1989

ractel Report

Issue 5

mandel21.vga
1

all rights reserved

AR

Larry Cobb Winnef' (mono version) M. A. Kirk

Two Views of 3D Lewis Siegel 2
Fractal Landscapes Kate Crennell 10
Larry Cobb Prize Larry Cobb 16
Mandelbrot 8087 Ed Hersom 18

Published by Reeves Telecommunications Laboratories Ltd., West Towan
House, Porthtowan, Cornwall TR4 8AX, United Kingdom. £10 UK, &12
Europe, £13 elsewhere. UK funds. (U. S. only $23 check payable to
"J.de Rivaz".) Subscriptions backdated to volume start. Free
subscriptions to future volumes for contributors. There are six
issues per volume.

by
Lewis Siegel

Introduction
This is a quick overview of two basic 3-D transformations: the oblique transformation
and .he perspective transformation. It offers techniques which should enable a

graphics programmer to achieve some basic 3-D effects. In this paper the x and y
axes will be the horizontal and vertical axes. This makes the x-y plane parallel to the
screen, and the z-axis will be the axis of depth with positive values "behind" the
screen. The screen coordinates will be SX and SY; the three space coordinates will be
the name of the point followed by the coordinate, i.e. PX, PY and PZ.

This kind of transformation is analogous to the diagrams used in most math classes to
describe a three dimensional space. The diagrams usually look something like this:

Ay P

/Z

» X

As you can see, this representation of a three dimensional space is completely
embedded in the two dimensional space of the paper. The cffect of thrce dimensions
is achieved by placing the z axis at an angle between the x and y axes. The
transformation follows directly if we imagine placing a two dimensional coordinate

space, prcs4umab1e that of a computer screen, on the paper:
\

dX = PZ*COS(0©)
dY = PY*SIN(®)

SX = PX + dX
= PX + PZ¥COS(©)

SY =PY +dY
> X = PY + PZ*SIN(®©)

Fractal Report Issue 5 Page 2

One can see that the transformation is achieved by a displacement of the x and y
coordinates. If © is the angle' that the z axis makes with x axis (in two space,) and dx
and dy are the x and y displacements, then it is clear that dx =PZ*cos(8), and dy =
PZ*sin(®). Thus, the transformation of a point P from three space into the two space
of the screen is simply: :

SX=PX +dx =PX +PZ *cos()
SY =PY +dy=PY +PZ *sin(8).

When using the transformation in a program, it is fastest to calculate the sine and
cosine once and use those values rather than repeat the calculation for each
_transformation, or to simply enter the values by hand. The important values for the
commonly used angles 30°, 45 °, 60 ° are sin(30°) = cos(60°) = 0.5, sin(45°) = cos(45°) =
0.707107 and sin(60°) = cos(30°) = 0.866025.

The z coordinate of the point can be scaled to produce a more realistic looking image.
If the full value of the z coordinate is used, the image tends to appear elongated. By

multiplying the z coordinate of the point by a constant C, the transformation is
changed to: e : ‘

SX =PX + C*PZ *cos(8)
SY = PY + C*PZ *sin(®).

Values of less than one for C produce a foreshortened image which appears more
realistic. A commonly used value for C in drafting is 0.5. It should bc noted that-if C is
less than one the image will be "squeezed" together, and if C is greater than one the
image will be "stretched" apart. Depending on how the image is. being displayed,

some information may be lost in the case of C < 1, or gaps may appear in the case of C >
1' . .

| ;Eg[s"gulizg !-“

The perspective approach to 3-D is somewhat more complicated than the previous .
approach. It entails the use of a "viewpoint," and involves placing the "picture
plane" (the screen) in between this viewpoint and the points which are to be
displayed (transformed onto the screen.) Although the viewpoint, screen, and points
can be placed anywhere in three space, the mathematics is simplest when the
viewpoint is at the origin and the screen is parallel to the x-y plane at an arbitrary

distance along the z-axi%. The set up looks like this:
2 .

.
g o D B
o K
.
. B .
K Q 5
., & S
o K
o o
|
. . . R
o o 4 o "
esedecnscantecaten
" 0 & h

L o<

e wq
ceadeadebanendratcn

escgvengtlollecacton

o . K R
g 5 1.
cseeveostuindendetnn
o . 0 -
.

. .0 ¢]
cenenslenngitee doila
o o . O

K K 8 o

Transforming the point from three space onto the two space of the screen is really
just a matter of drawing a line segment from the viewpoint to the point which is to be
transformed .and determining where this line segment intersects the screen. One
way of doing this would be to determine parametric equations for.the line segment

Fractal Report Issue § Page 3

and then to solve for x and y by setting the z coordinate equal to the distance of the
screen from the origin. However, the method of like triangles provides a simpler and
quicker transformation. To do this, one must imagine a line segment from the point P
to the z axis which is also perpendicular to the z axis. If the point where this line
segment intersects the z axis is called B (for base,) the point where the z axis
intersects the screen S (for screen), the point to be transformed P, the image of the
point on the screen I (t%)r Image) and the viewpoint V, the model will look like this:

A

Now there are two similar right triangles VSI and VBP. Solving for 1Y is easy if the
model is viewed from the side, which produces a projection like this:

IY PY
SZ PZ

Using similar triangles, it is clear that IY=SZ*PY/PZ. This same method is used to
solve for IX, by looking down on the model from the top. Then, IX=SZ*PX/PZ. Note
that SZ is the distance of the screcen from the x-y plane which was chosen arbitrarily.
Changing the distance of the screen from the x-y plane alters the severity of the

gserspective. If the screen is close to the x-y plane, the perspective will be more
dramatic than if it is farthcr away.

Now, the transformation is simply:

IX = SZ*PX/PZ,
IY = SZ*PY/PZ.

If the machine which you are working on does not have its origin in the center of
the screen or you want the viewpoint in some position other than the center of the
screen, simply add displacements to the transformed coordinates to place the
viewpoint in the desired spot. At this point the perspective transformation has been
achieved using only th rdi h in ing transf

of the screen from the origin with only four multiplications.

This scheme works well if the viewpoint, plane and points being transformed are
arranged in the fashion described above. If the relationships are changed -- for

Fractal Report Issue 5 Page 4

example by putting the viewpoint on the same side of the screen as the points -- the
transformation will hold, but the results are not predictable. Most likely the points
will not be mapped onto the screen, the image will be inverted, or, in some cascs,
extreme points will reach the precision of the machine and be mapped to zero, in
which case they will be mapped to the screen with undesirable results. Watch out for
points that lie in the same x-y plane as the viewpoint. In this case, PZ = 0 and a
division by zero error will. occur.

These transformations are useful, but they do not provide any information about
precedence, i.e., which points are in front of others. They work well, however, with
wire framing in which you simply transform the points one at a time and connect
them the same way you would normally. If there is some prior knowledge of the
object to be displayed, precedence can be "faked" by simply plotting the furthest
points first so that the closer points will be plotted on top of them.

Often in the discussion of perspective projections the question of vanishing points
arises. Vanishing points are important in drafting when a perspective projection is
being rendered. They are determined by the shapes of objects and their rclationships
to each other and the viewplane (screen), as well as by the rclationship of the
viewplane to the viewpoint. Because of this, they do not come into play when points
and therefore objects are being transformed mathematically. Rather, they arise
naturally as objects or parts of objects approach large distances from the viewpoint

and, if desired, can be calculated from the transformation and the objects being
displayed.

Using the transformations given above, it is an easy task to display the Mandelbrot set
or Julia sets in three dimensions. Simply use the dwell value of each point in the set
as the third coordinate. If the y coordinates from the originally two dimensional set
are changed to the z (depth) coordinates, and the dwell values are used as the new y
coordinates, images of each of the dwell sets (a set of points of equal dwell) are
obtained which have been "extracted" into three dimensions. It is ?cst to use as many
different colors as possible for each dwell set, as they will overlap.

It is important to display the image in a manner so that the furthest points are plotted
first. For the Mandelbrot and Julia sets, it is best to generate them from top to bottom,
rather than left to right, so that each line being displayed is at a constant depth from
the screen. If the "top" of the image is placed deeper in the x-z plane than the
bottom, the image will be displayed as a sequence of planes parallel to the screen,
each one closer to the screen than the last, so that the final image can be viewer
correctly. If the order is reversed, points which should be displayed will be hidden
by points which should not and visa-versa.

There is onc remaining problem with displaying fractals in thrcc dimcnsions using
this method. The dwell values for the large, outermost dwell sets are all very small,
and they increase rapidly as the dwell sets get closer to the Mandelbrot or Julia set
being displayed. This causes the large, solid dwell sets for most images to lump
together near the x-z plane and the remaining dwell sets to form a ficld of broken up
points. The image that results usually shows the Mandelbrot or Julia set floating
above a lot of confetti, and a few solid dwell sets lurking together toward the bottom of

the image. Here is a side view of the Mandelbrot set generated at a fifty iteration
limit, shown from -2.0 to 2.0:

T It is important to note that this technique simply displays an otherwise two dimensional fractal
in three dimensions. A "true" three dimensional fractal is ome which is generated using four
dimensional complex coordinates called "quaternians.”

Fractal Report Issue § Page 5

SOT A . T1.0

Iterations S i Normalized
Tt Values

o L Y 0.0

This image shows seven or eight solid dwell sets at the bottom, a wide band of broken
up dwell sets across the center, and the Mandelbrot set hovering above the whole
thing at the top. Here is a picture of the resulting image:

Looking at the right side of the cross section above, we can see that the dwell sets
seem to be distributed in a hyperbolic manner. It is this "bowing in" which should be
"straightened.” The dwell sets need to be redistributed so that the larger sets are
distributed more widely and the “confetti" is "squeezed" togecther closer to the main
set. One simple way to do this is by "normalizing" the dwell values of each point, and
then to replace the dwell value with a root of the normalized value, as follows:

Before a point is displayed, its dwell value is divided by the maximum iteration value.
This results in a new value which is between zero and one. The Mandelbrot or Julia

set itself will have a value of one, while the outermost dwell set will have a value of
Zero.

Now, since all of the dwell values are between zero and one, we can attempt to raise
the dwell sets by taking the square root, or any root, of these values. Remember that
a root of a number between zero and one is larger than the number itsclf. This causes
the values closer to zero to be raised by an amount grcater than the values closer to
one, so that thc lower dwell values arc raised up and the confctti is "squecczed"
together. Note that values of zero and one, which correspond to the Mandelbrot or
Julia set and the outermost dwell set, are unchanged. The dwell sets arc now
redistributed along a parabolic curve. Admittedly, this does not precisely undo the
seemingly hyperbolic distribution, but between zero and one, the curves are similar
enough for the parabolic distribution to be effective.

Fractal Report Issue 5 Page 6

Here is the same set shown above redistributed with different root values:

S P N

Fractal Report Issue 5 Page 7

Among these graphs, the fourth root appears to be the best choice.

Now, all that remains is to obtain a new screen coordinate value by multiplying the
normalized, redistributed values by the Original iteration limit. The final code in
Pascal for a "squarc root cxtraction” might look something like this:

NewDwell := trunc(MaxIterations * sqri(OldDwell / MaxIterations));

Since Pascal does not have any intrinsic root or power functions, other root values
can be obtained using the Natural Logorithm function and Exponent functions. For
example, a fifth root can be calculated using the following identity:

X1/5 = expl(1/5)InX].

Conclusion

Using these techniques, it is easy to obtain many interesting new views of familiar
two dimensional fractals. In each case, the transformations can be implemented in
only one or two lines of code. Because of this, it is not difficult to alter all ready
existing code. Usually it can be done be simply replacing the line which plots a pixel
with a call to a procedure which performs the transformation. The procedure will
need only the x, y and z coordinates (where z is the dwell value) of the point which is
to be transformed, and the resulting x and y screen coordinates can be passed back or
plotted in the procedure itsclf. The resulting three dimensional representations of
Mandelbrot and Julia scts can help to show the relationship of dwell scts in a way that
cannot be achieved by simply cycling the color palette, and with some creative
rendering, can provide very beautiful images.

Further References

Foley, J.D. and Van Dam, A, Fundamentals of Interactive Computer Graphics, ch. 7-8,
Addison-Wesley, 1982.

Pietgen and Saupe, The Science of Fractal Images, Sec. 2.7, Springer—Verlag, 1988.

*This work was done in a senior seminar in Fractal Graphics at San Francisco State University
taught by Lawrence S. Kroll, PhD. Pictures were generated on a Macintosh using Turbo Pascal.

Following is pseudo-code for generating a three dimensional version of the
Mandelbrot set similar to those shown previously. It should be noted that in this
example the Mandelbrot set is being displayed while it is being generated. It is
suggested that these two procedures be done separately; if the dwell values for the
Mandelbrot set are saved in a data file, a separate program which performs only the
three dimensional transformation will show the set very quickly and allows for
different views to be displayed without a regeneration of the set each time. This

approach along with methods for data compaction is another topic and may be
written up in the near future.

Fractal Report Issue 5 Page 8

Program Mandel3d;

{This Program Displays a 3-D image of the Mandelbrot Set on a 300x300 Raster with its
origin in the lower left hand corner}

function GetDwell(cx,cy : real;MaxIter : integer) :integer;
{This function returns the dwell value of the complex point (cx,cy))
var ’

zZX,zy,temp : real;

Numiter : integer:;

begin
ZX:=CX;
zZy:=Cy;
NumlIter:=0;

while ((zx*zx+zy*zy < 4) and (NumIter < MaxIter)) do
begin
temp:=zx*zx - zy*zy + cx;
Zy:=2*zx*zy + Cy;
Zx:=temp;
NumIter:=Numlter + 1;
end;

GetDwell :=NumIter;
end;

Procedure Transform3d(x,y,z : integer; var xout,yout : integer);
{This procedure actually does the 3-D transformation}
var temp : integer;

begin
xout:=trunc(x + 0.707107*y); {It's only two lines!)
yout:=trunc(z + 0.707107*y);

end;

Procedure MakeMandel;
{This procedure generates and displays the Mandelbrot Set)
I'a r

X,Y¥,X_lincrement,y increment : real; {complex coordinates)
$X,sy,sz,tx,tz : Integer; {screen coordinates)
const

left = -2; right = 2; bottom = -=2; top = 2; {(complex borders)
screenleft = 0; screenright = 300; screenbottom = 0; screentop = 300; (screen borders}

begin
x_increment:=(right - left)/(screenright - screenleft);
y_increment := (bottom - top)/(screenbottom - screentop) ;

y:=bottom;
for sy:=screentop downto screenbottom do {vertical scan})
begin
x:=left;
for sx:=screenleft to screenright do {horizonatal scan})
begin
sz :=GetDwell(x,y, 100);
Transform3d(sx, sy, sz, tx,tz); {the transformation!}
PutPixel (tx, tz);
x:=x + x_increment;
end;
y:=y + y_increment;
end;
end;

Begin
MakeMandel ;
readln;

end.

Fractal Report Issue § Page 9

13 Aug 1989

FRACTAL LANDSCAPE
K.M.Crennell Aug 89

Program 'Mounte' draws a random landscape showing mountain peaks behind a
lake with low foothills in the foreground. (See screen dump for an
example) The mountains are made by starting with a triangle, finding the
midpoints of the sides, randomly displacing them by a small amount, and
making four new triangles by Jjoining the new points to the original
verticeg, then operating similarly on each new triangle, and then
operating similarliy....... until the degree of realism wanted is reached.
This can take a long time, depending on your processor and what level of
recursion you want in your picture. In the diagram, the highest peak has 6
levels, the others 5 and the focothills only 2; the plotting time was about

5 minutes. The only graphics routine needed is to draw a filled triangle
in the current colour.

The program was written in 'C' for an Acorn Scientific co-processor, with
graphics routines written to simulate the BBC-BASIC graphics routines
which use the graphics extension ROM standard on the BBC-Master.
The routines used are:
colr computes the colour and plote a triangle
peak controls the drawing of each peak
pnt returns 2 points xz,yz xXp,yp randomly displaced in 2 directione
from a given point x,y
vertx makes 4 new triangles from the 2 setsg of points
Graphics routines are:

mode(1l) initialises graphice screen to 4 colours 1279 by 1023

vduz23l sets up user defined shaded patterns

vdulo9 sets the colours to Black, White, Blue, Cyan
gcol selects the colour or pattern

rectan draws a filled rectangle in the current colour
trian draws a filled triangle in the current colour

This program was basged on one written in BASIC for the BBC-B microcomputer
by Michael Batty, printed in his book "Microcomputer Graphics" published
by Chapman and Hall, ISBN 0-412-28540-1 (paperback). Chapter 5 contains a
good explanation of the principles of construction of these fractal
landscapeg, and several other programe, including a version of "Planet
rise over Labelgraph Hil1ll". These programs use only the graphics of the
BBC-B, with 4 colours in mode 1, and no graphics extension ROM to give
more realistic colouring. I rewrote the program in 'C' mainly because
Batty's programs run very glowly, taking several hours to make landscapes
l1ike the one shown in the screen dump. Less realistic plots can be made

more Quickly by reducing the levels of recursion, or the number of peaks
in the picture.

Continued on next page

Amygdala Reprints Turbo Mandelbrot Sets

The American Publicaion Amygdals reprinted Or Dietmar Saupe's article from issue 1 in its issue 17. Aaygdala is
published from Box 219, San Cristobal, WM 87564, USA, from where further details can be obtained. The issue also
included details of a fractal music tape, and I have requested a copy of this for evaluation and possible sale
to Fractal Beport readers. 1 have also asked the author if he has any simple fractal music programs for computers that
BEEP and which will help beginners in Fractal Music get started.

Fractal Report Issue 5 Page 10

Editorialette

It was originally intended that this issue of Fractal Report should feollew at the end
of September sr early in Octobar. and in fact it was sent to onr srinter during the
second week of September. However he was taken ill through cverwork and eventuazlly we
recovered the copy to have it done elsewhere. I have taken this opportunity to alter
this editorial slightly. 'Issue 6 will be posted sometime in January 1990.

Dr Keith Wood has written a PC program that compiles fractal eguations in machine
language. It is advertised in Electronics World and Wireless World Octaber 1989 for
£15 (£16 overseas) from him at 33, Glan Aber Park, Liverpool, L12 4YP. It includes an
editor and syntax checker, file compression, and display editor. The colour pictures
in EWWW suggest that this program is very good value to ‘those with PCs (5.25", add
£1.50 for 3.5") with EGA and/or VGA, DCS 2.0 or higher and at least 256k.

Fractal Report Issue 5 Page 11

planet Rise Over
Labelgraph Hill

Printout by
Kate Crennell

from .

BBC Basic
program in
Batty:
Microcomputer
Graphics

S * FRACTAL Mountains F.M.Crennell 31 July 89 */
/* */
#include <stdio-h:
¥ #Hinclude "graphices—-h" yvou may need this for your graphics #/
int yt,kw,xs, vz 3p,yps
main {)
FILE #*stream, *fopeni);
int numyd,xil,yl,=2,vy2,x
char #friame;j
void vdu () ,mode () ,gcol () ,move{); /% graphics routines */
void peak ();
printf{® enter filename ")jiscanf ("is",frname)
stream=fopen (fname, "r"); /* open datafile for reading */
printf (" enter 2 random seeds >0 and <Z20000 ");
scanf ("%d %“d",%seedll], Yseedl21); /% read these from keyboard */

YIS, 1.kl nread, seedl2],rand () ;

/¥ peaks behind lake have different random start from mounds in front #*/
mode(1); /% initialise graphics 4 colours 1279 by 1023 pixels %/
vadu2E (15,1, 3,3,1,1,3,35, 1) 3 /¥% shaded patterns defined */

vdu23(14,1,2,2,1,1,2,2, 1) 3vdu23(13,1,0,0,1,1,0,0,1)3

vdul9 (0, 4) svdul9 (1, M 3vdul?(2,6) svdul (3, 7) ; /% set colours */
/* start of drawing each set of peaks */

for{l=13 1 <=2 3 1++)

Fractal Report Issue 5 Page 12

30 Jul 1989 FRACTAL LANDSCAFE

{
nread=fscanf (stream, "%Zd %d %d ",%num,&yt, %kw) ;s srand(seedll11);
/% num=how many peaks, yt=height of snow line, kw=type */
for (kl=13 kl <= num § kl++)
{ /* for each peak */
fscanf (stream, " %d “d %d %d %d %d “d ", &d,%x1,%yl, &2, 8y2, &3, &y3)
/% read level of recursion and initial co-ordinates for peak */
peak (x1,y1l,x2,y2,%3,y3,d); vdu(7); /% ring bell after plotting */
¥ /* end of for on kl {each peak in this set) */
if (1==1) { gcol(0,)srectan(0,0,1300,150); /% draw the lake */ 3
> /*® end of for on 1 (set of peaks to draw) »/
/% save the screen to disc */
kl=open("P1ALPC",1): write(kl,OXFFFF3I000,0X53000)3close(kl);
fclose(stream); /% close datafile stream */
exit(2);
)

void colr (Wx,wy,X),xy,2x,z2y,type) int wx,wy,xx,sy,zx,zy,type;
{
int ytt,zt,tt,gcl,gc2; void gecol () ,move(),plot) ,trian();
/¥ given the I sets of co-ordinates and type for a triangle
decides colour dependent on height and plots triangle */
if (wy > xy)
ytt=wy;
el se
ytt=xys;
if (ytt < zy) vytt=zvys
zt=yt—-(ytteytt) /vyt
tt= ((float)rand() /16383.)*yt 3

gci=03
if (ytt » O.9%yt)
gc2=3; /% decide on shaded colour */
else
{
if (ytt < O0.2%yt)gcl=1;
el se
{
if (tt+tt+tt < zt+zt dgel=1;
else
{
if (zt+zt+zt < tt+tt)gell=3;
else
{
gc2=03
gol=16%((tt+tt+tt)/=t);
3y
}
¥

}
gcol (gcl,gc) s
if (type == Dtrian (Wi, Wy, 8,0y, 2x,2y)}
else plot(85,zx,zy);
3 /% end of function colr */

void peak Gil,y1,%2,y2,x23,y3,d) int xil,yl,x2,y2,x3,y3,d;

{
int xa,ya,ax,ay,nb,yb,bx,by,nc,yc,c,cysvoid colr () ,vertx () ,point();

Fractal Report Issue 5 Page 13

30 Jul 1989 FRACTAL LANDSCAPE

/*

/¥

®n,yn are co-rdinates of triangle d=depth of recursion */
pnt (x2-x1,y2-yl); xa=ul+iziyasyl+yzjax=—-xpgay=-—yp;

pnt (x3-x1,y3~-yl)} xc=xil+xziyc=yltyziex=xpsicy=yp;

pnt (13-%2, y3I-y2) 3 xb=x2+xz;yb=y2+yzibx=-xpsby=-yp;

randomly displace midpoints of sides */

if (d==0) {ax=03ay=03bx=03by=03cx=03cy=03) /% initial displacements */
cif ((d ¥ 0) &% (kw == 1)) goto doneg
colr(xl,yl,na+an,yatay,HcH+Cy,YC+Cy,3)}

colr (va+ax,yatay,xct+cx,yc+cy,xb+bx,yb+by, 1)

colr (xc+cx,yc+cy, xb+bx,yb+by,x3,y3,1); /% plot the 4 new triangles »/
colr (xat+ax,yatay,®2 ,y2,rb+by,yb+by,3)-

done:

vertx{xl,yl,x2,y2,x3,y3,xa,ya,xb,yb,xc,yc,d) g
> /% end of function peak */

void vertx(al,bl,a2,b2,a3,b3,aa,ba,ab,bb,ac,bc,d)

int al,bl, 32 b2 a3,b3,aa,ba,ab,bb,ac,bc,d;

{ /% makes the 4 triangles from the randomly displaced points #/
void peak ()

if (d==0) returng

peak(al,bl,aa,ba,ac,bc,d-1);

peak (ac,bc,ab,bb,a3,b3,d-1);

peak (aa,ba,a2,b2,ab,bb,d-1);

peak(aa ba,ab,bb,ac,bc,d-1);

¥ /% end of function vertx */

void pnt (x,y) int ¥,ys

/

RN EORO D

*

{ /* computes the random midpoint displacements %/
float row,fx,fys
int rand():
r= 0.3 + (({(float)rand()/16383.)-0.95) /3.
w= (0, 03+ ((float)rand() /16383.)/25.);
if(rand{() > 8191) w=-w;
fh=(float)x;fy=(float)y;
tz=0int) (refx—wefy)syz=(int) (r*fy+w#fx);
),:p y/"‘)()- yp-—_.y /’7(‘).
> /% end of function pnt %/

typical data file follows
4 more pointed peaks with greater recusion behind lake

QOO0 O
~50 -80 1400 =150 3550 900
1000 —-100 730 —-100 2350 700
1000 —-100 1900 -100 1000 350
0 ~100 2600 ~100 1250 S00

90 O

~H00 —-100 1500 100 100 80
—-700 —100 18%0 —-100 S00 65

-500 -50 1200 -80 890 57
Q -30 1800 —-100 1100 85
4 lower mounds before the lake */

Fractal Report Issue S Page 14

On the Persuit of Perfection

| S B felt that
poorly written text may be difficult to understand and hence frustrate the reader. Mr
u g m felt that a good command of English suggested a good command of

programming.

Einstein would have been
prevented from writing as he suffered from dyslexia and could
not read or write until after fourteen. 1 doubt that anyone
would refuse an article from Einstein if
he were alive today.

Ltogic is a praoduct of the 1left hemisphere of the brain,
language the right so skill at one doesn’t imply skill at the
other. People tend to dominate at one or the other, it is rare
for someone to be good at both.

In my opinion as long as the message of the article is
communicated then it has served its purpose. I would rather
have an informative, original article in poor English than an
unoriginal article in perfect English.

I don"t claim that what I have written is perfect English,
but hopefully it gets my point acroses. Pity is daesn’t have
anything to do with fractals.

Fractal Report Issue 5 Page 15

The "LARRY T COBB PRIZE'" Awards

Again, I <can't <claim to be
inundated with entries for the
competition. Either you don't
want a competition, (which is a
shame because sharing co-
ordinates is great fun) or you
are overwhelmed by the quality
of the entries and dare not
enter, (which is silly because
any variation you have found
could interest other readers).
This is 1likely to be the 1last
competition unless interest
grows, or maybe we will run it
less often.

If you have an entry send it
direct to me at the address
quoted in the advertisement for
my program. The prize is a full
colour print of the winning
entry, and a black and white
version will probably be printed
in Fractal Report.

I am sure that our editor will
not be upset if I quote his
"unofficial" entry. "Have you
ever considered doing the
Mandelbrot Set itself with the
hottest colour, eg a white with
a dash of yellow, with a
sharpish transition to the next
shade of yellow and then grad-
ually tapering off through reds
and blues to blackness at the
edges?" It certainly gives an
interesting effect and John says
that the idea came from reading
a science fiction novel where
the universe had a distorted
geometry. Colour variations and
pixel allocations of well known
fractals can make interesting
contributions.

Another entry can from someone
who would ©probably wish to
remain anonymous! He is one of
the many, happy (I hope) users
of ny DRAGONS fractal
investigation software.

Fractal Report

Unfortunately he did not realise
that his entry was on of the
default conditions built in for
the Julia Set. For those of you
that do not have the program,
the c centre co-ordinates are 0
+ 0j, 2z = -0.74543 + 0.11301j
with a side of 3.5. This gives
a very intricate, swirling
pattern and requires a 1lot of
iterations to fill in the
detail.

The first international entry
comes from Mr M A Kirk, living
in Geneva. He accuses me of
having "either 1lots (and 1lots)
of spare time" or of having a
Cray to heat my home!
Unfortunately, I have neither
but I do run my computer
overnight, on many occasions,
and let it do the work.

His entries are two areas of the
Mandelbrot Set. The first entry
has a side of 0.000166 and a c
centre value of -0.664338585 +
0.453785257. He stresses the
importance of colouring the
image and suggests using warm
colours from yellow to red.
Then cycling the colour palette
gives "the 1illusion of flames
dividing and subdividing."

He describes his second entry as
representing ice crystals and
assigns 32 shades of Dblue
colours to the fractal. The
side dimension is 0.0232377 with
the ¢ centre at -0.669774665 +
0.45774595j with a colour offset
of 10. This is the one I 1like
best and it wins this issue's
prize colour print.

Steve Wright's article in the
last issue gave an interesting
twist to the Mandelbrot Set. By
giving a starting value to z,
the Set is distorted or

Issue 5 Page 16

"melted," as Steve calls it. three dimensional figure

Here are the co-ordinates, results. In other words, a 3D
including the starting value for Mandelbrot could be contructed
z or "melt factor": side 0.036, by incrementing the real (or the
c centre -0.095 + 0.658j and z = imaginary) value of z in steps.
0.3 + 0.3j. If only the real or the
imaginary 1is non zero, the
There seems to be very 1little Mandelbrot Set keeps some kind
work done in this area, perhaps of symmetry about the real axis
because everyone is SO throughout, and it does not
overwhelmed by the infinite "melt", but it does produce
range of the more familiar interesting distortions. I
version. Offsetting z does have wonder what the complete 3D
an interesting consequence; the image 1looks like or if anyone
Mandelbrot Set is four has the time to find out?
dimensional but if only either
the real part or the imaginary Larry Cobb

part of 2z 1is varied, then a

ADVERTISEMENT

FRACTAL INVESTIGATION PROGRAM for IBM PC Compatibles New release - version 2

DRAGONS is a very comprehensive program for exploring the infinite variety of Mandelbrot fractals. Although it has
many options, it is easy to use after a little practice. No mathematical knowledge is assumed and it comes complete
with examples and full instructions.

o Calculates and displays five types of Mandelbrot Fractal- using the maximum number of colours and pixels
available in CGA, EGA and VGA

o Menu driven, with built-in defaults, for ease of use.

o Screen cursors are used to select an interesting area and magnify it to full screen size. This
process can be repeated up to a magnification of 500,000,000,000 times.

o A cursor simplifies the location of fractal dragons or Julia Sets

o Co-ordinates can be stored and transformed for later calculations

o Allows lengthy fractals to be generated in parts. The computing can be done whenever it is convenient.
o Colours can be changed for maximum effect, both before and after calculation.

o Built-in conversions for dragon "tiling" technique.

o Different pixel-grouping algorithms can be selected for the best results.

o Uses a Maths Co-processor, if fitted, to speed up calculations by 10 to 20 times.

o Includes EGA & VGA screen blanking to protect display phosphors

o Supports Amstrad 2000 series in 256 colour EVGA mode.

o - catalogue of fractals can be compiled using the INFO.EXE utility

The software costs £14 including examples and full instructions. Owners of DRAGONS 1.2 (and above) can update for
£5 if they return their original disks. Please state whether 5% or 3% inch disks are required and order from:

Larry Cobb, c/c Bay House, Dean Down Drove, Littleton, Winchester, Hants, $022 6PP

Fractal Report Issue 5 Page 17

Manmndel brot — 8087

* The Intel 8087 was a

£Ed Hersom Numeric Data Processor chip

. In Issue 2 it was pointed out that I had not given any code
for my “"I—-trajectories" (Issue 1). At the time I did not think
this would be of general interest, but as the use of the 8087
coprocessor has been mentioned and 1 use this chip, I would

like to describe how I write my code. There is a difficulty in
that I praogram in FORTH, but I hope this will not make what I say
completely incomprehensible! Another general point is that if
the maximum ben=fit is to be gained from the 8087, the core of
any program must be in machine code, that is machine code for
8087. To start, therefore, I must say something about FORTH and
the code for the 8087.

FORTH uses the term “"words" for almost everything: pro-
cedures, variables, constants, operators and so on. A word has
an identifier which can be any string of ASCII characters not
containing a space. The definition of a new word, for a pro-
cedure, say, commences with a ":" followed by the name of the new
word, followed by a list of previously defined words which have
to be executed in sequence, and ends with a ";". Such a word is
called a secondary since it does not really do anything itself,
it just calls other words. These words, if secondaries, do the
same thing, i.e. call other words, but the tree-like structure
must have ends where the words consist of machine code and do
something useful. These words are called primaries. To define a
primary the name is preceded by CODE and is followed by a list
of words which create code. The definition is terminated with
END-CODE. All the words, that is all those originally supplied
with the system together with those defined for use for a current
program, form the "dictionary". Groups of words, called
"vocabularies", can be included or omitted at will.

The 8087 employs a stack of registers B deep by 80 bits
wide, and has a powerful arsenal of instructions to operate on
the numbers stored on this stack. There are also, of course,
instructions to transfer numbers between the top of the stack and
the store, but these are normally only(') 64 bits long. Numbers
in the store may be integer or floating point, but the long 80
bit numbers on the stack are always floating point. If calcul-
ations can be carried out with a minimum of transfers between the
8027 and the store, then rounding errors as well as transfer
times are reduced. In my FORTH system I have a vocabulary of
words which create code for the instructions. Only a small
selection is required here, and tc demonstrate what each word does
1 give the state of the stack before and after its operation. For
example, if y and then x have been put on to the stack, i.e. x is
on top, then

apdup N YsX T T T YaXaX

means "duplicate the top item on the stack". (ap stands for
"arithmetic processor", the 8087). The stack contents are shown
left—-to-right with the top on the right. The " - - - " separates
"bhefore" and "after". The "\" is used to indicate comment and in
any FORTH code means "ignore everything to the end of the line".
(A line terminator, Carriage Return or Line-feed, is ignored in
FORTH, apart from marking the end of a comment.)

Fractal Report Issue 5 Page 18

Other instructions are:

apover \ YeX = — — Ya¥,¥Y

faddp \ yyx — — — (x+y) Pop the 2 top items, leave sum on stack

fmulp \ Y — — — xRy

fsubp \ Yy — — — (x—y) Nnte that register 1 is subtracted from
register O, the top of the stack.

Hence,

apdup faddp \ y,x — — — y.,2x

apdup fmulp \ y,x — — — y,x"2

If n is any integer in the range (1,7), then "n fmuli" means
multiply the top of the stack with the number in the nth

register and similarly for "n faddi". "n xchi" means exchange top
of the stack with the nth register. So

1 fmuli N YaX — — — ysXYy Compare this with fmulp above.
2 faddi N\ Za¥YsX — — — Z,y, {x+2z)
2 uxchi N ZyYs¥® — — — NGgY,Z

Finally, fstiwlbx] means "convert the number on the top of the
stack to an integer 1 word long (16 bits), store it at the
address held in the BX register of the 8086 and pop the original
number off the stack". All these words, except this last one,
create code which includes a "WAIT" instruction. This is a
necessary instruction to ensure that the two processors remain in
step. Ffstiwlbxl, however, needs a WAIT to be explicitly inserted.

Fortunately this small selection of the 8087 code is all
that is required for my example, and we can now get on with
Mandelbrot. The word, NEXTXY, is to code just one iteration,
i.e. writing z° = z™2 + k where z* = x* + iy*, z = x + iy and
k = KR + iKI, we calculate x> = x™2 — y*2 + KR , vy’ = 2xy + KI .
The code is written as a "macro", that is, when NEXTXY is called
it will write the code, not execute it. The comments, however,
show what happens when the code is executed and the contents of
the stack are shown after the execution of the code. Further, at
execution time, KI,KR,y,x must already be on the stack. x° and
y? will replace x and y after execution.

: NEXTXY v Create a secondary word called NEXTXY
ASSEMBLER \ Include the assembler vocabulary. This is not
\ usual in a secondary definition.
\ KI,KR,y,x Starting condition
apover N\ KI KR,y %,Y
1 fmuli \ KI,KR,y %)Y
apdup faddp \ KI;KR,y,%42xy
4 faddi N\ KI KRy %, (2Xxy+KI) = y-
2 xchi N KILKR,y? :%,Y¥
apdup fmulp. \ KI,KR,y’,%x,y"2
apswap \ KI,KR,y?,y™2,%
apdup fmulp N KIKR,y” 4y™2,x"2
fsubp N\ KIZKR,y?, (x"2-y™2)
2 faddi \ KI,KR,y” , (x"2-y"2+KR) = %7
H \ end of word

Fractal Report Issue 5 Page 19

The word to execute this code can then be simply

CODE NEXTZ \ Create a primary called NEXTZ
NEXTXY \ Insert the code here
NEXT, \ Go to next word

END-CODE \ End of code for NEXTZ

This is what 1 used for calculating my z-trajectories. A
program was written which loaded the appropriate values for KR
and ¥I and 0,0 for the initial values for x and y. NEXTZ was
called repeatedly and after each call, copies of the new values
of ¥ and y were extracted from the 8087 and plotted.

A Mandelbrot calculation requires the iteration coded above.
1t does not require extraction of the point at each stage, but it
does require a check to see that the number of iterations has not
exceeded a certain limit and that iz! has not become too large.
In most langquages this "house—keeping” can take a significant
amount of time and FORTH is no exception. For maximum speed 1
have therefore included some 8086 code to do a complete
Mandelbrot calculation for one value of k. The word is called
M-BROT and is defined below. Since FORTH makes extensive use of
the Reverse~-Folish notation, assembler words often appear as
other assemblers’ notation in reverse. For example:

DX PUUSH = PUSH DX and CX, DX MOV = MOV CX, DX and so on.

M-BROT requires KI,KR,x,y on the AP—stack- (8087) as before, but
it also requires the iteration limit, LEVEL, on the 8086 stack
(usually just referred to as the "stack"). It returns the actual
number of iterations, COUNT, gn this stack and leaves KI,KR and
the final values of % and y on the AP-stack.

\ Stack: LEVEL - — — COUNT. AP-Stack: KI,KR,y,.x :
CODE M-BROT \ Create a primary word called M-BROT
DX POP \ Pop LEVEL into DX ’
CX, DX Mov \ Copy into CX
BX, # WORK MOV \ Address of WORK into BX for future use
1$: NEXTXY \ Insert code here and label the entry point 1%
A AP—-stack: KI,ER,y,x where x & y are now the new point

apover apdup fmulp \ KI,KR,y.x,y"2
apover apdup fmulp \ KI KR,y X, y"2,x"2

faddp N KILKR,y #, (x™2 + y*2) = 12172

WAIT +Fstiwlbx] \ Store the integer value of 12172 into

AX, WORK MOV \ WORK and bring it back into AX

AX, # 4 SUB 2% JA \ Jump to 2% if z1"2 - 4 > O

1% LOOF \ Decrement CX and repeat from 1% if non—zero
2%: DX, CX SLUR \ Subtract CX from DX so that PX now contains
DX PUSH \ the COUNT and push it to the stack

\

NEXT, END-CODE Go to next word. End of code for M-BROT

For those interested in speed, I timed this word for 100 times,
each time with the level set at 1500 at a point where COUNT = LEVEL,
i.e a point of the Mandelbrot set. Total time was 32.1 secs. soO
dividing by 150,000 gives an iteration time of 214 microsecs.
(Processor is a 80186 running at 8 Mhz)

Finally, let me add that FORTH programs do not usually have

so much, or indeed any, machine code. FRACTAL calculations are
exceptional, but I have shown how FORTH can readily cope.

Fractal Report Issue 5 Page 20

