(X) * SIN(X)

I had a_go and got something that looked
like a Dalinjan picture frame. Dr Daglish
kindly provided us with the "Fractal Report"
lettering on the cover using his PaintBrush
'Frogtralm and some more potential front cover
ractals.

‘We have so many good articles we are not
quite sure what is going in No 2 but
contributions are always very welcome.
Finally, we do not put a date on the cover
as John says fractals are timeless!
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AFFINE TRANSFORMATIONS FOR GRAPHICS.
by KEITH WOOD

There was a request for detailed explanations in issue O, and here is an
account of one type of fractal. The conceﬂt is very simple, and it is quite
logical so that one can, in principle, think up a shape and write a set of
transformations for it. Shapes requiring a large number of transformations will
either require a lot of luck, or patience, or access to software to do it for
you; but simple shapes can be done by inspection.

Imagine a circle with a radius of one, with its centre on the origin.
Perhaps we would like it to be centred on the point (3,2). To do this we take a
point on the circle, and add 3 to its x coordinate and 2 to its y coordinate. Of
course, for a circle we can write the new equation directly, but for any shaﬁe
whose equation may not be known, the procedure will work. We simply repeat the
process a large number of times for different points until we have enough. This
process can be represented by the equations:

X x + 3
Y y + 2

Where (X,Y) is the new or transformed point, and (x,y) is the initial
point.

Perhaps we would like the circle to be smaller, having a radius of 0.6,
say. This is just as easy. We multiply by 0.6 before adding the constant.

X 0.6x + 3
Y 0.6y + 2

Perhaps our circle is already centred at (3,2) and we want it moved to
(1,5) and reduced to a radius of 0.3. Simply take away the values of the
starting centre to move it to the origin, apply the factor, and move it to the
new position.

X

3 O.SEX-SE + 1 =0.3x + 0.1

0.3(y-2) + 5 0.3y + 4.4

An ellipse results when the factor applied to the x coordinate is
different from that applied to the y, that is the proportions of the image are
changed. The factors expand or contract the image in directions parallel go the
axes, but the result can be rotated.

A side Eroblem is making sure the point being transformed does form art
of the figure being transformed. In the general case we don't know, so by taking
all points in turn, or by selecting at random, a point would be chosen and its
value (say black or white) written to the transformed image. After a large
number of repeats, the new image would be more or less complete. Later we will
consider points that we know will lie on the image.

Besides translation, a rotation of the image may also be required. There
isn't much future in rotating a circle, but the foregoing applies to any figure.
I used a circle because it has a centre. Any figure can have a centre, we simply
define it. The transformed image will relate to the transformed centre as the
original image related to the original centre. Let us rotate a square, with its
lower left corner at the origin and defined as its centre, making the axes two
of 1its sides. Using a side of length one, we will rotate it by 30 degrees
clockwise, so that the side which originally was the y-axis will now slope up to
the right with a slope of root(3) = 1.732.

Its length is still 1 as there is no chang
left corner is now at the point (1/2, root(3)/ g or (0.5,0.866). Put another
way, the tog left corner is at (1sin30,1cos30). Points along the side in
question will be shifted in proportion. A transformed point from this side of
the square, for which x = 0, will be given by:

X = ysin30 Y = ycos30

e in size, so what was the top

Similarly, the points along _the x-axis, forming the bottom of the
original square, are also rotated by 30 degrees, and a point from this side for
which y = 0, will be transformed by:

X = xcos30 Y = -xsin30
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For any other point having non-zero coordinates, simply add the equations
together:

X

xco0s30 + ysin30
Y

ycos30 ~ xsin30

it n

Check this for the top right corner (1,1{ which becomes (1.366,0.366).
The transformed coordinates give a diagonal of 1.414, as the original, and an
angle with the x-axis of 15 degrees, previously 45. The -equations can be
extended exactly as before for changes of size and centres away from the origin.
To move a sguare having a centre at 3,2 to a square rotated 70 degrees clockwise
and reduced to 0.4 times the size of the original centred at 1,5 the equations
are:

X

X O.4§x—3§cos70 + 0.4Ey~2§sin70 + 1

0.4(y-2)cos70 - 0.4(x-3)sin70 + 5

0.137x + 0.376; - 0.162
-0.376x + 0.137y + 5.854

This is all the maths there is in the whole process. Note that the
constants are fully evaluated in the right hand version of the equation. This
saves much computation time and allows a general form for the programme dealing
with the equations.

To use the equations in a fractal process to generate graphics there must
be more than one transformation, and which one to uUse is chosen at random. It
needn't be chosen at random, but to cover the whole plot a system of choosing
must be worked out for each plot, and while it is being thought out the random
process will have it done. Being random it applies to any fiqure, once
programmed it can be forgotten. It is achieved by generating a 'random' number
and  matching it to a scale of probabilities attaching to the transformations.
(0=<p<.34 chooses set 1, .34=<p<0.5 chooses set 2 and so on up to 1.000, where
the probability assigned to set 1 is 0.34, to set 2 is 0.16 and so-on to a total
of exactly 1)

The second thing is that instead of taking a shape and moving it
somewhere, there is no initial shape and the form of the resulting lot is
derived from the equations. Every point calculated is plotted (after the first

few), and the starting value for the calculation is the previous point. We see
that the transformation is of itself, once it has discovered what that is. 1In
other words, we plot a point, then transform that point, then transform the

resulting point, and so-on. Thus every point plotted lies on a transformed image
of 'some other part of the plot. The first few points are omitted while it
settles into a routine. Until something has been plotted there is no basis to
start. Ten points are enough to ensure compliance. Starting from a point known
to form part of the desired plot, no points need to be omitted.

A fractal is defined as a self similar object. Part of a fractal image
resembles another part and the whole without necessarily being exactly the same.
The above procedure makes this happen.

A final requirement is that the transformation equations must always
reduce the scale of the image, otherwise the plot might shoot off to infinity or
at least be unstable.

Consider the Sierpinski triangle for which details appeared in issue O.
This is a triangle made from three similar triangles half the scale of the main
triangle, each of which is made from three similar triangles half the scale,
each of which . . . you've got it! See the drawing which gives the general idea.
The origin is considered to be at the lower left corner.

If a point is plotted in the lower left subsidiary triangle, there will
naturally be a similar point in the lower right one, separated by a distance of
exactly half the length of the base of the whole triangle, say one. So an
equation might be:

X
Y

x + 0.5
Y

If the height of the triangle is also one, there is a point on the upper

subsidiary triangle corre5ﬁonding to the lower left one, displaced up by 0.5 and
to the right by 0.25. Another equation might then be:

X
Y

x + 0.25
y + 0.5
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The lower left subsidiary triangle is an exact half scale replica of the
whole triangle, so a further equation 1is:

0.5x
0.5y

X

Y

One can think of others, which would be combinations of these. Before

using them there 1is a further restriction, that the transformation must be
reducing. the coefficients of x and y must be less than one. If they are not,
control is lost. Y =y + 0.5 used repeatedly will increase without 1limit.
Combining the above does the trick. One transformation reduces the previous
coordinate by half. We can use this at the same time as adding the increment. If
= 0.5x and X = x + 0.5 both apgly, then X = 0.5x + 0.5 also applies. The

transformed value of x with the latter equation never exceeds 1 which is the
base length of the triangle. Applying the change to the whole set of equations:

X =0.5x + 0.5

Y = 0.5y Plots a point at the lower right
X = 0.5x + 0.25

Y = 0.5y + 0.5 Plots a point at the top

X = 0.5x

Y = 0.5y Plots a point at the lower left

Y =y 1is obviously stable, but the equations exist in pairs since they
apply to coordinates, so both equations of a pair have to be adjusted.

The third pair takes any point in the whole triangle, and transforms it
to the lower left subsidiary triangle. 1In effect the other two pairs do the
same, adding constants to shift the point into one of the other two subsidiary
triangles as indicated. To complete the whole plot we give each of the three
pairs of equations equal probability to fill out each third of ang part of the
whole at a similar rate. Other probabilities simply waste time by needlessly
plottin? points over and over while some badly served corner of the plot

radually fills up. As it is there is still a good deal of wasted effort, but a
ast programme can deal with this comfortably.

The probabilities are adjusted so that the total adds up to 1. Even if
they added up to .9999, the time would come that the programme would hang when
it got a random input corresponding to the .0001 not accounted for. To save a
few micro seconds, the data are entered in descending order of probability, so
that the number of if . . then situations computed is kept to a minimum.

Finally, sets of transformations typically give results around the ori%in
and in the range O to +/- 2. To plot them the points need scaling to he
dimensions of the screen, and an offset may need to be added to bring all points
into the first quadrant (x and y both positive). The Basic listing uses the
above data. Other sets of data (taken from Byte, January 1988) are:

X = ax + by + e
Y = cx +dy + f

FERN

m a b c d e f p

1 .85 .04 -.04 .85 O 1.6 .85

2 -.15 .28 .26 .24 O .44 .07

3 2 =-.26 .23 .22 O 1.6 .07

4 0 0 0 .16 O 0 .01
TREE

m a b c d e f p

1 42 42 -.42 .42 O .2 .4

2 42 -.42 42 42 O 2 .4

3 .1 0 0 .1 0 2 .15

4 0 0 0 .5 0] 0 .05
SQUARE

m a b c d e f p

1 .5 0 0 .S 5 .5 .25

2 .5 0 0 .5 0 .5 .25

3 5 0 0 .5 .5 0 .25

4 .5 0 0 .5 0 0 .25
SPIRAL

m a b c d e f p

1 .846 -.308 .308 .846 O 0 .9

2 -.163 -.163 .163 -.163 1 -1 .1
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The spiral is the illustration in the article in Byte, for which the
authors leave readers to find the equations. Without wishing to boast, but to
illustrate the correctness of the above reasoning, I got the equations right
first time,

The BASIC listing:

10 REM This simple routine allows a maximum of four transformations in the IFS

20 DIM A(4),B(4),C(4),D(4),E(4),F(4),P(4)

30 REM Transformation data for the Sierpinski Triangle. Line 60 no. of transformations
40 REM lines 70,80,90 are the data for the transformations in descending order of p.
50 REM m is the first data item variable name.

60 DATA 3

70 DATA .5,0,0,.5,0,0,.34

80 DATA .5,0,0,0.5,0.5,0,.33

90 DATA .5,0,0,.5,.25,.5,.33

100 READ M

110 REM cumulative probability

120 PT = O
130 FOR 3 =1 TO M

140 READ A(J),B(J3),C(J),D(3),E(J),F(J),PK

150 PT = PT + PK

160 P(J) = PT

170 NEXT 3

180 REM set up for plotting mode, here > 128x128 pixels

190 GRAPH 1

200 XSCALE = 128

210 YSCALE = 128

220 XOFFSET = O

230 YOFFSET = O

240 X = O

250 Y = 0O

260 REM do 10000 iterations

270 FOR N = 1 TO 10000

280 PK = RND(1)

290 REM The next line is for m<=4

300 IF PK<=P(1) THEN K=1 ELSE IF PK<=P(2) THEN K=2 ELSE IF PK<=P(3) THEN K=3 ELSE K=4
310 XNXT = A(K)*X + B(K)*Y + E(K)

330 YNXT = C(K)*X + D(K)*Y + F(K)

340 X = XNXT

350 Y = YNXT

360 IF N > 10 THEN PLOT X*XSCALE+XOFFSET,Y*YSCALE+YOFFSET,1

370 NEXT N

380 ? "Type CONT to continue”

390 STOP

400 TEXT

410 END

Line 360 should be adjusted to your basic version. In this listing the
final '1" plots white on black. Line 400 reverts to text mode when you are tired
of it.

Some Basics truncate the expressions in PLOT (line 360) and if a plot is
being transformed about an axis an unsymmetrical one pixel offset can result.
This is corrected by adding 0.5 to the offset value which rounds the plotted
value. All the calculated values are in the first quadrant for the Sierpinski
triangle, there are no offset values and no need for the 0.5 addition.
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A Variation on the Mandelbrot set.

By Paul McGilly.

It is generally known that the Mandelbrot set has reflectional symmetry
in the real axis (figure 1) and that Julia sets can have as many as two
reflectional symmetries -and one rotational symmetry (figure 2). {In
general Julia sets which are not based on one of the axes only have
rotational symmetry (figure 3).]

Whilst I was investigating the effect of slight changes to the
Mandelbrot algorithm I happened upon the highly symmetrical set shown in
figure 4. This set clearly has 3-fold rotational symmetry and 3-fold
reflectional symmetry. When zooms are carried out on this set it can look
remarkedly like the Mandelbrot set (figure 5).

Figure 1.

Figure 2.
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The normal iteration formula is :—
X+1y:=(x2-y2+a) + 1(2*¥x*y+Db) where x,y.,a,b are real.

(more normally z=x+iy,c=a+ib,z:=z22+c)

The set shown in figures 4 and 5 is obtained by replacing the x2-y2 by
yYy2-x2 so that the iteration formula becomes :-

X+iy:=(y2-x2+a) + 1(2*x*y+b)

A simple program to draw pictures of the symmetrical set on the Atari

5T 1in Fastbasic is given on the next page. It can be easy modified for
other machines.

Suggestions for future work.

1) Is there anything special about the images of the Julia equivalent of
this set? (eg. extra symmetries?)

2) Why 1s there the high degree of symmetry?

The Author. Paul McGilly 1is a first year computer science/maths
undergraduate at York University. Please address any correspondence to 43
Wellington Road, Hatch End, Pinner, Middx, HAS5 4NF.

References. For an explanation of what the Mandelbrot set is and how to
draw it see Scientific American, August 1985, Computer Recreations, pages

8-14. For similar details of the Julia sets see the November 1987 issue of
Scientific American, pages 118-122.
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\ Program to draw the highly symmetrical set.
\ By Paul Mc6illy. (April 1989).

HIDEMOUSE .\ Sets up a 200200

GRAFRECT 0,0,200,200  : \ drawing window, and

CL6 0 : \ clears the screen.

\ This section is to be change./ the user for
\ difterent coordinates and iteration values.

XCORNER=-2:YCORNER=-2 . \ Defines the minimum values of

.\ area to be drawmn.

SIDE=4 : \ Length of the sides of area drawn.
MAXIT=100 : \ No. of iterations before aborting.
SIZE=200 : \ No. of pixels in sides of the
: \ square drawn.
GAP=GIDE/SIZE
ICONST=ICORNER : \ This is a standard Mandelbrot drawing
FOR N=1 TO SIZE ¢ \ program. See the references for details.
ICONST=XCONST+GAP
YCONST=YCORNER
FOR ¥=1 TO SIZE
YCONST=YCONST+GAP
I=0:Y=0
C=0
REPEAT

ITHP=I*X: YTNP=Y*Y

THP=YTMP-ITMP+ICONST : \ This is the special line.

: \ The normal algorithm uses :
: \ TMP=ITMP-YTXP+XCONST.
Y=2'1*Y+YCONST
I=TP
C=C+1
UNTIL (COMAXITT OR XTMP+YTNP)4)
IF COMAXITT THEN MARKCOL C MOD 2: PLOT M,N  : \ Plot the point

-\ in a colour according to the no. of iterations.
NEIT NN ’

Fractal Report

Fiqure 4.

Modifed Mandelbrot. YCORNER=YCORNER=-2 , SIZE=4
Colour = no. of iterations. (MAIIT=250)

Figure 5.

Modified Mandelbrot. XCORNER=-0.8025 , YCORNER=1.055
SIZE=0.25 , Colouk = No. of iterations. (MAXIT=250)
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The first LARRY T COBB PRIZE Awards

My disappointment comes from the low number of entries. I hope it's

because you are all feverishly searching for good entries. The main
point of the competition is to exchange ideas about interesting areas
of the Mandelbrot and Julia Sets, although the prize, of a high
resolution colour print of the best entry, is well worth having. So
don't be mean with your results - with our joint efforts, we can equal
the processing power of a CRAY. Also, 1it's worth considering that,
with so few entries, you are very likely to win the next round!

My consolation, however, comes from the very high quality of the
entries. This has made it very difficult to choose a winner. Some

readers sent me prints of their entries and, whilst this was useful, it
is not essential - the co-ordinates, number of iterations and a short
description will suffice.

The first entry, from Roderick Stewart, is from the area around the
"neck" spur in the Mandelbrot Set. These patterns on the right hand
side produce the trunk-like shapes, usually known as the Elephant
Heads. I was so impressed with the sample output that Mr Stewart sent
that I awarded him a special prize for a remarkable result from a low
resolution printer.

Mr Stewart's entry was:
Mandelbrot routine using Log colour mapping *
offset = 0, start = 40, stop = 200 , C value = ( 0 , 0 )
side = 0.00025 , centre = ( -0.7381939 , 0.1938802 )

John Naylor suggested two areas on the other side of the "neck". The
images are quite different here with beautiful double spirals and
complex Jelly Fish shapes. I am sure that many of you will know what a
extraordinary area this 1is for investigation, and it was for this
reason that I gave him the prize. Congratulations John.

Mr Naylor's entry was:
Mandelbrot routine using Log colour mapping *
offset = 0, start = 150, stop = 500, C value = ( 0 , 0 )
side = 0.00002 , centre = ( -0.768358960101 , 0.108218708873 )

Steve Wright (probably by accident), suggested a Julia Set from a
region described by John Hubbard, which was itself based on
Mandelbrot's own San Marco dragon. So I can't give Steve many points

for originality but I am grateful to him for reminding me how
attractive these dragons are.

Mr Wright's entry was:
Julia routine using Log colour mapping *
offset = 0, start = 2, stop = 500, C value = ( -1.25 , 0.01 )
side = 1.5 , centre = ( 0 , 0 )

Michael Collins sent me an impressive range of "zooms" generated by the
Psychobrot program. It's a very interesting area in the head of the
Mandelbrot Set but you will need to use Mots of iterations to fill in
the swirling detail of these images.

* The details are suggestions only and are optimized for use with my
Fractal Investigation Routine, DRAGONS

Fractal Report Issue 2 pPage 10



Mr Collins' entry was:
Mandelbrot routine using Log colour mapping *
offset = 0, start = 40, stop = 500, C value = ( 0 , 0 )
side = 0.03 , centre = ( -1.11 , 0.23 )

With Ian Entwistle's entry, it was me that won a prize! Ian is able to
produce his own high resolution colour prints and he sent me a
beautiful plot. I would like to thank him for entering into the spirit
of the competition although he didn't want to win the prize. He tells
me that he is holding an exhibition so, if you see it advertised, I
would think it well worth a visit. His prints use a novel colour
decomposition technique - perhaps he can be persuaded to share his
methods with the readers of Fractal Report?

Dr Entwistle's entry was:
Julia routine using Log colour mapping *
offset = 0, start = 0, stop = 300, C value = ( 0.32 , 0.043 )
side = 3.2 , centre = ( 0 , 0 )

Several people have asked me if the improved speed of calculation
really justifies the high cost of a maths co-processor chip for the IBM
PC, so I did some tests. My own Fractal Investigation progran,
DRAGONS, runs 16.5 times faster on the full Set! However, I have
always thought that the cost of an 8087-2 was excessive at around £100
so I have made some inquiries. One company, called Netland, offers the
Intel chips at the much reduced price of £50 + VAT. Their 8087 is
rated at 5MHz but the Amstrad PC range use an 8MHz clock (assuming you
have an Amstrad or an XT clone). This would seem to make it useless
but my engineering friends assure me that chips often run much faster
than specified, and Netland offer a money back guarantee if it does not
work!

A cheaper improvement would come from replacing the main 8086 processor

with an NEC V30 chip. Most operations would only run 20% faster but,
for a special price of f12 from James Lucy, it represents a useful
improvement.

If the idea of opening up your PC does not fill you with horror, both
are fairly simple to install. If you are interested please direct all
your inquiries and orders to the companies below, quoting Fractal
Report to get the special prices. Please note that I have no

connection (financial or otherwise) with either company.

Intel 8087 chips (£50 + VAT) from: Netland, Magnolia House, Stetchworth
Road, Woodditton, Newmarket, CB8 9SP Tel 0638 731044

NEC V30 chips (£12, no VAT) from: Mr James Lucy, Dove Communications,
17 Taylors Road, Rowhedge, Colchester, CO5 7EG Tel 0206 868159

DRAGONS UPDATE

Version 2 of my Fractal Investigation program is now available. There
are many detailed improvements but the major feature is the support for
the Amstrad 2000 series 256 ‘“colour mode. Send f14 for this most

comprehensive and easy-to-use program, (for IBM PC compatibles with a
colour display), or SAE for more details.

Competition entries and program orders to: Larry Cobb, c/o Bay House,
Dean Down Drove, Littleton, Winchester, Hants, S022 6PP
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HELTING MANDLEBROTS

by Steve Wright

Initial values for x & y

By now there can’t be many people who haven’t heard about the
Handlebrot sets the giant fractal with hidden depths. The Handlebrot
set is a map of the chaos in the equation z=z#z+c plotted in the
complex planey that is z=x+iy aad c=ptiq where i is the complex part
being the square root of sinus one. With initial values of zero for «x
ad yr iterating the equation while varying p from -2.25 to .75 and
qgfrom -1.5 to 1.5 generates the fasiliar Mandlebrot set isage. To
tolculate the Mandlebrot function the equation is simplified so that
the real part ¥*2-4"24p ond the imoginary port 2aptq rare calculated
separately. These parts are then substituted back into the equation as
the mev x end y valves. It is necessary to do these calculations for
each pixel of the imager until either n rthe number of times that the
substitution is doner is greater than a saximum nusber of iterationsy
say 235 ¢ or x*244y"2 is greater than sose limit. This limit is often
set te 4» but better images result if this limit is increased to 1M
or greaters this doesa’t usuelly increase the computation tise of the
function very muchy as once the liwit of & has been exceededr the
equation becoses chaotic and vsually quickly exceeds any reasonably
lerger limit.

The Mandlebrot function for each point (pixel) prq is :-

Handlebrot function(p:qs)
naw® : newd 7initial loop values for x and y
n=4 titeration count
linit=100 7eax value for equation
Repeat
n=n+l
Xheux y=hewy
newx=xix—y¥ytp
newy=2kxiytq
Until 0=255 or xix+y¥y)limit
function=n

The resulting number n is the colour for that pixel» unless
a=203 when the colour is black. The colour is a seasure of the
stability of that pointr black being cospletely stable. MNear the
boundary of the set (the black bit in the siddle ) the points are more
stable and therefore to get smore detaily especially at high
sognificationr it is better if the saxisum n is increased.

All the nusbers xryrp aond q are floating point reals so with
the cosparison equation x¥xtyky ) limit this coses to about ten
floating point operations per pixel per iteration. On average this is
for @ screen size of 256%236 pixels something like 25625610128
which is greater than 83 WFLOPS. So it can be sees that a great deal
of computing power is required to generate these images in a
reasonable tise. This has been shown by the fact that manufactures of
high power processors are begining to use the Mandlebrot set image as
& yardstick to desonstrate the power of their products. It can also be
demonstrated with some examples on a BBC Biin basic it takes over 13
hours to generate the Mandlebrot set. Using the Archesmedies in basic
it takes shout 4 hours, in compiled basic only 4@ minutes but driving
the RISC processor directly with wachine code routines for the wsain
functions this is reduced to only 2 winutes.

Parts of the Mandlebrot set can also be examined in more
detail by creating a window aad then sagnifying that part by changing
the range over which p oand q are varied. This zoowing in is only
limited by the resolution of the mathsy and shows the self similar
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praperties of a fractal isege. There are similar shapes ond patierns
alnost everyvhere you look and you can zoom in on little black spots
only to find that they are seall Mandlebrots which con also be zoomed
in on ad isfinitue.

fnother interesting aspect of the Mandlebrot set is that it
can also be vieved as a set of Julia sets. A Julia set is generated by
using the samse equation as for the Mandlebrot sets but by varying x
ad y ( for a particular value of p and q ) over the range -1.5 to 1.5
for the complete set. Details can be zoomed in on in the some way os
the Mandlebrol set by using ssaller ranges for x and y. However if
you drav an imeginary line through the Mendlebrot set and use the
wlves of p and q at points along this line a sequence of Julia sets
con be generated. When these sequences are put together in the form of
¢ "movie’ the Julia set image wetoworphazizesi growing and changings
twisting: dancingy disintegratings collapsing into a wmyriad of
beautiful and chaotic yet structured patierns.

There are also other equations that can be treated in the
some way to gemerate Mandlebot and Julia sets: for example (see PCW
June '88) e"zy sinh(z) and cosh(z). However these other equations are
senerally sore cosplex and therefore require even wore computing power
or longer times. An equation that is only slightly wore complex
therefore seewed the most likely candidate for investigation. This
equation cz-c2*2 » is similar to the original and has similar chaotic
charateristics sbut there is something odd about it. To generate o
Mandlebrot image you would normally set z to zeror but with z=0 in
this equation no aemount of iteration will generate anything because
the equation is equal to zero when z=¢ and dosn’t change (with z=1 the
equation is also static ). There seemed no other reasonable way to
continuer other than to try various values for x and y. I started with
6.1 steps) and the results produced a sequence similar to the Julia
set seguences.

I was intrigued to see what would happen if the initial
valves for x and y in the Mandlebrot function were wade non zeros and
to see if different values would generate a sequence. I modified the
Kandlebrot function and tried values of x and y of 0.1 to 1.0 in 0.1
steps.

I vas amezed to see the Mandlebrot begin to deformr chaos
vithin chaosy what was happening. I continved with the sequence the
dandlebrot was selting and dripping off the screeni little islands
forwed and drifted off to fora new worlds. Mountain ranges and valleys
sppeared and disappeared new features were forsedr 'deforsed and
reforsed. It has to be seen to believed that a sisple equation could
behave in such strenge and besutiful ways.

Any - Mandlebrot progras can be wodified to produce these
felting Mandlebrots. First add an input statesent to get the melt
foctor

Input “Kelt factor” reelt
Then change the funtion so that the initial loop values for x and y
are redefined

Mandlebrot function (prgrmelt)\

nevx = newy = meltf
The rest of function remains the same.
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Now you can watch the Mandlebrot melty follow the drips as
they drift off the screenr fly over the newly formed hills and
valleys. Zoom in on and watch these nev and» ’unexplored ?!’ panoramas
change. I believe this is an unexplored property of the ' Handlebrot
equation ’ and have been unsble to unearth any explanations or
inforsation about it. . .

I have looked back over the previous articles I’ve read in
PCW +Scientific Aserican rByte sAcorn User and followed references to
various books 'The Fractal Geometry of Mature ’ by Benoit Mandlebrot »
'The Beauty of Frectals ’ by H.-O.Peitgen and P.H.Richter and the
latest book I've seen ’ The Science of Fractal Images ' by
H.-0.Peitgen and Deitwar Sawpe but can find nothing. It seemed
possible I hod sade an error somewherer so I visited a friend and we
swodified a demo program for the Archemediesy it gave the sose results.

N.B. add firch changes here if relevant
«+es lines changed in the disk progras are
998 added ... OR key$="1"

added lines

920 IF key$="1" THEN

938 INUT “Melt  factor =" MF
changed lines

1356 LBR uriFVAL

1360 LIR veMFUAL

added line

1840 NFVAL EQUD WF #(1({2D)

the above line coaverts the input value to an integer as the RISC
processor only deals with integers.

These new “Melting Mandlebrots® can now be examined in the
same way as the Mendlebrot sets but don’t forget the melt factor for x
and y. Uy not treasfora an old favouriter watch it bend» distort and
selt avay. But be careful always start of f with o seall selt factor
souwe of the features melt avay very quickly. You wight need o welt
factor as low as 0.01 or less especially if you choose something in
the top half of the set( i.e. with q positive ) where things change
very rapidly. They also wove around so be prepared to do a little
hunting. You cen elso trace interesting patterns backwards to see how
they were formedy try x=u=9.9 :p=—0.1016 :q=-0.71614 with a frome size
0.3, This shows a fascinating triple point where the fingers of the
pointers have little triplets copies all down the side instead of
Mandlebrot copiesi where did it come from? A lot of the little bits
that break of f and drift aroved are very similar to Julia setsy is
there any relationship linking thes in sose uay?

For other effects the melt factor can be added for x and y
separatelyr i.e. newx=seltx : newrFselty
This also gives strange deforsations and meliing sequences that can be
aplored.
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FRACTALS ON THE BBC MICRO - AN INTRODUCTORY PROGRAM By Phil Edmonds

The following program is suitable as an introduction to fractals on the
BBC micro. It uses the BBC MODEL, a8 four colour medium resolution screen
mode. It works by iterating the function f({x)=x"2+c where x and c are both
complex numbers with real and imaginary parts, with x being set to @ on
the +first iteration. The program requests a range for complex and real
parts for the points to be iterated and automatically scales itself so
that the interval between successive points to be iterated matches the
screen resolution available (329x256 pixels). It then interates the
function for each point; if the iteration runs of+f towards infinity, the
point is plotted in a colour dependant on the number of iterations it has
undergone. I+, after 190 iterations, the point has not run off to infinity
(i.e. it is a member of the Mandelbrot set) it is not plotted but rather
left blank. The resulting plot occupies a 1229x1900 grid (199<(x< 11992,

23<(y<1923). As usual, the program’'s main failing is speed, so line 18
automatically saves the screen when the (ESCAPE> key is pressed, and the
tinal line saves the screen if the program is completed. The program may

thus be left to run for a long time and the resulting images stored for
later viewing.

Lines 139-15@ select the screen colours to be used, and clear the initial
screen. These lines must be repeated in any program to later display
stored images (using ¥LOAD PIC) to give the same colours as the original
program run. '

ON ERROR %SAVE PIC 3909 7B@QO

REM Mandelbrot set

REM By Phil Edmonds

MODEZ7:PRINT:PRINT

PRINT"Complex number range to be iterated:":PRINT

62 INPUT"real lower limit ";CL:PRINT

789

80

99
109
119
120
139
149
150
160
179
189
199
209

INPUT"real upper limit ";CU:PRINT
INPUT"imaginary lower limit ";DL:PRINT
INPUT" imaginary upper limit "jDU:PRINT

CRANGE= (CU-CL)

DRANGE= (DU-DL)

MODE1
vpui9,9,6,9,0,09:VD0U19,1,5,9,9,0
vVbu19,2,4,9,0,8:VDU19,3,0,0,0,0

GCOL®,131:CLG
stepC=CRANGE /320
stepD=DRANGE /256

FOR D=DU TO DL STEP-stepD
FOR C=CL TO CU STEPstepC
A=0:B=9

219 J%=J%+1

220R=A"2-B"2+C N\

2381I=(2%A%B) +D

2499 IF R<-2 OR R>2 OR I<-2 OR 1>2 THEN 28¢

259 A=R:B=1I

268 IFJ%>189THEN29@

279 GOT021¢ _

289 GCOLOG, (INT(J%/33)):PLOT69,100+(((C-CL)/stepC)*3.125),23+(((D-DL) /stepD)*3.

926)

298 JI%=8
392 NEXTC
318 NEXTD
330 %¥SAVE PIC 3999 7BOY
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m i i i lan lif n

On receipt of a letter from the editor of the Fractal Report, | was inspired to sit down and see if | could
write a small example program on the micro at home.

| wrote this program in C language and purposely separated any machine specific parts out so that
users of machines other than the Apple Macintosh could recreate the pictures. The specific compiler |
used was LightSpeed C which proved well up to the task.

I make no apologies for programming style or lack of it. This is in fact only the first program | have
completed in C language since starting to learn it.

The program was designed from the notes at the back of the book by Heinz-Otto Peitgen called 'The
Beauty Of Fractals' (pub Springer Verlag). Although not as algorithmic in content as the later work,
"The Science of Fractal Images, the notes are not hard to follow.

If you are implementing this program on another machine, then you may wish to change the contents of
the following procedures:-

 init_window() Initialise display.
+ pause() Wait for operator.
+ draw_spot(x,y,c) Draw a pixel.

The init_window() procedure simply clears the screen and on other machines would perform any
necessary mode changes and colour table setups necessary. On the Macintosh, it simply initialises the
various toolbox managers and clears the screen to solid while.

The pause() procedure should cause the screen to remain intact and wait for a manual intervention
before returning control to the operating system at the end of the program. If you wish to save the
screen before it is cleared, you may wish to add some code to this procedure. In the Macintosh, the
pause facility instructs the dialog manager to draw a non existent dialog box and then wait for the
[RETURN] key to be pressed before returning to the caller. To store the screen in the Macintosh, you
can press [SHiFT]+[CONTROL]+(3] to save a snapshot of the screen into a MacPaint compatible file.

The draw_spot(x,y,c) procedure is where you set the colour of a single pixel at x,y to the colour c. In
a Macintosh Plus, there is only a monochrome screen. In this procedure, | simply test to see whether
the value is odd or even and then set the pixel or not depending on the result. If you have a colour
display then you can generate more interesting results.

Now to the main program. First of all, we must declare the name and type of any local variables. Since
these are within the braces of the main() procedure, they are only available within it and are not
global. The following are declared:-

« scr_width Width of screen display (int).

+ scr_height Height of screen display (int).

* h_pos Current horizontal position being computed (int).

* V_poSs Current vertical position being computed (int).

*+ pix_col Iteration counter used as colour value (int).

* xmin Left edge of area of interest within fractal domain (real).
* ymin Bottom edge of a.o.i. within fractal domain (real).

» xdelta - Horizontal extent of a.o.i. within fractal domain (real).
+ ydelta Vertical extent of a.o.i. within fractal domain (real).

* xold Input value to iterative expression (real).

* yold Input value to iterative expression (real).

* Xnew Output value to iterative expression (real).

* ynew Output value to iterative expression (real).

» threshold Value to test against to cease iteration (real).

» consti Arbitrary constant (real).

» const2 Arbitrary constant (real).
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The descriptions above should be sufficient without going into further detail. Now let us look at the
rest of the program structure.

The screen width and height are initialised to the area of the display that you wish to cover. This
indicates a rectangle which is mapped corner by corner-to a rectangle measured within the fractal
domain. It is in effect a window into the fractal domain being processed. The xmin/ymin are the
bottom left corner (or upper left depending on where the origin is on your display) and the
xdelta/ydelta indicates the area of the fractal domain being viewed. To pan around the fractal domain,
simply modify the values in xmin/min. To zoom in or out, adjust the values in xdelta/ydelta
accordingly.

The threshold value is chosen fairly arbitrarily at first but will affect the number of iterations and
hence colour levels that are present in the final image. Increasing the threshold value increases the
processing time somewhat. Threshold values that are too high pay no dividends as the extra detail that
is computed is lost in the quantisation noise of the pixel display. The arbitrary constants also affect
the number of iterations as they are added into the total each time round the loop.

After initialising the display, the program structure is essentially a series of nested loops. The first
loop steps through the display one line at a time. Starting at one, the v_pos variable is incremented by
one each time round the loop. Within this loop, a similar loop is executed, in this case indexing the
h_pos variable one pixel along the line each time. With this structure we are addressing all pixels
within the display one at a time.

At this point it is worth mentioning the difference between parallel and serial architechtures and how
they will affect the performance of the program. A serial architecture will perform the same process
on each pixel, one after the other. A parallel architecture on the other hand will operate on many
(possibly all) pixels at once. Since the process to be performed is identical for each pixel, the
computation of fractal images lends itself very well to implementation on vector (parallal) processors
rather than scalar (serial) processors.

To compute the Julia set, the operations to be performed per pixel are as follows:-

+ Seed the equation with starting values.

+ Start a loop structure for the iterative equation.

- Compute new values for X and Y.

* Increment the pixel colour.

» Test the threshold condition.

+ If the threshold condition has not been met then repeat the iteration.
» Otherwise plot the pixel.

The seed values for the equation are coordinates within the fractal domain indexed by the same number
of steps as there are pixels on the screen. That is, if we are halfway across the screen, the x input
value will be equal to xmin plus half of xdelta and likewise for the y axis. This ensures that for each
pixel, we will have different starting values although at this point they are linear in both axes (that is
bilinear).

The loop counter is in fact the pixel colour which we star at 0 and increment by 1 each time round the
loop. The iterative equation evaluates {xold?> minus yold? plus one of the arbitrary constants} and
places the result in xnew. The ynew value is computed from {2 times xold times yold plus the other
arbitrary constant}. Once the values have been substituted back into the xold/yold variables, the
threshold can be tested.

The threshold condition is met when the formula {xold? plus yold?} is equal to or greater than the
threshold value. It is possible to input values that when computed iteratively, will never reach the
threshold and the program will become locked into a closed loop. You can add extra tests for these
conditions during the iteration but performance degrades very rapidly when more conditions are being
tested.
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None of my images, although interesting, bore any great resemblance to any of those in Heinz-Otto
Peitgen's book. Perhaps | have by mistake stumbled across a hitherto unknown fractal domain
although | doubt that somewhat. The first one took some 35 minutes to compute on a Macintosh Plus.
Zooming in so that small features filled the screen, (2:1 zoom) increased the computation time to
about an hour. A closer zoom still (6:1) increase the rendering time to close on 2 hours. As you zoom
in closer to more interesting features, the iteration count increases and hence the images take longer
to compute. For this fractal, zooming in reveals the self similarity which is the hallmark of any
fractal set and in the case of the equation described here the level of complexity appears to remain the
same howver far you zoom in or out. Some example input values are given below in Table 1. Zooming
out to an area of -10.00 to 10.00 in x and y reveals that the fractal set being computed is a single
island contained wholly within the region -1.5 to 1.5 in x and y. Some computation time might be
saved by evaluating only one half of the view as the other half is a reflection. | would guess that
neither of these observations necessarily apply to all fractals as a general rule.

/*ttn*tﬁa*ﬁtﬁiﬁtﬁﬂtﬁ'ittﬁttt'*tﬁﬁ*'ﬁ*/

/* --- Calculate Julia sub-sets --- */
/* %/
/* Written by Cliff Wootton */
/* */
/* LightSpeed C compatible */
/* */
/ﬁ*i**t*ﬂ***it*Q*t*l'*ilﬁﬁ*‘**i!i'*tﬁ/
/ﬂiﬁ*ﬂ"iiﬂkﬂ'ii*ﬂi*ﬂ*tﬁft***ﬁ**'*ﬁt/

/* --- Start of main program --- */

/ﬁtiktt*t**itt*ﬁttiktrtk****k*t*tk/

MhI? Example One

/* --- Declare local variables --- */

int scr_width;
int  scr_height;
int  h pos;

int  v_pos:

int  pix_col:

float xmin; S S,
float ymin; .
float xdelta; | Variable
float ydelta; Fm——————
float xold: .
float yold; | Xmin
float xnew; 1

’ in
float ynew; I ym
float threshold: o

float constl; x 1
float const2; | delta

+ +

| I

+ +

I I

I I

+ +
3.00 | 1.45 | 0.50
3 | 0. I

+ +

I I

+ +

I I

I I

+ +

/* -—— Initialise machine specific variables ——- */ 4——e— e __
scr_width 511;
scr_height = 341; | threshold

/* --- Initialise fractal domain variables ——-— */
xmin -1.15; | constl
ymin 1.00; | const2
xdelta 0.50;
ydelta 0.45; tommmm
threshold 5.00; Table 1: Example input values
constl 1.00;
const2 1.00;

<
Q.
)
=
o+
"
+—— = b ——+ —— + — 1

2

L

/* --- Initialise the working screen -—— */
init_window();

/* --- Start: Loop through each vertical line of the display --- */
for (v_pos=1;
V_pos<scr_height;
V_pos+t+)

{

/* ————— Start: Loop through each horizontal column of the current line --- */
for (h_pos=1;
h_pos<scr_width;
h_pos++)
{
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[* emmm————— Seed the iterative equation with initial values --- */

xold = xmin+(h_pos*xdelta/(scr_width-1));
yold = ymin+ (v_pos*ydelta/(scr_height-1));
/% ————————e Start: Loop for iterative equation until it decays --- */

for (pix_col=0;
(xold*xold+yold*yold) <threshold;

pix_col++)
{
[* —m—mm e Iterative section --- */
xnew = xold*xold-yold*yold+constl;
ynew = 2*xold*yold+const2;
xold = xnew;
yold = ynew;
[* —————m—— End: Loop for iterative equation until it decays --- */
}
/* ————mm Draw point if necessary --- */

draw_spot (h_pos, v_pos, pix_col);

/* ————— End: Loop through each horizontal column of the current line —-- */
}
/* --- End: Loop through each vertical line of the display --- */
/* —--- Pause at end of picture generation --- */
pause () ;
/* --— End of main program --- */
}

Example Two

/*Qtttﬁk'ﬁtttﬁﬁﬁtittﬁitiwiﬂ*t!ﬂ'ﬁtﬁﬁ't'*ﬁﬂtﬁ/

/* --- Initialise working display area --- */

/ﬂﬂﬁ“ﬁﬁ'*ikﬁﬁ*‘.t*tiﬁtt*'ﬂiﬁ*iﬁﬁﬁi'ﬁ*'k*ﬁiﬁ/
init window ()

long port;
Rect rect;

InitGraf (&thePort);
InitWindows () :

GetwWMgrPort (&port) ;

SetPort (port) ;

SetRect (&rect, 0, 0, 512, 342);
ClipRect (&rect) ;

FillRect (&rect, white);
HideCursor () ;

PenSize(1,1);

}

/t*itﬁt*i****ttt**t*tt*t**t*******it**i****t**t*/

/* -—- Handle operator pause at end of run ——- */
***i****t**tkﬁttﬁ**i****ﬁ*it**t*ﬁ**tt***t*t*t*ﬁ
/

pause ()

DialogPtr dp;

int dummy;

dp = GetNewDialog(l, 0, -1);
ModalDialog (0, &dummy);
DisposDialog(dp) :

}

Example Three

/****t******tttn*t**t**tt**tt***ﬂ**t***t*ti****/

/* --- Draw a dot at the correct position —-—- */
/***t**t****ik***it***i***titt**i*t*******t****/

draw_spot (x,y, c)
int x;
int y;
int c;

{
if (¢/2 = (c-1)/2)
{

MoveTo (x,y)
Line(0,0);
}

}

/****t*t*tﬂ*it***t**t****ﬁt********/

/* —-- End of program listing —-- */
/***it*t***i**tt*tt!**t*t******t***/
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The Consequences of Finite Arithmetic
W.E. Thomson.

Simon Goodwin ('Fractals, Maths & Graphics'— Issue 0) produced
in parallel two versions of a Barry Martin Drawing, one using

a square root and the other raising to the power one half, and
found that they differed.

I suggest that this is one of the consequences of the finite
arithmetic that is inevitable in any digital computing. With
infinitely precise arithmetic, the two methods are bound to be
the same, but in practice, slight differences in the algorithms

mean slight differences in the results.

A similar result occurred with me, using the same program to
produce a drawing, with a square root function, realised in
two ways: the first, in Spectrum Basic, and the second in Hi-
Soft Spectrum Pascal. For the same parameters (the a,b,c of
Goodwin's paper) the results were different: there was a gen-—
eral resemblance but many differences in points of detail.
This might be due to different square-root algorithms, but I
put it down to a difference in arithmetic precision: the
Basic's floating-point representation has a 32-bit mantissa
but the Pascal's representation has only 23 bits.

The effect of finite arithmetic is more readily seen with a

simpler system, the well known single-variable system defined
by the recurrence relation

Xp41= Axp(1- xp)

Xn+1 Will equal xp if xp= (A-1)/A, so in this program, one
would expect the x of Line 50 to remain constant with the sane
value as at Line 20.

10 INPUT A: PRINT A S.44
20 LET x=(4A-1)/A

30 PLOT 0,176%*x

40 FOR n=1 TO 255

50 LET x=A*x*(1-x)

60 PLOT n, 176%*x

70 NEXT n

But, for A=3.44, it does not remain constant, as the print-out
shows.

A full discussion of this would take too long, so I summarize
by saying that theory shows that there are many stable states,
each valid for a certain range of A; the state where xpi1= xp

= (A-1)/A is stable only for 1< A<3, Stable or not, infinite-
ly precise arithmetic in Line 50 would maintain x at the value
of Line 20; it is the rounding-off errors in finite arithmetic
lead to small then ever-increasing departures from the value

of Line 20, until the stable state appropriate to the value

of A is reached. It is instructive to alter Line 50 so as to
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vary these errors, either by rounding off to, say, 2 or 3
decimal places, or by adding a small (pseudo)random term.

A Barry Martin Drawing is produced in several phases, often
with nothing apparently happening, until suddenly there is an
eruption into a new phase. I suggest that these phases are
stable, or quasi-stable states, and that the 'random' effects
of rounding off in the arithmetic (which may differ in diff-
erent computer languages) trigger the changes from one phase
to the next.

A SPACE-FILLING CURVE
by W E Thomson

The program below draws an approximation to a monster space-
filling curve, as illustrated for n=4; it can be regarded as
an elaboration of the Sierspinski Curve.

The language is Spectrum/BetaBasic which means that 'DRAW X,y
draws a straight line from the current point (cx,cy) to the
point (cex+x,cy+y) and sets cx=cx+X, cy=cy+y. The variables
P,q,r are chosen to fit the coordinates available; the curve
lies within the square bounded by the lines x=q,x=q+3p,y=T,
y=r+3p, where p=2fm, m integral; n should not exceed m. ILine
10 of the program specifies p,q,r suitable for a screen with
rnaximum x-coordinate 255 and maximum y-coordinate 175.

10 LET p=32,q=80,r=40
20 INPUT n: PRINT n
30 LET d=p/2¥n

40 PLOT q+d/2,r+3%*d/2
50 tom n,0,4,4,0

60 DRAW 4,4

70 tom n,d4,0,0,-d

80 DRAW d4,-d

90 tom n,0,-d4,-d4,0
100 DRAW -d,-d

110 tom 2,28,0,0, R X,
130 STOP 5_1,‘,_3"‘6 df ’.x'?géi’#‘f?###ﬁé
s ety SRR
B o B EEE L
DRAW s,t: gﬁkﬁgﬁzﬁgﬁégﬁ
el RS

220 tom n-1,s,t,u,v > 4, on
230 DRAW s+t,u+v Egﬁ;ﬁtdﬁaﬁ
240 tom n-1,t,-s,v,-u

250 DRAVW s,%t

260 tom n-1,-t,s,-v,u

270  DRAW -(u+v),s+t

280 tom n-1,s8,t,u,v

290 END PROC

END PROC ﬁ}%ﬁ,‘f‘?g{.‘x&%ﬁ;ﬁ
€, 98,00, 48,0
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Transputer Fractal Computation

The Inmos transputer is ideal for fractal computation, and the
generation and display of the Mandelbrot set has become a standard way
to demonstrate the benefits of parallel processing using transputers.
This is probably because it is very easy, once you have a Mandelbrot
graphics program running on one transputer, to "parallelise" the
program, and run it on any number of transputers. The performance
increase is virtually linear, as more transputers are added, which is
another reason why this demonstration is so popular.

Because the transputer has 2K

(in the case of the earlier T414)

or 4K

(with the T800 floating point transputer) of very fast, on-chip RAM,
you don't even need any external RAM on your transputers, if the
program is coded in occam (or assembly language), and Inmos have built
a "Mandelbrot engine" out of reject devices (the external RAM
interface was faulty), with about 400 transputers, that generates the
images faster than they could be taken from a hard disk.

Although I run my own business, developing and selling transputer-
based systems, I can't afford to have too much expensive hardware
lying around, so for my own use I have a system consisting of a single
1 Mbyte transputer module on a PC interface card for development, with
four 1 Mbyte transputer modules on a second PC card, with the EGA
graphics on my PC for display. I am working on a transputer-based
graphics system, which will have a T800 and one of the new Inmos G300
graphics controllers, with 1 Mbyte of ordinary DRAM, and 1 Mbyte of
VRAM. Display will be via a Multi-Synch monitor. .

A few members of QUANTA, the QL users group, have my transputer
modules interfaced to their QLs, and one of them, Jim Gilmour, has got
a Mandelbrot program running on the transputer, using the QL for
display. He sent me a copy of the program, which is written in C, and
it took 1 min. 47 secs. to display the complete Mandelbrot set image,
running on a 20 MHz T414 with 1 Mbyte of RAM.

I know someone who has built a parallel processing system using eight
Z80s, just to perform Mandelbrot set calculations, with a homebrew
TRS-80 - compatible system with a colour display for I/0. I've given
him some 68008s to play with, so he can speed it up. A single

transputer will run
next to nothing to build.

Leon Heller

PC Mandelbrot Public Domain

Mr John Marriafe has advised us that a public
domain disk XEMO14, which produces the
Mandelbrot Set, is available for the PC from
the PC Independent User Group, PO Box 55,
Sevenoaks, Kent, TN13 1AQ. He says that the
roup offers a huge catalogue of software
ncluding much whic
a substantial magazine, and a useful helpline.
They charge £3 per 5.25" disk, and £4 per
3.5" disk, plus £2 per order postage, plus £1
per disk for non-members.

Fractal Report

is of very hiﬁh standard,

Issue 2

rings round this system of course, but it cost him

Day's Squares on Tape

Mr Nick Day has made his program available
on tape for any reader of issue 1 who would
refer it this way. He will send you a BBC

" tape for §£4. Mr Nick Day, 10, Nourse
Close, Cheltenham, Glos GL3 ONQ.

Martin's Mapping on Macintosh

Mr Adam McLean is offering a Macintosh
Application that runs quickly g.roducin
Martin's Mappings for many differen
functions. It is free to anyone who sends a
blank disk and return postage. Mr Adam
McLean, The Hermetic Journai PO Box 375,
Headington, Oxford, O0X3 8PW.
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