1
e
]
J
[
q
2
I
g
3
I

no 7
Editorial John de Rivaz 2
Pictures from Complex Polynomials using Newton’s Algorithm John C. Topham 3
Announcements 4
A Three Dimensional Julia Plot with Z - Trajectories John de Rivaz 10
Space Filling Iterative Patterns Dr Hugh Daglish 11
Ikeda Map Dr John Corbit 14
Coloured IFS Tilings Dr Uwe Quasthoff 15
Intersecting Universes Michael Kirsch 18

Single copy rate £2. Subscription rates six issues: — £10 (UK only) £12 Europe £13 elsewhere.
Cheques in British Pounds should be drawn on a UK bank and should be made payable to
"Reeves Telecommunications Laboratories Ltd." Alternatively, dollar checks
for $23 can be accepted if drawn on a U.S. bank and made payable to "J. de Rivaz'.

Subscribers who are successful in getting one or more articles or letters published in
a given series of six issues get the next volume of six issues free of subscription.

All new subscriptions are backdated to the start of the current volume.

Editorial

Welcome to the second volume, and many thanks to all those who renewed their
subscriptions. Below I mention some American contemporaries. This will serve two
purposes. It will provide readers who wish to expand their horizons with sources for
further information, and there is the hope that the editors of these journals will
publish similar reviews giving their readers the same opportunity. The subscription
arrangements for Fractal Report in America (only) require a check for $23 made
payable to "J. de Rivaz". This brings by airmail six issues backdated to the start of
the current volume. $46 brings volume 1 as well, together with issues 0 & —1.

Some people said they like reviews of conferences etc., although they are few and
far between. I would direct these people to an excellent and polished review
newsletter called The Dynamics Newsletter published by Ralph Abraham at the Aerial
Press, PO Box 1360, Santa Cruz, California 95061 - 1360, U.S.A. I know it’s
American, but the coverage is worldwide and if you get out and about to go to
conferences, then you’ll not mind raising the few dollars that a subscription requires.
It an excellent but struggling publication, so if you like this sort of thing then it
needs your support. Write to Mr Abraham for a sample issue and subscription
details. He would also be interested in conference announcements or reviews of past
conferences, for publication in The Dynamics Newsletter.

At this juncture I can’t fail to mention the other American newsletter that is aimed
at more experienced fractal enthusiasts, Amygdala. It spreads its net wide as to
article type, but it does come up with some real gems at times. Many of you have
bought copies of the QL machine code Mandelbrot and Julia programs. The core
of these originated from an article in Amygdala describing an Amiga program. Mr
Richard V. Robinson’s fractal music cassette came from another Amygdala article.
(See issue 6 editorial for information.) Although these gems will appear in Fractal
Report, probably in more accessible form eventually, there will be a long time delay.
Therefore if you want to be in the forefront a subscription to Amygdala would not
come amiss. Address: Box 219, San Cristobal, New Mexico 87564, USA.

Nearest to Fractal Report in content is Dr Clifford Pickover’s bi —annual newsletter
The Journal of Chaos and Graphics. Dr Pickover isn’t as strict as I am in aiming
for practical information, but many of the contributions are similar to Fractal Report
articles. It appears that some early issues were sent out free. Dr Pickover can be
contacted at the IBM Watson Laboratory, Yorktown Heights, NY10598, U. S. A. He
is also anxious for written contributions to this and other journals.

Although some of you wanted an arrangement to pay for American subscriptions in
sterling, we haven’t come up with a formula that is economic of money and time
to make this possible. For those readers who might want to buy things by mail from
America, it is not that hard to get a $US dollar account. Ask your UK bank for
an introduction to an American bank where you can open a dollar account by mail.
If you keep more than two or three hundred dollars in the account, then there are
no banking charges on some accounts. It has not been illegal for British people to
have overseas accounts for some time. Mrs Thatcher returned this freedom soon
after she came to power. It was denied citizens during the war in most countries,
but the UK with its history of non - Libertarian governments was one of the last to
restore it. ‘

- Fractal Report issue 7 page 2

Pictures from Complex Polyinomials using Newton’s Algorithm

John C. Topham

Refering to the article W.E. Thomson wrote in Issue 1 of
‘Fractal Report’, I would like to extend his idea for drawing
pictures from solutions of z*n = 1 to encompass fifth degree
polynomials of the form,

Cmz2® + Caz2?® + C32™ + Caz2® + €32 + Co = 0 (1)

where Coyess..yCs are real or complex constants and z = x + vyi
(x,y are real variables).

There are two methods you can use to draw such pictures.

With the first method you choose the coefficients, co to cs,
and set up the two relevant equations for Xape: and yae3 by
working through Newton’'s formula. An example is shown below.
Then you use the final equations to find the roots of the
polynomial.

In the second method you first set up your polynomial in the
form that already shows the roots as follows:

(z + ry)(z + ra)(z + rx)(z + ra)(z +rs) =0 (2)

where ryi....r's can be real or complex numbers. Multiplying
this out you eventually get the equation in the form of (1) but
with coefficients in term of the roots in (2). With this
method you have the opportunity to experiment to see if new
phenomena occur if the roots are widely or closely separated.
If some of the roots you choose are complex then you will more
than 1likely get a polynomial with complex coefficient, whereas
in the case of the first method vyou can choose only to have
real coefficients if you wish.

In each case I used a program that plots out pixels in much the
same way Julia Sets are drawn, i.e. each pixel 's coordinates
are used as the intial values for the system. When the system
is iterated a string of numbers are generated. However,
instead of checking for any thresholds, the program checks to
see which of the polynomial ‘s roots this string of numbers is
settling down to. When this root is found the prigram selects
the colour chosen for that root and allocates it to that
pixel.

To find the two equations to iterate using the first method you
proceed as -follows taking the same equation Mr Thomson used as
an example,

z3 = 1 or z¥ -1 =0

where z = x + yi (xy,y are real numbers, here, of course, cs,
Cay C=2 and c, are zero, and cs and co, are 1), you use Newton's
Method of root finding in much the same way Mr Thomson
described i.e using the function f(xn) = (z2x)® -1 and its
derivative f’ ' (zn) = JF(za)2 and accordingly you get

Zm+a = (2(z2n)= + 1) / 3(zn)= (3

Fractal Reponn Issue 7 page 3

Substituting (e + Yal) for =z, and (Mawr + Ymari) fOr Zmes in
(3 we get

Kava + Ynaeal = (20n + yaid™ + 1) / 3(x, + Ymi) =
Multiplying these terms out
Hewa F Yeaaeal = 200007 + Z(8,.) Ryni — FHmlynd® - (ya)=i) + 1)

/OEGn) R 4 Drayai — (ya) =)

Using the quotient rule for complex numbers you then get

Hmei + Yaeil = (ac + bd)+(bc — ad)i / (c® + d=)
where a = Z0a)d™ = buplyn)® + 1 C = 3 {xn)=® - 3(y)=
b = &(xn) By, — 2(ya.)= d = 6ymyn

To obtain the hecessary equation you decompose the above
equation as follows

Hewa = {(ac + bd) / (c=2 + d=)
Yr+1 = (bc - ad) / (c= + d=)

Using this system to generate the roots i.e. writing an
iterating program to home in on the roots after choosing intial
values at random, , I found in this case they were 22 = 1,
Zz = - 0.3 + 0.866i, zx = - 0.5 - 0.866i.

These are used in the program shown in Listing 1. Results of
this program are shown in figure 1. They are much the same as
Mr Thomson's.

If you wanted to draw pictures of higher degree polynomials
with lower degree terms in them, using the coefficient choosing
method, you simply use the same algorithm to work out the
equations and apply them in the program.

Toe find the roots with this method you proceed as follows.
The system is iterated and a root is arrived at. This root is
stored and allocated a colour. The system is iterated again.
If the root is arrived at again it carries on as normal
allocating the first colouwr as before, however, if a new root
is arrived at then this is stored in a second location and a
second colour is allocated. Having confidence in the method we
assume that the final number of roots found will be the same as
the arder of the polyrnomial, thus a degree five polynomial will
have five regions on the picture with different colours.

Some of the results are shown in figures 2 and 3. Listings of
the programs for both methods for drawing these are available

on request 1if anyone is interested.

The programs used behave quite well. You can see that well
ordered pictures result.

Fractal Report Issue 7 page 4

With the large size of the equations the iterations tend to be

rather slow on the @L. As you see by the results I don't find

it too inconvenient. However, if you have the use of a faster
computer you could carry out a lot more experiments in a more

reasonable span of time.

In conclusion, consider the equation:

. .

where ‘e’ is the expontial function, z is a complex number. .
Here you have a type of polynomial, which should have roots,
i.e. when z = — e®x and z = e¢—=>,

If you proceed as before with the Newton method and using
Euler ‘s equation:

e = e®¥vi) = g*(cosly) + sin(y)i)

you can also derive two equations that you can use to iterate.
Figure 4 shows results of this system. It shows that there are
many if not an infinite number of roots. This does’not seem so
surprising since the nature of sine and cosire functions is
cyclic. I am currently working on the general equation up to
fifth order:

(1 + Cyemt2) (1 + C2em22) (1 + C3e™32) (] + C4e"42) (] + Cae™®2) =

where Ci...Cs and ry...rs are complex numbers. I have vet to
work out the function’'s derivative! We will see if anything
surprising will come of the pictures it will provide, if any!

“

Announcements

We have had a number of announcements from readers. Mr Bob Harris, of Holly Oakes, Mill Lane, Lymington, Hants, SO41
8LN has some Commodore 64 Mandelbrot and associated programs. If you send him a blank 5.25" disk and return postage
and packaging, then he will fill it for you. If you send him two disks, then he will send some 3D wire frame programs and
files as well. His offer is in the interests of encouraging more Public Domain C64 programs in this area.

Mr P.J. Tewkesbury, of 26, Gathorp Road, Northern Moor, Manchester M23 0AS has- an Amstrad CPC6128 and offers a Hisoft
Pascal Mandelbrot generator. A blank 3" disk and £1 gets you this program. A full machine code version is in preparation.

Mr N.W. Fenwick of 164a, High Street, Swanage, Dorset BH19 2PE will send a collection of Amiga AS00 Public Domain
software for £2.50 including disk, postage and packing. He has also experimented with single lens reflex VDU photography,
and recommends using a tripod with cable or timer release in pitch darkness. A shutter speed less than 1/50 sec, say 1/15 sec

gcn 100 ASA film produces a good print. He sent us a print that shows off the Amiga’s excellent capabilities on the Mandelbrot
t. '

Ms Heather Whitby, of The Association of, Maths Teachers, 7, Shaftesbury Street, Derby DE3 8YB, has mentioned her
organisation’s sets of "Logo Trees" (£3) and "Mandelbrot” postcards (£1.50) delivered. The former includes a program. Although
only in monochrome, you get good value for each set, and they can make interesting and attention getting means of
communication. "Logo Trees” also has a frieze of printouts and some Logo listings. The Association has an open challenge to
produce realistic willows, cypresses, poplars, and oaks.

Fractal Report Issue 7 page 5

FIGURE 1

FIGURE 2

Fractal Report Issue 7 page 0

FIGURE 3

FIGURE 4

Fractal Report Issue 7 page 7

Ficture Dimensions:

Figure 1.

Figure 2.

Figure 3.

Figuwre 4.

Folynomial: z® ~ 1 = 0. umin

= ~1.5, dmax = 1
ymin = —1.53, ymax = 1.

E. Folynomial: —-z9 - 2% - 22 - 2 = (,

A. xmin = ~-0.554, xmax = 0.064
ymin = —0.229, ymau = 0.2295
B. umin = 0.378, umax = 0.6b6
ymin = 0,123, ymax = 0,123
Folynomial: —z% — 225 - 22 + 2 - 2 =0
xmin = ~0.083, umax = 0.0
ymin = -0.07, vymax = 0.07
Folynomial: —z2S — 29 — 2:% 4+ 2 ~ 2 =0
¥min = 0,222, xmax = 0.7
ymin = —0.18%5, ymax = 0.1
Folynomial: —z4 — 2z 4+ 222 + 2z + 2 =0
#min = -0.365, xmax = -0.074
ymin = -0.107, ymax = 0.107
Folynomial: —-z® - 24 -2z - z2 + 7z - 2 =0
#min = 0.2, wmax = 0.6
ymin = ~0.225, ymax = 0.2
3rd Order polynomial from roots:
(-2 + 0.%i, -2 - 0.9i, 1
¥min = —1.5, xmax = 1.3
ymin = -1.,5, ymax = 1.5
4th Order polynomial from roots:
(-1 - 0.2i, -1 + 0.2i,
1 - 0.2, 1 + 0.21)
¥min = ~1.5, xmax = 1.5
ymin = —1.53, ymax = 1.5

4th Order polynomial from roots:
(-0.7071 - 0.7071i, -0.7071 + 0.7071i,
0.7071 - 0.7071i, 0.7071 + 0.7071i)
or from polynomial: z9 + 1 = 0

¥min = —1.5, ¥max = 1.5

ymin = ~1.5, ymax = 1,5
 B. Folynomial: (z + exp(z))(z + exp(-z))
A. uwmin = -3, wmax = 3
ymin = =3, ymax = 3

B. uxmin = ~0.10585, xmax = 0.1

ymin = -0.138, ymax = 0.1

Fractal Report Issue 7 page 8

100
110
120
120
140
15@
160
17@
18@
190
200
21@
220
240
250
260
270
280
290
D0
Z10

)
Yo o

330
=40
350
Z60
370
=80
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660

REMart: 333 %% LISTING 1

REMark: ¥ I W W e T

REMark ¥ K X% % Iteration of Newton‘'s Method
REMark 336 3 3% % For z3 =1 or z3 -1 = 0

REMar ik 93 % % Written by John C. Topham for the OL

FIXEL_DIMENSIONS
FICTURE_DIMENSIONS

ITERATION_L OOF

STOF

DEFine FPROCedure FIXEL_DIMENSIONS
across=300: down=200

END DEFine

DEFine FPROCedure FICTURE_DIMENSIONS
¥min=-1.9 :umax=1.5

ymin=—1.3 :ymax=1.5

END DEFine

DEFine FROCedure ITERATION_LOOP

CLS
Dx=(xmax—xmin)/(across—l):Dy=(ymax”ymin)/(down—1)
xdis=INT((444—(across))/2):ydis=;0@~INT((EQB*down)/Z)
FOR yp=1 TO down
ATE@,G,@=PRINT£Q,‘Line=';yp;" "
FOR xp=1 TO across
¥N=Rmint (xp*Dx) tyn=ymin+ (yp*Dy)
flag=0

REFeat loopl
A=ZHHNEXNERN—SbEUN*yN*yn+1
b=6%xn#¥un*yn—-2%yn*yn*yn
C=INN*NN—TH%yNn*yn
d=b%xn*yn
*m=(akc+bed) / (cxc+d*d)
ym=(b¥c—a%*d) / (c*c+d*d)
FIND_ROOT
IF flag=1:fl1ag=0:EXIT loopI:END IF
MA=HME yNn=ym

END REFeat loopl

END FOR xp
END FOR yp
END DEFine
DEFine PROCedure FLOT_FOINT
BLOCK 1,1,xdis+xp,ydis-yp,ink_p
END DEFine

DEFine PROCedure FIND_ROOT

93 ¥ 3 %
I ¥ W%

¥ ¥ ¥ %
3 ¥ ¥
¥ 3 ¥ %

IF xn+yn==(SORT(3I)-1)/2: ink_p=2:PLOT_FOINT:flag=1:END IF

IF sun+yn==(-GORT(3)~1)/2: ink_p=4:PLOT_FOINT:flag=1:END IF
IF sn+yn==1: ink_p=7:PLOT_POINT=flag=1:END IF
END DEFine :

Fractal Report Issue 7 page 9

2023 note:UK printers were often set to print £ instead
of # , only a problem when printing program listings...

A Three Dimensional Julia Plot with Z —Trajectories.
by_John. de Rivaz

First may I apologise to any author who feels that his article has been displaced by
this one. However I feel that this illustrates how a few simple lines of BASIC (in
this case GW BASIC - I have now got a PC, and my Spectrum has given up the
ghost in disgust!) can produce an interesting display, and what’s more it’s fun to
watch it build up.

The 3D Julia pattern follows ideas given by Lewis Siegel in Fractal Report 5 and
the Z —Trajectories follow ideas given by Ed Hersom in Fractal Report 1, and others
in unpublished works. The Julia plot is built from the program by Liam Proven in
Fractal Report 4.

The program produced below has the 3D Julia centred (when fully displayed) at the
lower portion of the screen. On the top right had side there is a "sun" consisting
of all the Z - trajectories superimposed. On the top left hand side all the z-—
trajectories for a single line are superimposed, and erased at the end of the line.
In addition, pressing the "B" key at any time causes the z trajectory to be blanked
at the end of each point’s iteration, and pressing "N" returns it to the next line
condition. :

100 SCREEN 9:A%=350:B%=600:COLOURS=16:KEY OFF

110 XMIN=-1.75:XMAX=2:YMIN=-1:YMAX=2,25

120 P=-.39054:Q=.58769:CMAX%=100

130 DX=(XMAX-XMIN)/(A%-1):DY=(YMAX-YMIN)/(B%—-1):C1%=1:M%=200:CLS

140 FOR NY%= 0 TO A%-1

150 FOR NX%= B%-1 TO O STEP -1

160 K%=0:C1%=C1l%+1:IF C1%=COLOURS THEN C1%=1

170 X=XMIN+NX%*DX:Y=YMIN+NY%*DY

180 K¥=K%+1:XN=XkX-YXY+P:Y=2%X*Y+Q:X=XN:"'label dloop .

190 IF (X*X+YXY)>M% THEN C%=K% MOD COLOURS :GOTO 230 :'dplot

200 IF K%=CMAX% THEN C%=15:GOTO 230: 'dplot

210 PSET (550+X%5,70+Y*5),C1% :PSET(100+X*5,704Y%5),C1%

220 GOTO 180 :'dloop

230 XXE=NX%+.9659*NY¥:YY%=450-100*%K%".2-,2588%NY%: 'dplot

235 IF POINT{XX%,YY%)=0 THEN PSET(XX%,YY%),C%

240 IF INKEY$="b" THEN BLANKING =1:BEEP

250 IF INKEY$="n" THEN BLANKING =0:BEEP

260 IF BLANKING AND C%<>1 OR NX%=B%-1 THEN LOCATE 1,1:FOR J=1 TO 11:PRINT "
"INEXT J . p

270 NEXT NX%

280 NEXT NY%

This program is given not
just as something to type
in and run, but
something to play with.
You can change the Julia
coordinates in line 120,
for example. Can you
find a quicker way to
blank out the left hand
Z —Trajectories than
printing strings of blanks
(line 260)?

Fractal Report Issue' 7 page 10

SPACE FILLING ITERATIVE PATTERNS
Hugh Daglish

A characteristic of virtually all the programs discussed in
"Fractal Report" is the generation of increasingly complex
images by the progressive manipulation of comparatively
simple data. Apart from their mathematical interest, some of
the patterns produced are aesthetically pleasing and can be
useful in desk—-top publishing. For example, the
Deterministic Algorithm described by Michael Barnsley*'can be
used as the basis for creating space-filling patterns, of any
desired density and complexity. Such patterns can be useful ,
for example, as backgrounds to titles, such as that used for
"Fractal Report".

Acceptable results can be obtained using a PC with a graphics
adapter, and a dot-matrix printer. The basic procedure ic ac
follows. Two square arrays are defined (say 120 x 120
elements each), where each element represents a pixel on the
screen. A simple pattern (such ac a straight line) is loaded
into the first arrays to provide the starting data. The
second array is divided into quadrants and a suitable
algorithm is then used to trancfer the original pattern into
each quadrant, scaling the pattern down, and inverting it,
rotating it or otherwise transforming it. Al though an
identical transformation could be used for each quadrant, the
result would be somewhat trivial, and it is obviously better
to choose four similar but different transformations.

To clarify this, the diagram
shows how the letter "R" might R H

be transformed by rotation and —

reflection. w m

Using this principle, the next four illustrations show how
a single initial line can be transformed into a useful
complex pattern, using this particular transformation.

/\—/.« A ANAA_A AR
() () 20Kl

/\ N\ PONC\ i
u oo r: (‘”" DOO

W, <i: LTE, 3 v il

(A 0 Vel dterat)

<

Fractal Report Issue 7 page 11

YN VN PV VWV
LA AT ALY
e '
‘}* !«A’H,ﬁ'ﬁ.‘t{é' A
‘ WORHORO8 ,;I.\{.' 0}
t‘ v 2]

BEKRARD)

e
I35
5
2R
<
(¢
558
e

YN
T
S

% ’:'o"'rx:

Sv ASF A

g (%3_;} ¥
| 5 T

KTt
LEACYY

=
Foiek
SFA
X-Te
SRR
ek
g
-

=
>

“‘ﬂ%ﬁfé”f
T !‘ 55 (X2
00 (I
=
ra
3

59
X1
4

QGO0
<

AT

7.
J A
Ay

e
] [] (] [f;-‘?u[}gﬁnéﬁ no:
PN M TR I

These patterns were generated by a Basic program: because
graphic procedures are often machine dependent, I have only

shown the key elements of the program here. A subroutine for

stopping the program is useful as it enables patterns to be
aborted if they look too uninteresting!

cLe "Clear Screen"

DIM 8$(100, 100): DIM T$(100, 100) "Define arrays on the screen”
LET offset’% = 10, drop% = 70 "Position output"

LET 1lim% = 100 "Gize of pattern”

FOR i% = 1 TO lim% "Create starting pattern”

LET T$(i%,i%) = "1i" "Plot the starting pattern”
PLOT (i% + offset’%, i% + drop%)

NEXT 1%

IF INKEY$ <> "" THEN GOSUB 8000 "Subroutine to stop program”

REM DATA FOR THE FOUR TRANBFORMS

LET al = 0.0, bl = 0.5, c1 = 0.5, di = 0.0, 1 = 0.0, f1 = 0.0
LET a2 = 0.5, b2 = 0.0y c2 = 0.0, d2 = 0.5, €2 = 0.0, f2 = 0.5
LET a3 = —0.5y b3 = 0.0y c3 = 0.0y d3 = 0.5, €3 = 1.0, f3 = 0.5
LET a4 = 000, b4 = "0-5’ c4 = 0-5, d4 = O-O, e4 = 1-0, f4 = 0.0

REM MAIN PROGRAM

LET offset?% = 40

FOR iter’% =1 TO S

FOR i% = 1 TO 1lim%

FOR ;% =1 TO lim%

IF T$(i%, ;%) = "1" THEN

Ss(al * i% + bl % % + el * lim%y, c1 * i% + dl % ;% + f1 % lim%)
S6(a2 % i% + b2 % % + €2 % lim%y, c2 % i% + d2 % % + 2 % lim%)
B%(al3 * i% + b3 * j% + e3 * lim¥ky, c3 % 1% + d3 % % + £3 % 1lim%)
St(ad * 1% + b4 % % + o4 % limiy, c4 % 1% + d4 % j% + f4 % lim%)

END IF
IF INKEY$ <> "* THEN GOSUB 8000
NEXT 3%

NEXT 1%

REM PLOT SEQUENCE

FOR i% = 1 TO lim%

FOR ;% = 1 TO lim%

Fractal Report Issue 7 page 12

l'l"
Ml”
Ml”
llln

LET T$(1%, % SE(1%, %) "Copy new array into the old array"
LET 8%(1%, j%) "o "Clear the array for next loop"

IF T$(i%, %) = "1" THEN

PLOT (i% + offset’% + iter% % lim%, ;% + drop%)

END IF

IF INKEY$ <> "" THEN GOSUB 8000

NEXT 5%

NEXT 1%

NEXT iter%

s5TOP

8000 REM "Subroutine to stop program safely: not shown here”

END

Changing the starting data or the transformation coefficients
enables this program to be used to generate a wide variety of
patterns. The range can be further extended by changing one
of the linear transformations to a non-linear form, and so
on. (It might then be wise to add extra "IF" statements, to
prevent accidental assignments beyond the range of the two
arrays) .

Larger arrays than about 110 x 110 are not practicable with
my system, so to produce larger patterns, I use a version of
the program which plots only the fourth iteration, but plots
it up to twelve times, in two or three rows. The resulting
pattern can then be extracted for use in a commercial
"Paintbrush" program.

vvvvvvvvvvvvvvvvvvvvvvvvvvv

391‘ S .(H‘ SlSleS

F«"’ﬁ‘ »*—-wl: !: X

m‘ig» 'z‘(—ée »
e e e
éﬁ?§ﬂ>” F%Lg‘%LL

(i}
74 MANZAL

e
X

* "Fractals Everywhere", M Barnsley, Academic Press 19886.

Fractal Report Issue 7 page 13

REM % % % e de d e o de de e o e de de e e de o g o de de o de de e de o e o d ok e ok e A ok de ok e e gk de ok e o o ok e s e s A e e e e ok e e ke e ek ok ke ke ok

the attractor is restricted to a smaller central region. For
more information see C. Grebogi, E. Ott, F. Varosi, & J.A. Yorke,
Laboratory of Plasma Research, University of Maryland, College

REM * True BASIC PROGRAM NAME: Ikeda Map *
REM * WRITTEN BY: John Corbit DATE: August 16, 1989 *
REM * *
REM * The Ikeda map is the chaotic attractor generated by iterating *
REM * the expression: *
REM * Z(n+l) = A + B*Z(n) exp [i*k - ((i*p)/(l + (ABS(Z(n)))"2))] *
REM * where Z = X + iY is a complex variable and orbit points for the *
REM * system are plotted in the complex plane. Solving for X and Y, *
REM * X(n+l) = A + B*X(n)*cos(theta) - B*Y(n)*sin(theta) *
REM * Y(n+l) = B*X(n)*sin(theta) + B*Y(n)*cos(theta) *
REM * where theta = k - (p/(1 + (X(n)"2 + Y(n)"2))) *
REM * and where A = 0.85, B = 0.9, k = 0.4, and p = 7.7 *
REM * Note that there is a critical value for p. When p < p(c) = 7.2688 *

* %*

* *

* s

%* *

Park, MD 20742, U.S.A.

REM % % de e de e de de de de de e de de de e de 9 e de o e de e 9 d e de o e de de o & de o de o e d ok e de o e b e e ok o ok e de de e e ok e e ke e de de ke e de de ke e

OPEN #1: SCREEN .125,.875,0,1 ! OPENS "SQUARED UP" WINDOW
SET WINDOW -1,2,-1.7,1.3 | SCALE THE WINDOW
X X Yy Y
LET X = 0 } ! INITIAL VALUES
LET ¥ = 0
LET p = 7.7
FOR n = 1 TO 100000 | MAIN PROGRAM
LET theta = .4 - (p/(1+(X"2 + Y*2)))
LET X1 = .85 + .9*X*cos(theta) - .9*Y*siu(theta)
LET Y1 = .9*X*sin(theta) + .9*Y*cos(theta) S ..
PLOT X1,Y1 e
LET X = X1 S A
LET Y = Y1 N NS
SET CURSOR 2,60 | SHOW RUNNING TALLY = NAW\ N
PRINT USING "###,###": n | OF ITERATION NUMBERS - W& “
NEXT n
END

e LR
R S R Y/ R,
fov o vkgrbme L

*0
MM 20

Fractal Report Issue 7 page 14

COLOURED IFS TILINGS

By Uwe Quasthoff

i. Introduction

Assume we have an affine self-similar fractal of fractal dimen-—
sion 2 (like Mandelbrot’s fudge flake [2], for instance). Then
the whole object can be partitioned into (non—overlapping)
smaller copies of this object. Colouring these smaller copies
gives very attractive pictures.

Dur projects divides into two problems. First we have to assign a
colour to each point of the fractal and second there is a general
problem creating "massive" fractals (i.e. of dimension near 2)
without missing pixels. Using an iterated function system (IFS)
and the random algorithm takes a very long time to fill a massive
fractal wup to the last pixel. In section 3 we introduce a tree
parsing algorithm which fills any IFS fractal in a non—-random
way .

2. Addresses and colours

As in [1,. chapter 4] we can introduce the address of a point.
Assume we have three transformations wo. w; and w=. Now take a
point 2z and apply some of these transformations. For instance.,
let

Y = walw; (wolwa(w=2(z))))).

Then vy has the address 21002 with repect to z. In an IFS, the
transformations are contractions. Hence, if we consider only
points with addresses of a certain minimum length, then the pixel
which corresponds to this address will no more depend on the
point z.

To assign a colour to a point we use the last part of its
address. If we have three transformations it turns out to be good
to take the last three digits of the address and read this as a
number in base 3. Hence, we get a number c satisfying 0%c<26. If
we have a micro displaging 14 colours with numbers 0 and 1 for
white and black, respectively; we calculate a colour by
2+(c MOD 14). In general, the modulus should be relatively prime
to the number of different addresses, so in some cases it might
be better to take 13 instead of 14.

Next we describe how we can actually calculate the colour using
the address.

Algorithm 1. Random IFS algorithm with colours. Assume we have N
transformations W(0), W(1l),.... W(N-1) and use the last K digits
of the address (The size of small parts depends on K. a good
relation is N<<40). 2z denotes a point in the plane to be
transformed by one of the transformations W(i). The algori thm
never terminates. A

STEP 1. (Initializel. Choose a suitable starting point z. (In
many cases. z=0 will do.) Let c=1.

Fractal Report Issue 7 page 15

STEP 2. [Choose transformationl. Choose a random integer i satis—
fying Of£isN-1. Apply transformation W(i) to =z, i.e.
z=W(idz.

STEP 3. [Colouring the pointl. Let c=(Nkc+i) MOD N™K. Draw the
point z with colour ¢ MOD 13. Goto Step 2.

3. Tree parsing for IFS’s

Assume the transformations w, differ only by some rotation and
translation. In this case they have the same contraction proper-
ties and we can start with one point z and calculate all points y
with addresses of length smaller than a certain number to fill
the whole fractal. If we have transformations with different
contraction properties we can use the probabilities assigned to
the tranformations +to bound the length of the address. In
general. if we repeatedly use strongly contracting transforma-
tions we will need a shorter address.

Let us consider the following example: We have two transforma-
tions wo and w; and use addresses up to length 2. Let z be the
starting point. Then we consider the following points which can
be arranged in a tree:

wa (z) wi (2Z)

/
/

\
\

wo (wo (z)) wy (Wwo(2)) wo (ws (2)) wy (wy (2))

To calculate and draw all these points we can use an recursive
algorithm for parsing binary trees. In each vertex we first have
to calculate the corresponding point. second we have to process
the left and third the right subtree starting in this vertex.
Using this algorithm we would get the! following sequence of
points:

Zr Wol2): wolwo(z)): wilwe(z))s wy(2)s wolwy(z)): wylwy(2)).

Algorithm 2. Tree parsing for IFS’s. Let N, K and W(i) be as in
algorithm 1. Further 1let P(i) be the probability of applying
W(i). We use the following stacks: SC() for colours, SZ()} for
points SP() for probabilities and ST() for transformations. @ is
the stack pointer. PP is a product of probabilities and EPS a
small number bounding the depth of the tree.

STEP 1. [Initializel. Let 8=0, SC(0)=1, and SP(0)=1

STEP 2. [Begin at some vertexl. Let I=ST(Q), z=SZ(Q), PP=SP(Q).,
C=8C(Q) .

Fractal Report Issue 7 page 16

STEP 3. [Apply W(I), save, and drawl. Let z=W(I)z, PP=PP*P(I).
C=(N*C+I) MOD N™K and @Q=G+1. Let SZ(Q)=z, SP () =PP.
SC(Q)=C. Draw the point z with coleor 2+(C MOD 13).

STEP 4. [Move leftl. If PP>EPS then let I=0, ST(Q)=0 and goto
step 2 else let @G=0-1.

STEP 5. [Move rightl. Let I=I+1. ST@)=I. If IKN then goto step
2.

STEP 6. [Endl. If @G>0 then let @=G-1, I=ST(Q), goto step S.

Last we give a BASIC program displaying a plane filling dragon
curve in colour. The body of the program is a direct translation
of the above algorithm. The point z of the plane is given by its
co—ordinates x and y.

The first DATA statement contains the number n of transforma-
tions. the number k of digits of the address used for colouring
and the values of xscale, yscale, xoffset and vyoffset for
plotting the points. In the next n DATA statements the parameters
for the affine transformations are given.

10 DATA 3:3,180,150, 180,100

20 DATA .5.-.28867, .288467, .5,—.55 .29, .3333
30 DATA .5.-.28847, .28867: .5: .5,- .29, .3333
40 DATA O,~.57735, .57735,0,0,0, .3334

100 DIM sc(20),s5x(20) .5y {(20),5p(20),st (20)
110 READ n,k,xscale,yscale,xoffset,yoffset
120 DIM a(n)>b(m)>c(n)sd(nd)-e(nd), f(n)pin)
130 FOR i=0 TO n-1

140 READ a(i):b(id),c(i),d(id.e(id>flid.p (i)
150 NEXT i

160 REM STEP 1: Initialize

170 g=0:s5c(0)=1:5p(0) =12 eps=0.00001

180 REM STEP 2: Begin at some vertex

190 i=st(q):x=sx(q):y=sy(q):pp=sp(q):c=sc(q)
200 REM STEP 3: Apply transformation, save and draw
210 xmew=a(i)*x+b(id*y +e(i)

220 ynew=c (i)*x+d(idxy+f (i)

230 1=xnew: y=ynew:pp=pp*p (i)

240 c={N*c+i)} mod N"K

230 g=q+i:sx(q)=x:sy(q)=y:sp(q)=ppisc(q)=c
250 xb=x*xscalet+xoffset

270 yb=y*yscale+yoffset

280 COLOR 2+(c mod 13)

290 DRAW xb.yb

300 REM STEFP 4: Move left

310 IF ppreps THEN i=0:st(gq)=0: GOTO 180
320 g=q-1

330 REM STEP 5: Move right

340 i=i+l: st(g)=i

350 IF i<n THEN GOTO 180

360 REM STEP 4: End

370 IF q>0 THEN g=g-1:i=st(q): GOTO 330

References.
[1] Barnsley. M.: Fractals everywhere, Academic Press 1988

{21 Mandelbrot, B.: The fractal geometry of nature, Freeman 1983

Fractal Report Issue 7 page 17

Michael Kirsch
58 Milton Park,

Intersecting universes
London N.6 5QA

It is well-known to fractalists that all over the complexities surrounding
the Mandlebrot set there are little Mandlebrot figures, each subtly different from

all the others.
Now, if you go to coordinates

Minimum fractal X - 1.7665074446

0.041724440016

Minimum fractal Y

size: 2.3648553613 x 10 8

max iterations: 600

you will find yourself looking at the edge details of the tail one of these.
This is where the little Mandlebrot people live, or rather, they
have a kind of being. To actually make them live it needs the introduction of

the concept of serial time.

o e e e

You will notice on close inspection that what appears to be a set
of humanoid figures arranged in a clockwise spiral is really ONE figure at
different stages of Mandlebrot life. That is, you will notice that each figure
is slightly different from those on either side of it, as though they were
sequential frames of a cine film.

Fractal Report Issue 7 page 18

Now, to make them live it requires a program which can pick each figure
out as a block, rotate it to the vertical, size it, and store it as a cine frame
rather in the way the FR ZOOM program! allows.

If you then projected them on the screen in clockwise order, or anti-
ckolockwise for that matter, you would see a Mandlebrot creature flash
through a short and completely predestined " life. "

The edges of the Mandlebrot set contain all sorts of little cinematic
creatures, usually only enough to make a dozen movie frames.

In the environs of the coordinates given above, there is a large number
of similar spirals, all inhabited with some kind of cinematic creature.

It might be interesting to study these shy little creatures.

The Mandlebrot set and its infinitely detailed edges are a kind of diagramatic
universe, having some of the basic essentials of any working universe.

1. There is a set of self-consistent laws in operation in the Mandlebrot
universe, governing for instance, the style of detail inside sach of the miniatare
Mandlebrot figures, and governing the angle at which the little Mandlebrot figures
are set in the matrix of the plane of complex numbers.

2. The Mandlebrot universe has the necessary game aspect. That is, it
has a matrix : the complex plane, a set of counters: the number of iterations
at each point in the plane, and a set of rules which, when operated on the counters,
in the matrix, makes the game take place.

3. It is all spoken for by ONE equation. The Mandlebrot creatures face
the challenge of elucidating that equation from the rules which they may notice
in operation in their universe. If their lives were not so short, and if only time
were operating consistently in the Mandlebrot universe, they might be able to
infer the details of Mandlebrot equation from the laws of the universe it generates
and rules. But I think this knowledge might be wasted on them.

If you were to find or formulate the right equation, you could generate
this shin-barking universe with it.

The realm of fractals is inhabited by a number of intersecting universes.
There is one equation which, when iterated, creates very credible landscapes
and relief maps of hitherto unknown countries.

I have this equation mounted for me in the FRACSURF program.2

You have to give this program the following:

A fractal number. The start-up fractal number on my copy of this
program is 0.75

A seed. It has to be an integer, or zero. Try zero; it is the program's
start up seed. '

The fractal dimension of this works out at 2.334. One does not have
to enter this.

Choose any viewing position. The start-ups are:

viewing position: = 200, - 900, 400
looking at: 0,0,0
dight position 900, =100, 800

on my disc.
Fractal Report Issue 7 page 19

Given a few minutes, on this basis, the FRACSURF program will create
and display a very plausible relief map of what could be a region of the Orkneys.

Now, if you alter the seed value and the fractal number only very slightly
a completely different landscape will be generated.

Presumably, amongst all the possible fractal relief maps, there is one
which closely mimics say, the contours of the British Isles.

To find it, you only need to know the seed value and fractal number.

If this program could be made to work in reverse, and allow one
to input a particular contour map, say, of Australia, to be given the fractal
coordinates, we would have an immensely powerful way of storing any number of
such maps. All you would need is the FRACSURF program, and the coordinates
which make it draw a particular contour map. You could store a million detailed
maps in this form on the disk I am using for this letter, if you had a program
which would spit out the fractal cordinates of any relief map presented to it.

You would need only one copy of the program, and have room for millions of
sets of coordinates on one little disk. In a powerful processor, the program would
be able to generate a detailed picture on the screen from a set of coordinates in
a microsecond or so, and so, in theory, and with a lot of software development,
the fractal equations could be used to store immense amounts of pictorial information
and be able to display it cinematically.

I found your journal - Fractal Report, issue O -, very interesting,
but although I know something about mathematics, I was puzzled by some of
the algebraic notation I came across.

I am a complete beginner at programming, but I do know how to
program my TI 59 Programmable Calculator and PC-100C printer.

As a matter of fact, I have written a few score programs for it
exercising a working universe model. 1 would like to install them on disk

for an ST. Perhaps you could put me in touch with someone who might be
interested in helping me.

1. Both these programs are in the public domain, else I shouldn't be able to
afford them.

2. The FRACSURF program is also in the public domain.

Fractal Report Issue 7 page 20

