Fractal Report

Issue 3

wright. juil © LC Associates, 1989 all rights reserved

IySram anais (uorsaan ouow) Aijus qQoo Auaxen

Quaternion Julia Sets Dr Ian Entwistle 2
Faking Planets Mark Datko 6
BASIC Planet Programs John de Rivaz 7
Warp Speed Mandelbrot Sets Mark McCall 8
More Affine Transformations Dr Keith Wood 10
Editorialette John de Rivaz 13
More About Iteration Algorithms Dr Jules Verschuren 14
Pictures from Dynamic Systems John €. Topham 16

‘Published by Reeves Telecommunications Laboratories Ltd., West Towan
House, Porthtowan, Cornwall TR4 8AX, United Kingdom. £10 UK, £12
Europe, £13 elsewhere. UK funds. (U. S. only $23 check payable to
"J.de Rivaz".) Subscriptions backdated to volume start. Free
subscriptions to future volumes for contributors. There are six

issues per volume.

JULIA SETS. by Ian Entwistle
Part 1.: Quaterions

The Brougham bridge on the Royal Canal,Dublin bears a plaque commemorating the discovery of “quaterions™ in 1843 by Nilliam -
Bowan Hamilton (1805-65).These 4D equivalents of a complex number take the form atbitcj+dk where a,b,c,d are real nusbers and i,k
are imaginary nuabers.Hamilton discovered that the following equations relate the “imaginary components of the quaterions,so that
ordinairy algebraic rules can be used to obtain a third quaterion from two others.ij=k,jk=i,jiz-k,kj=-i,ik=-ij.Thus the quaterion
Q-atbitcj+dk can be squared to obtain a mew function, :F(Q,q): QPQ"2+4q . Utilising Hamilton's algebra expressions for Qreal and
Qimaginary can be obtained.For the sake of brevity and for those readers whose algebra is rusty the vale of Q"2 is equal to
2"2-b"2-¢"2-d"242bi+2acj+2adk.

3D fractal images from quaterion iterations have been studied{see Norton,A.Gemeration and display of geometric fractals in
3D,Comput .Graph.,Vol ~ 16(1982)pp61-67) and beautiful illustrations of Q'2+¢q fractals have more recently been reported
(Pickover,C.Visualisation of quaterion slices,Image and vision computing,VolS(4),1988,pp235-236).the following is 2y o®n
interpretation of the described method.

In the complex plane qa,qc the Mandelbrot set quaterion map is visually the same as for F(1,c):1-»1"2+¢c in the complex plane
c.The Julia sets however are very different and well worth gemerarating even though they require more CPU time.Most Fractal Report
gubscribers will already have generated Julia set maps from 1"2+c. Very few alterations to the listing used is required to obtain
quaterion Julia sets.Separation of Q"2¢4q into real and imaginary parts gives the equations (1),(2),(3),(4).

Qreal=a"2-b"2-¢"2-d"24qa (1)

Qimag.i-2ab+qb {2)
Qinag. j-2actqe (3)
Qimag.k-2ad+qd (4)

The iteration loop of the Julia set listing now needs a few extra variables and inputs are required for the constants
qa,qb,qc,qd.Since the output will be a 2D image or a slice shoring the inside of the 4D quaterion then only two of the
equations,one real and one imaginary can be iterated using initial values corresponding to the pixels on the map.Thus iteration with
the equations (1) and (3) using the inital values for a 2D Julia set and fixed initial values (try 0.05,0.05) for equations (2) and
(4) will give a quaterion slice.The values chosen for qa and qc can be any values within the range used for I plane Julia sets of
I"2+c.For example compare Fig.1 q(-.194,.01,.6557,.01) where the values 0.01 correspond to qb,qd for the uniterated planes.These
values can be altered to look at other slices.The iteration loop of the listing will thus look something like List (1)in Basic
.Other control loops are frequently used but on many computers the For-Next loop is faster.

List(1)

340 FOB TIX =1 TO IT%

350 XIXI=XI1eX1:Y1V1=Y1871:2121=21321:2212-12822

360 X1T1=X1371:X121=X1%21:X122:-11%72

310 T1=11X1-7222-1121-V1T1+qreal

380 T1=(X171+X171)+qinagy

390 I1=(X171+X1%1)+qimagsl

400 22=(X172+X172)+qimaga2

410 IF XIX1+Z1214717142222 >4 THEN GOTO 450

420 NEIT

430 :REM PLOT OR PRINT PIXEL IN COLOUR CORRESPONDING 10 VALUE OF TI%

TIX=Iteration value ,IT%-Maxisum value of TI%
11,11,11,12 are the variables corresponding to a,b,c,d
Note that {QISIQf=a"2+¢b"24¢ 24472
The test for “boundedness " {Q1°2 >4 is semsitive to the value of ITX .The Figs. 1 to 3 were obtained using a value of 150 but
quite attractive variations in the patterns are gemerated when IT¥<150 .(Try IT%=64) In
all the Figs. which differ quite markedly from the comparable 1"2+c Julia sets(see Beauty of Fractals by Peitgen and Saape) with the
the same ¢ plane constants ,the inverse symmetry of Julia sets is absent.

The larger nusmber of multiplications involved in quaterion iterations means that more CP time is needed tham for the I
plane Julia sets.Some interesting fractal plots can be obtained more readily by removing some of the multiplications .Put -
Qinag.=2a(btc+d) and sum the imaginary values of q.For those enthusiasts with access to 32 bit machines try and gemerate the
octonium equivalent Julia sets.Note that the relationships (mn)k=s(nk) and mnzna are not valid for octonium multiplcation.

In the above article please read "quaternion" for "quaterion".

Fractal Report Issue 3 Page 2

(1) 1280x2200 pixels,150 iterations,boundaries -0.9,0.9,-1.1,1.1

Fractal Report Issue 3 Page 3

(2) 1080x1500 pixels,150 iterations,boundaries,-1.6,1.6,-0.9,0.9

Fractal Report Issue 3 Page 4

(3) 1280x1800 pixels,150 iteratioms,boundaries,-0.7,0.7,-0.9,-0.15

Fractal Report Issue 3 Page 5

Faking Planets
The logistic twist map on a sphere
by
Mark Datko
July 1989

Given the editorial challenge of planet generation, I would like to
propose a method which on experimentation seems to give
reasonable results without too much computational effort.

The trick is to use the logistic twist map

On+t = Op * Jpsp ~J 21’1+1

which arises in the context of topological reconnection in the study
of Hamiltonian systems.

The mapping can be simply be regarded as moving points on a
cylinder, and if one wraps the cylinder onto a sphere one obtains a
passable imitation of a Jovian style planet. with “features”
appearing in the swirling atmosphere and on the surface below
depending on the choice of K and a.

©

1600 - ™ o
<::ﬂq____ﬂ,,~1an
J
" ™~ 0
0 b—— e —
-n B8 a1
Iterate map using grid Identity-n and +n
for starting points and “wrap” onto sphere

Fractal Report Issue 3 Page 6

REMark QL specifics

Programs by John de Rivaz based on

by Mark Datko.

SIN(lat):1long=1ong-mylong:SINlong=SIN{long)

110 REMark
120 DEFine PROCedure sa
140 SAVE-O f1bsJubiter
P upiter
150 END DEFine — PASCAL original
160 DEFine PROCedure 1i
170 WINDOW £2, 512,200,0,0
180 END DEFine
%gg MODE 4:WINDOW 512,255,0,0:PAPER O:CLS
210 LET k=-.23:a=3.6E-2 : REMark change for different planets
220 LET numits=300 : REMark change for density of plot
230 LET mylat=30 : REMark change for viewpoint (degrees)
240 LET mylong=180
250 radius=12 : REMark adjust to fill screen
260 LET aspect ratio=3/2 : REMark ql specific for "BLOCK"®
270 LET piby28=PI/28:pipt8=PI+.8:twopi=PI*2:twopiby10=twopi/10:conrad=1.74533E-2
280 LET mylat=mylat*conrad :SINmylat=SIN(mylat):COSmylat=COS(mylat)
%88 LET mylong=mylong*conrad
310 FOR x start=3 TO 24 STEP 3
320 LET colour= 2*(1+(x start/3) MOD 31
330 FOR y start=twopibyIO0 TO twopiby10*8 STEP twopibylO
340 LET x=x start:¥=y start
350 FOR iteration=1 TO numits
360 LET x=x—k*SIN(¥)
370 LET y=y+x*(1-a*x)
380 IF y>twopi THEN LET y=y—twopi:GO TO 380
390 IF y<0 THEN LET g=¥+twopi:GO TO 390
400 LET lat=(x-14)*piby28: on%=y+pipt8
410 LET COSlat=COS 1at¥:SIN1a =
3%8 LET COSlongCOSlat=COS(long)*COSlat

440 BLOCK 1.1
Slat*SINmylat-SINlaf*Cosmylat
450 END IF

460 END FOR iteration
470 END FOR y start
480 END FOR x start

,colour

QL Program

égg BRIGHT 1: BORDER O: PAPER O :

220 LET
230 REM
planets

240 LET
250 REM

k=0.23: LET a=.0036
change for different

numits=30 .
change for plot density

mylat=30
mylong=90

radius=87 .
radiusby2=radius/2
p;b¥28= /28

LET pipt8=PI+.8
wopi=PI*2 .
twop1by10=two§1/10
conrad=.0174533
m¥lat=m lat*conrad
SINmylat=SIN mylat
COSmylat=COS mylat
mylong=mylong*conrad

the works!
h=1 TO 8
6*h/8

Spectrum Program

,radius*SSINlong*COSlat+1)

IF COSlongCOSlat*COSmylat+SIN1at*SINm¥1at<0

aspect_ratio,radius*(1+C0OS1ongCO

See note below

re line 480
420 FOR v=twopibyl1l0 TO
twopiby1l0*8 STEP twopibylO
430 LET x=h*3: LET y=v

440 FOR i=1 TO numits
450 LET x=x-K*SIN ¥
150 FET Yyt (N LeT y=y
>twopi =y-
i: go Top470

twop .
480 IF y<O0 THEN LET y=t+twopi:

GO TO 480 .

490 LET 1at=(x—14)*g1by28

500 LET lon§=¥+81gt

510 LET COSlat=COS lat

520 LET SINlat=SIN 1lat

530 LET 1lon =1ong—mylong

540 LET SINlIong=SIN long :

§888%E{ COS1ongCOSlat=(C0S long)
a

560 IF COSlongCOSlat*COszlat+

SINlat*SINmylat<Q THEN PLOT

radiusby2+radius* SINIong*COSlat

+1) ,radius*(1+COS ongCOS)at*

SI lat-SINlat*COSmylat
570

600 STOP

Note — the Macintosh PASCAL listing runs to three pages, and as

relatively few readers have the Macintosh,

upon receipt of an SAE.

Fractal Report

Issue 3

this is available

Page 7

Scanning note: LINE 480 is probably wrong as variable t is not
set anywhere- 480 should probably read y=y+twopi:

Project: Tightrope
Warp Speed Mandelbrot Sets

by Mark McCall

While taking a class this spring in fractal graphics at San Francisco State
University, I quickly discovered how important speed is to almost any system
when generating these time consuming images --- even a CRAY! Some of the
largest stumbling blocks to Mandelbrot set generation are the points actually
inside the set, generally condemned to lay in some sort of a time consuming
calculatory limbo. If these points could somehow be predetermined, without
an abundance of heavy calculations, images which include these regions could
be cut down Lo as much or less than half their generation time. And with
information which establishes the Mandelbrot set to be connected 1], this
task can be accomplished.

Based on the idea that the Mandelbrot set is connected, if one knew the
perimeter of the set, the interior could be quickly filled-in so that the heavy
computations involved in finding points within the set could be avoided. It
would be like filling an intricate glass with water. Finding the perimeter of
the M-set is not as complicated as it may seem at first. in fact, it can be
considered as a kind of game. The object of the game is to traverse the edge of
the set, continuing all the way around the "island" it encompasses until
returning back to the starting point. It is most advantageous to think of
following the edge with a “traveler,” a point which resembles the actions of a
person hugging the wall of an enclosed region, knowing eventually the wall will
lead him back to the beginning. This can be done by first determining how the
traveler will traverse the boundary. In this case [will have it traverse
clockwise about the island wall's interior. Traveling in this way, the
boundary of the M-set must always be on its left. If at any time the boundary
disappears from its immediate left, the traveler must re-establish contact with
the wall, turning and moving to its left until the wall is again discovered, and
then continuing onward about the set. If a wall is discovered in {ront of the
traveler, while there is also a point outside the M-set on its immediate left, it
must turn to its right. My traversal algorithm is as follows:

PROCEDURE Tightrope
{ start immediately upon entry of M-set)

orientation - face east; (IMPORTANT --- see following paragraph]]

for explanation.
REPEAT

Stage |
Traversing the M-set boundary
(Note the overall complex plane traversal
was west to east © ., south to northQ.)

Stage 11
Filling the M-set

check and update dwell (iterations) of point to traveler's immed. left;

IF (left point is NOT OUTSIDE the M-set)
BEGIN (if)
orientation - face to left ; { based on present orientation }
((- north, south, east, or west))}
move forward one point;
END (if)
ELSE
BEGIN (else)
check and update dwell of point immediately forward;
IF (forward point is INSIDE the M-set)
move forward one point;
ELSE
orientation - face right; { based on present orientation)
((- north, south, east, or west) }
END (else)

UNTIL (position - initial position):

The initial orientation of the traveler is crucial. If not biocked on
all sides, the traveler must move on the very first entry of the REPEAT loop,
otherwise the loop will terminate prematurely. The above orientation is based

Fractal Report Issue 3

Final image
Scanning note: The magazine image was black on
dark grey and not very clear. The outer dark grey
has been removed in this illustration.

Page 8

on the assumption that the entire complex plane has been traversed line by
line [rom west to east >, south to north Q. In this way, if the
ajgorithm is entered immediately upon discovery of a previously unvisited
point within the M-set, it is known that the points immediately south and to
the west of this spot are outside the M-set. Thus, if not completely blocked,
an orientation of east will allow the traveler to move upon first entry into the

loop, as required. Other traversal patterns of the complex plane may

require different initial orientations.

The entire program will require a way to keep track of points being visited,
such as a two dimensional array representing the portion of the complex ptane
being investigated. For the algorithm, itself, two conditions must be known of
each point: (1) has this point been visited? and (2) is this point inside the M-
set? (e.g. use a 3 value variable: unvisited - 0, inside set - 1, outside = 2)
After the Tightrope aigorithm has finished, and before the overall traversal is
continued, this information will allow the interior of the M-set to be filled-in.
Due to the nature of the algorithm, the outline will consist of a series of points
within the M-set, designating its edge, surrounded by a series of points
outside the M-set. Thus, unvisited points on a line between a point within the
M-set and a point outside the M-set can be fiiled as being members of the set.

NOTE:

Under certain circumstances the created outer line of points which is not in
the M-set will be incomplete to the east of the point of origin, therefore

DO NOT attempt to fill this row.

(IMPORTANT: this is assuming the {illing is being done in the SAME fashion
as the overall traversal of the complex plane was done before entering the M-
set and initiating the traversal algorithm; i.e. west to east, south to north.)

All points outside the boundary of the actual complex plane region being
investigated should be considered walls, points OUTSIDE the M-set. This way,
if the Mandelbrot set is not entirely within the image window, the edge of the
window will be treated as the boundary of the set.

Also, concerning the Tightrope procedure, please note the difference between
the complex plane's globai coordinates of north, south, east & west, and the
traveler's own focal coordinates of left, right & forward.

The final code for this algorithm is tight and relatively fast. By incorporating
it with other speed algorithms such as a (exterior) distance estimation
routine, the resuiting Mandelbrot generation may require observers to wear
seat belts!

(It should also be possible to use this method with other connected sets.)

For a print-out of my code (written in PASCAL), send $4.00 to:
Mark McCalt

225 Shevelin Rd.

Novato, CA 94947

U.S.A.

The address of the university folfows:
San Francisco State University
(Computer Science Department)
1600 Holloway Avenue

San Francisco, CA 94132
US.A.

Reference:

[1] Douady, A., Hubbard, J.H.
Iteration des polynomes quadratiques complexes.
Referred to by Heinz-Otto Peitgen
in The Scieace of Fractal Images.
New York: Springer-Verlag, 1988.

Fractal Report Issue 3

l"r\
P
o
‘;‘
v
AR]
)
U
E-}
(N
[
r
3y
L

Example of Stage | incorporating
a distance estimation routine
with the Tightrope algorithm

Example of Stage Il incorporating
a distance estimation routine
with the Tightrope algorithm

Page 9

MORE AFFINE TRANSFORMATIONS - AND SOME NOT SO AFFINE
by KEITH WOOD

The first article showed how to manipulate a transform and put it to work
developing a fractal image. There are limitations. From a descriptive point of
view, 1if a transformation reduces the image (a contractive transformation) then
the repeated use will result in images smaller and smaller. To complete an
image, there needs to be a wa{ of getting back to the beginning, so that the
whole image at full size gets fleshed out.

The examples quoted last month achieve this by adding a constant to an
otherwise reducing image. Thus the three half size images of the Sierpinski
triangle are placed on the screen in the right place to make Uﬁ the whole image.
It follows from this that each half size image is made up of three quarter size
images, and so-on. While this is what the Sierpinski triangle is, it is not what
other triangles are. The sguare similarly had four equations generating four
half size sSquares so placed as to construct the square. In principle, if an
image can be made by superimposing smaller versions of itself, then that gives
the clue to the equations required to generate the figure. The reductions and
translations are all that is supplied to the programme, and it can happen that
the programme interprets its directions on the basis of a different shape than
the one supposed, so one doesn't always get what one wants! The programme
produces the simplest, with the fewest sides, of the possibilities.

As an example, form an arrow from three smaller arrows: the two tails to
the arrow are reduced and rotated from the main point, and the main point is a
reduction of itself moved up so that the points coincide. This last
transformation has a high probability so that a sufficient number of successive
transformations can occur to fill the point to the tip. Note particularly that
rotating the main point to form one of the tails is a randomly selected
transformation, and can be selected twice or more times in succession, which
will produce more spikes in unwanted places. It works in this case because the
reduction involved at each rotation brings these second and third etc. order
repeats within the boundary of the main figure.

ARROW
m a b c d e f p
1 .766 0 0 .766 .234 O .6
2 -.5 42 -.42 -5 234 -.04 .2
3 -.5 -.42 .42 -.5 234 .04 .2

What other methods are available for "getting back to the beginning”? It
will be seen that the method used above produces a solid or filled image, either
totally as in the case of the square, or partially, as in the case of the
Sierpinski triangle. The tree, however, consisted of a line drawing. This gives
an 1immediate clue that something is different. The first two transformations
decrease the ima%e size to 0.6 of the original, while rotating it 45 degrees.
One is to the left, the other to the righ . The screen clearly demonstrates the
45 degree branchin%. At the same time the Y value is increased by 0.2. This is
necessary to make the branches come from the main stem part way up. At the scale
of the calculation the whole tree is less than 0.5 high. The third equation
reduces the 1image to 0.1 of the original, 0.2 up. The whole tree image
transformed this way makes the blob on the main stem out of which the branches
grow, and it is repeated down the chain at sucessive branchings. The fourth and
final equation takes the value of Y and halves it, while setting X to zero. This
equation creates the main stem, and because of its low Erobability it is
unlikely to be used many times in succession, which is why the main stem peters
out into disconnected spots without actually reaching ground! It is this main
stem which is transformed into the branches to create the tree. It follows that
none of the branches quite connect to the stem they branch from. The blob on the
stem helps to conceal this defect.

What causes the difference 1is that the 'getting back” is not a
transformation, except 1in a special sense. As the X coordinate is set to O it
means that the transformed image is given zero width, so the start is not
recognisable as a contraction from the whole. One can just _as readily regard it
as an equation generating a value using the Y as a seed. The equation makes a
shape which is copied throughout the ima%e, but which itself is not a copy of
the image. There is no law which says that copies of the image should be kept in
proportion, but the idea of a dissimilar start shape leads to a different class
of subjects.

To demonstrate this, the following table uses the Y value as a seed to

enerate a line with both positive and negative X coordinates, which is then
ransformed successively up the tree to the top.

Fractal Report Issue 3 Page 10

CHRISTMAS TREE:

m a b c d e f p
1 .8 0 0 .8 0 W2 .75
2 0 4 0 .1 0 .1 .1
3 0 -.4 O 1 0 .1 .1
4 0 0 0 3 0 0 .05

The first transformation replicates the branches, and has a high
probability to plot points all the way to the top. Fewer points are needed at
the top, but enou?h in the time allowed dictates the probability to use. On a
higher resolution plot more iterations would be used, %iving more chance, but
needing more too. Depending on the plot the probabilify may need changin? for
different resolutions. The thing to do is to try it and adjust probabilities
until the different areas of the ?igure fill out at roughly "equivalent rates.
The other three equations all generate straight lines from Y as a seed. Two do
the left and right branches, ang the third the trunk.

Some of the figures discussed (the tree, spiral, christmas tree, fern)
generate a shape at the "beginning” of the subject which is replicated many
times in generating the whole image. If the probability is too low the tip of
the christmas tree, fern etc. will be omitted rather as though someone had torn
it off. The value needs to be in the range 0.6 to 0.9. It follows that in any
image of this type there can only be one replicating feature. One cannot desi%n
a replicating system to create a branch and a different replicating system)
add brances to a tree. A fern works because a side lobe is the same shape as the
whole leaf. Using the X or Y value as a seed in an equation gets around the
problem and brings in a new class of images in which the feature replicated is
independent of the shape of the whole figure. X and Y are not independent, using
both produces echoes of the whole figure.

One important limiting factor is that a linear equation cannot generate a
curve. Where a curve is required it is generated by successive rotations. Such a
curve "uses up" most of the available Erobability, so that the resulting plot
cannot itself be replicated other than as a by-product of the replication
generating the curve (fern, spiral). :

The system of wusing a pair of linear equations has been extensively
developed with a view to computer generation of pictorial subjects. It is
claimed that a data reduction of up to 10,000 to 1 can sometimes be achieved. An
image 1is analysed and broken down into a collection of images such as the ones
we have tried, and the tables of data (perhaps 100 to 300 all told) form the
record of the image which can be regenerated just as the data given here
provides images when grocessed. The original of perhaps 1024 x 1024 pixels is
reduced from 1 megabyte (excluding colour and intensity information) to a
kilobyte or so. Images by telephone line and from remote satellites would be
sent much more rapidli. To regenerate images quickly (the ultimate aim is to do
it in real time) parallel grocessing is involved, each processor doing one set
of transformations and pooling the results. There are other ways, too.

For our purﬁoses, we can break with such rigid disciplines and propose
equations other than linear. On the basis that one can do anything with
polynomials, a programme can be written for polynomials of any degree, but the
object becomes self defeating in that process time is stretched out and our
table of values becomes enormous and filled largely with zeros. As a compromise,
for experimentation and to demonstrate what can be achieved, we will allow one
polynomial equation pair, the rest being linear as before. The Basic 1istin8
which follows is such a routine, which has also been extended to allow up to 1

sets of equations. :

Notice that the sets of data number one less than M; the polynomial pair
of equations is written out in lines 500 and 510. There is no ' probabi ity
spelled out for this pair, the value implied is the difference between the sum
of the linear probabilities and 1. If there are fewer than 10 pairs of equations
and if the probabilities for them add up to 1 then the second order pair will be
ignored. This routine will therefore replace the one given before.

Fractal Report Issue 3 Page 11

LISTING WITH ROSE DATA

10 REM The listing for iterating a set of affine transformations which include one
20 REM polynomial pair. As the pair can have many constants
30 REM the simplest way is to write out the equations as a line of the programme .
40 REM A table of data would be time consuming to manipulate if it had provision
50 REM for mané additional constants per pair of equations.
60 REM Up to 10 transformations can be handled here.
28 SIM 2(10),B(lO),C(lO),D(lO),E(lO),F(lO),P(lO)
90 DATA .5,.866,-.866,.5,0,0, .40
100 DATA .5,.289,-.289,.5,0,0,.11
110 DATA -1,0,0,1,0,0, .12
120 DATA -1,0,0,-1,0,0,.12
130 DATA 1,0,0,-1,0,0, .12
140 PT = O
150 FOR 3 =1 TOM - 1
160 READ A(J),B(3J3),C(J),D(3),E(J).F(I)
READ PK

170

180 PT = PT + PK
190 PéJ% = PT
200 NEXT 3

210 FOR 3 = M TO 10
220 PéJ% = PT
NEX

230 J

240 REM set up for 192x180 plotting mode
250 GRAPH 1

260 XSCALE = 75

270 YSCALE = 90
280 XOFFSET = 95.5

290 YOFFSET 89.5
300 X = 0
310 Y =0

320 REM do 10000 iterations
330 FOR N = 1 TO 10000

340 PK = RND(1
350 IF PK<=P(1) THEN K=
360 XNXT = A(K)*X + BEK
370 ;NXT = C(K K

1 ELSE_IF PK<=P(2) THEN K=2 ELSE IF PK<=P(3) THEN K=3 ELSE 460
= XNXT
390 Y = Y

E

* %
< <m
+ 4+

NXT

400 IF N > 10 THEN PLOT X*XSCALE+XOFFSET,Y*YSCALE+YOFFSET,1

410 NEXT N

420 ? "Type CONT to continue”

430 STOP

440 TEXT

450 END

198 éSTgKggg(4) THEN K=4 ELSE IF PK<=P(5) THEN K=5 ELSE IF PK<=P(6) THEN K=6 ELSE 480
480 IF PK<=P(7) THEN K=7 ELSE IF PK<=P(8) THEN K=8 ELSE IF PK<=P(9) THEN K=9 ELSE 500
490 GOTO 360

500 XNXT = 0.125%(7 - X*X - X - X)

510 YNXT = 0.217*X*X - 0.144*X - 0.361

520 GOTO 380

LARCH
m a b c d e f p
1 8 0 0 .8 0 .2 .6
2 -1 0 0 1 0 0 .27
3 0 0 0 5 0 0 .03
4 XNXT = -0.186"Y*Y - 0.654*Y + 0.830
YNXT = 0.457*Y'Y - 0.251*Y - 0.006
THE BIG BANG
m a b c d e f p
1 .966 .259 -.259 .966 O 0 .25
2 .966 -.259 .259 .966 O 0 .25
3 .8 0 0 -.8 0 0 .18
4 0 1 -1 0 0 0 .08
5 0 -1 1 0 0 0 .08
6 -1 0 0 -1 0 0 .08
7 XNXT = 0.1*X + 0.9
YNXT = 0.1%(1 - X*X)

Fractal Report Issue 3 Page 12

The Big Bang illustrates an important facet of the process. The random
number generator has to be good. All computers, being built to behave perfectly
rationally, use a pseudo random sequence in place of true random numbers. There
are many of these, which differ in their performance. A truly random generator
will always cover all possible points in a display given long enough, "and the
number of wunfilled points will decrease with time. Running the big bang for
20,000 iterations appears to add no more points to the display from about 12,000
on, even though there are some noticeable gaps.

Finally, another pitfall is illustrated by STAR1. Run this, and it will
fill in a couple of dozen points and then appear to stop. The reason is that the
mechanism for generating a point on the horizontal line which is iterated round
the other four lines plots points on those other lines which generate the same
points again when used as seeds for the line generator. It simply plots the same
points again and again. To overcome this problem a non-linearity can be added to
the line generator with the use of the polynomial, as in STAR2. Both line
generators are present in STARZ and the original is reversed in sign to make the
coverage more uniform.

STAR1
m a b c d e f p
1 0 1.051 O 0 -.100 .309 .34
2 309 .951 -.951 .309 O 0 .33
3 .309 -.951 .951 .309 O 0 .33
STAR2
m a b c d e f p
1 309 .951 -.951 .309 O 0 .3
2 .309 -.951 .951 .309 O 0 .3
3 0 -1.051 O 0 .100 .309 .2
4 XNXT = 1.902*Y*Y - 0.951

YNXT = 0.309

That's the lot on this topic. Please send your favourite tables of
coefficients to John for publication. We'd all like to see them. To plot several
shapes on the same screen iterate one, and then GOTO the next, and so-on,
repeating the programme as often as there are different shapes to plot.

Unfortunately, at the moment I have one computer which prints the screen
but its Basic doesn’'t produce graphics, and another which produces %raphics but
doesn't print the screen. So you'll have to do the above for yourself!

Editorialette

This issue is being published concurrently with the next, in
order to work off a backlog of articles before the autumn. This
issue contains a nice selection of articles likely to interest
the reader who wants to move past the basic sets and mappings,
whereas the other issue of the pair has more than its usual
share of basic material which has been requested by many.

I have had a query as to which is the most negative mini-
Mandelbrot set along the negative real spike. Any
mathematically minded reader who can provide a mathematical
argument. as to where this is, is invited to reply. It is my
hunch that the spike extends to minus infinity, although it
gets smaller and smaller and the mini—Mandelbrots also get
smaller and smaller.

The Immortalist Society sent me a paper Autaomated Development
of Tarski's Geometry by Art Quaife, director of Trans Time
Inc., the cryonic suspension company. It looks interesting but
is somewhat beyond my understanding ~ if anyone interested in
computer automated mathematics would like a copy, then please
let me know. A short appreciation may interest other readers.

Fractal Report Issue 3 Page 13

More about Iteration Algorithms

Jules Venschueren

" Binnenstraat 53

B - 3008 Veltem
Belgdium

1. Pitfalls.

To display any pixel on a computer screen both the x- and y-coordinates have to
be known, either in their absolute (eg. 0-639 and 0-199 for a PC with CGA card)
or relative (window) position. A clear separation between these 2 coordinates is
therefore necessary during each iteration step. Let's start from a general
formula (actually the affine transformations) :

X(n+1)

aX(n) + bY(n) + e

Y(n+1)

cX(n) + dY(n) + £

where X and Y also can be more complex (eg. polynomial or a function) and a, d,
b, ¢, e and f are eg. the reduction, rotation and translation factors.

Computers do obviously not recognise the subscripts n or n+l and the translation
into any computer language can create a problem. The solution is actually simple
if we interpret and use NewX and NewY for respectively X(n+l) and Y(n+l) and take
care not to forget to re-assign these new values to X and Y before the pixel is
displayed onto the screen. The correct programme (in a GWBasic type language) for
one transformation could look as follows :

{ or alternative programme:
1 FOR n = 1 to MaxPoints { FOR n = 1 to MaxPoints
2 NewX = aX + bY + e { 01dX = X
3 NewY = cX + dY + £ { X=a+DbY + e
4 X = NewX { Y = c01ldX + dY + £
5 Y = NewY {
6 PSET (X, Y) { PSET (X, Y)
7 NEXT n f NEXT n

However, we don't like too many new variables, especially when they are not
strictly necessary...

So, we use Y = cX + dY + f in line 3 and delete line 5. Still correct!

The errors creep in when we also use X instead of NewX or when the new line 3 (Y
=cX +dY + f) is placed before line 2 in the above program. The reason for the
error is that a new value has already been assigned to X or Y when the old value
still had to be used in the calculation of the remaining coordinate.

Although I'm sure that almost all of us know the above, this error actually still
occurs quite often when we transform a formula or algorithm into a computer

programme and this gives mostly rise to very severe headaches and frustrations
since it disables you to reproduce any of the example figures.

?ven the best programmers sometimes fall into this trap as shown by the resulting
Mandelbrot set' images from 2 of the major articles in Fractal Report 1 :

Fractal Report Issue 3 Page 14

Top right page 19 (J. Marriage) Mid page 3 (Dietmar Saupe)

Although these sets have similar fractal properties, ﬁhey obviously differ from
the real Mandelbrot set (with apologies for the bad quality 1986 ZX-printing).

2. Colouring.

After having worked with several pure iterative (ie. iteration of a start point
according to a formula like that of Martin, Devaney, Mira, Chernikov ...),
mapping (eg. Henon, De Vogelaere, Helleman, Peitgen ...) and grid systems (eg.
cyclic systems, but also to some degree the Mandelbrot and Julia like sets) I
believe that one of the best ways to colour these fractals is to divide the
maximum number of iterations by the total number of different colours that you
can or would like to use. An equal number of consecutive pixels of each colour is
then displayed and usually clear, separate regions (mostly in an expanding
manner) develop. The total number of pixels required for a nice picture is mostly
high, eg. 50,000.

In addition to the pleasing pictures that in most cases are obtained in this way,
the method also reveals more about the underlying structure and evolution of the
system. This information can be used by eg. physisists to find solutions to the
instable orbits of elementary particles in particle accellerators or by
astronomers to determine the orbits of asteroids (eg. Henon mappings: bright
colours with a high no. indicate stable orbits while dark colours are mostly part
of chaotic behaviour)...

Say we would like to use the 7 high intensity coiours (ie. nos. 9 - 15 or blue to
white) on our PC, then we proceed as follows (in a GWBasic like language):

ColorCount = MaxPoints \ 7 + 1 {\ is an integer division}
FOR i = 0 TO MaxPoints
Kolor = i \ ColorCount + 9 {? in SuperBasic: INK i \ ...}
(calculations according to formula to obtain new x,y)
PSET (x, y), Kolor {? in SuperBasic: BLOCK ...
NEXT i or POINT x,y]

Alternatively you can change the colour for each consecutive iteration by running
through a number of colours as suggested by Simon Goodwin in Fractal Report 0.
However, this probably only gives good distinct regions when the no. of stable
orbits is some multiple of the no. of colours. Also, instead of using 3 state-
ments to determine the actual colour, this can more elegantly, faster and shorter
be programmed using modulo arithmetic :

above example : Kolor = 1 MOD 7 + 9 { nos. 9-15 }
Simon's line 155 : colour% = colour% MOD 7 + 1 { nos. 1- 7 }

Fractal Report Issue 3 Page 15

Fictures From Chaotic Dynamic Systems Without Attractors

John C. Topham

In the book 'The Science of Fractal Images’, R.L. Devaney has
written a chapter on fractal patterns arising in chaotic dynamical
systems. He mentions a system discovered by M. Henon that has a
‘strange attractor’. The system is shown below;

Hawes = 1 + v - 1.4 "=

yn*l = Ou 3;‘:n

Now using the ‘do-it-yourself’
techinque for drawing Julia sets
described at the end of the book
‘The Reauty of Fractals’', we
substitute the operative FIGUWRE 1
equations in that technique with
the ones above.

The resultant picture is shown
in figure 1. This shows few
fractal characteristics.
However, if one inserts the
system shown below:

Haw1r = —1.5 - 0.590A +2.4(y)2
Yh+1 = —0.45 + 0.5,

~

a picture shown in figuwe 2 and
I emerges.

Unlike Henon’'s system the above
equations do not converge to any
attractor, strange or otherwise.
All points in the plane studied
rapidly zoom off to infinity.
However, if one limits the
number of points generated,
studies the rate at which they
reach a certain threshold, and
assigns a colow to each pixel
according to this rate the
fractal pattern then results.

-3 3*0ij . 3

By altering the coefficients of the above system one can get various
interesting patterns.

One interesting aspect of patterns produced by the above system is
the type of optical disortion that seems to be occurring to the main
fractal elements. This is something that is not often seen in other
fractal patterns.

A simple basic program as used on the Sinclair QL is given for
people to experiment if they wish,.

Fractal Report Issue 3 Page 16

Figure 2. Overall view of fractal pattern from system below:

Heaws = & + b + Cclyn)=

Yaer = o + X
Section 1

= ~-1.5
-@.5
2.4
-@.45
= 0.5

nanow
it

Section 2

across = 300
down = 200

Section 3

“min = -3.95
wmax = 4,95
ymin = -2
ymax = 2

Section 4

maxiter 30
threshold = 500

Section 1: shows the coefficients of the system

Section 2: ‘across’ represents number of pixels used across picture
" ‘down’ represents number of pixels used down picture
Section 3: Area of the plane studied

Section 4: Constants of thresholds used (see basic program)

Fractal Report Issue 3 Page 17

Figure 3 This is the upper portion of figure 2. The numbers shown

0 SO

indicate its position relative to the x and y-axes.

If the following coefficients are used another pattern arises:
a= 13 b = -2.4; ¢ = ~.98; d = 0; e = 0.71

These are shown in Figure ﬁ. There is a resemblance between figure
4b and one of the poincare maps discovered by Henon shown on page
148 of James Gleick’'s book, 'Chaos: Making a New Science’. I do
not know if this system is mathematically linked to his.

References:

‘The Beauty of Fractals’ H.0. Feitgen, F. Richter, Springer-Verlag,
Heidelburg (1986).

‘The Science of Fractal Images’ H.0. Feitgen, D. Saupe (editors)
Chapter 3, 'Fractal patterns arising in chaotic dynamical systems’
pp. 137-167 Springer-Verlag, New York (1988).

‘Chaos: Making a new science’ James Gleick, Heinemann, London
(1987) . ' '

Fractal Report Issue 3 Page 18

45)

This shows the overall view of the pattern. The
coordinates of this pattern are:

Xmim = =-1.9; Xmax = 1.53 Ymin = —-1.@0%; Ymax = 1.0%
This shows detail of "a’. The coordinates are:
Xmin = ~0.8; Xmax = —-@.4; Ymin = -@.25; Ymax = 0.25

This shows detail of 'b’. The coordinates are:

i

Xmin = —-@.78: Xmax
B.1716

-0.702; Ymin = @.@737; Ymax =

.

Another part of ‘a’. The coordinates are:

"

Xmin = 1.12%5:; Xman L22% Ymin = -0.095; Ymax = @.095

Fractal Report Issue 3 Page 19

100
110

120
130
140
15@
168
17@
180
190
200
210
220

e
e

24@
250
260
270
280
270
00
1@
20
AT
40
S5
60
I7e
T80
90
400
410
420
40
440
450
462
47@
480
47@
500
510
520
3@
540
S50
o6a
570
S80
390
6HQB
61@
620

REMartk *%#% Z2-Dimensional Chaotic Dynamical Systems *%#x#*

REMark *¥%% Setting screen for QL format ¥ 3 %
MODE 4:FAFER @: FAFER#Q, 0: CL.5: CL.SH#O

REMar k ¥¥%% Intialising screen centring constants **%%
Hpos=250: ypos=100 :

REMar k *¥%% Fixel dimensions ‘ * ¥ *
across=I00: down=200

REMar b *¥%% Coefficients of system R AR
a=-1,5 1h=-,3 1c=2.4

d=~, 45 1e=,5

REMar i *#4%% Limit coordinates in the plane * ¥ X ¥
Amin=-I.0 tumax=4.5 tymin=-2 :ymau=2

REMar k *#¥¥k% Threshold constants K R
maxiter=30 :Cresh=500

REMay b *¥¥%% Determining coordinate of each pixel *%%*
Du= {max~xmin)d Zacross

REMar b *##%6% Setting each pisel LR
FOR «nn=@ TO across—1

FOR yrn=0 TO down-1

k=@

AnEmin+DeEnn s yn=ymin+Dy#yrr

REMar k #x%% Main iterative loop * B K
REFeat loop

s b)

IF wn™2+yn™2:Cresh: FLOT_FOINT:EXIT loop:END IF

IF krmarvitersBEXIT loop:END IF
smEath¥n+CEynEyn

ym=c @ %¥un

HIV=HME YRSy

END REFeat loop

END FOR vnn

END FOR xnn

REMark *%%% 0l system of assigning colour to pixels =%x%*

REMark #x%#% in mode 4 and plotting them * WX X
DEFine PROCedure FLOT_FOINT

IF k MOD ZT=@:col=2:END IF

IF k MOD Z=1l:col=4:END IF

IF k MOD Z=2:col=7:END IF

BL.OCH 1,1y npos-.S¥across+unn, 199 {(ypas—. S¥down+ynn) , col
END DEFine

Mr Topheam has a more advanced version of this program available for the Sinclair QL. He will send it upon receipt of £4
and a blank microdrive cartridge or 3.5' disk. He will send a 1isting and conversion notes for anyone who wishes to
convert to other machines for £2. He also has other - articles in preparation on a simpler z°n=1 program and images from
the solution of fifth degree complex polynomials with complex coefficients, and we look forward to these in due course.
He is happy to correspond with anyone having difficulties with his programs.

114, Mid Street, South Nutfield, Redhill, Surrey, RH1 4JH

Fractal Report Issue 3 Page 20

