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Abstract

Randomized controlled trials (RCTs) of water treatment are typically powered to detect effects
on caregiver-reported diarrhea but not child mortality, as detecting mortality effects requires
prohibitively large sample sizes. Consequently, water treatment is seldom included in lists of
cost-effective, evidence-backed child health interventions which are prioritized in health funding
decisions.

To increase statistical power, we conducted a systematic review and meta-analysis. We replicated
search and selection criteria from previous meta-analyses of RCTs aimed at improving water
quality to prevent diarrhea in low- or middle-income countries which included children under 5
years old. We identified 52 RCTs and then obtained child mortality data from each study for
which these data were collected and available, contacting authors of the study where necessary;
this resulted in 15 studies.

Frequentist and Bayesian methods were used to estimate the effect of water treatment on child
mortality among included studies. We estimated a mean cross-study reduction in the odds of
all-cause under-5 mortality of about 30% (Peto odds ratio, OR, 0.72; 95% CI 0.55 to 0.92; Bayes
OR 0.70; 95% CrI 0.49 to 0.93). The results were qualitatively similar under alternative
modeling and data inclusion choices. Taking into account heterogeneity across studies, the
expected reduction in a new implementation is 25%.

We used the results to examine the cost-effectiveness of investing in water treatment for
point-of-collection chlorine dispensers or a large-scale program providing coupons for free
chlorine solution. We estimate a cost per expected DALY averted due to water treatment of



around USD 40 for both, accounting for delivery costs. This is approximately 45 times lower
than the widely used threshold of 1x GDP per capita per DALY averted.

Funding

This research is supported by Dioraphte, Sint Antonius Stichting Foundation (Project Number
1808), and GiveWell.
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Introduction

Each year over two billion people consume drinking water contaminated with feces (1) and over
1.5 million people die from diarrheal diseases (2). Climate change and aquifer depletion threaten
existing sources of clean water (3). Yet, even relatively basic and inexpensive measures to
contain disease spread from fecally-contaminated water remain unimplemented in large parts of
the world. Chlorination, for example, has been found to be effective in reducing the
concentration of diarrheal pathogens like E.coli in controlled laboratory settings (4–7) and in
reducing caregiver-reporter diarrhea (8, 9). However, 71% of the population in low-income
countries and 40% in lower-middle-income countries do not have access to safely managed
drinking water facilities (10).

In addition to municipal water systems, a variety of systems can effectively deliver chlorinated
water at low cost. These include point-of-use (which provide people with the means to treat
water within their household), point-of-collection (e.g. dispensers for dilute chlorine solution
placed near water source, already used at scale in several countries), and in-line devices, which
automatically chlorinate water.

However, water treatment is often not included in lists of cost-effective, evidence-backed child
health interventions which are recommended for prioritization in health funding decisions, and
health funds are typically not used to cover the cost of water treatment at scale. This may in part
be due to a lack of RCT evidence on the effect of water treatment on child mortality.  Because
child death is a rare event, conducting adequately powered randomized controlled trials (RCTs)
to measure the impact of water treatment on child mortality requires very large sample sizes and
correspondingly large costs. Therefore, RCTs measuring the impact of water treatment are
typically powered to detect effects on the (higher incidence) intermediate outcome of
caregiver-reported child diarrhea, rather than child mortality. However, caregiver reports of child
diarrhea may be subject to reporting bias (11, 12). Some have therefore recommended the need
for studies which are either blinded or include as a primary outcome an objective outcome such
as mortality (11).

To increase statistical power to detect child mortality impacts, we conducted a literature search
aimed at combining existing RCT evidence on mortality with new evidence we obtained from
authors of studies reporting other outcomes. We then used a meta-analysis to estimate the impact
and cost-effectiveness of water quality interventions on child mortality.
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Methods

This systematic review was registered within the American Economic Association (AEA) under
the registration number AEARCTR-0005977, and can be accessed here
https://www.socialscienceregistry.org/trials/5977.

We followed PRISMA 2020 guidelines (11); These are provided in the supplementary material.

Search strategy and selection criteria

We first reviewed all studies identified by previous meta-analyses examining the impact of water
quality interventions on diarrhea (8, 9). Next, the search procedure and selection criteria
followed by a previous meta-analysis (9) were replicated for the period not covered by the
previous studies, from February 2016 to May 2020 (date of last search was April 20, 2020). The
selection criteria were updated to allow for manuscripts published during the eligibility period
that were updated after the period concluded. As detailed in Table S1, the search included
Pubmed, Embase, Scopus and Cochrane Library using both keywords and MeSH terms to
identify all studies of interventions to improve water quality. Additional papers for review were
also included based on reference sections of all papers, as well as recommendations from
experts.

Included studies were restricted to RCTs of interventions to improve water quality (in the
microbiological sense) in low- or middle-income countries (according to the World Bank
classification) which included children less than five years of age. The choice of including only
RCTs was made to focus on studies that can estimate causal impacts with minimal
methodological assumptions.

Data extraction and quality assessment

Two reviewers independently performed study title and abstract screening, filtering of studies in
accordance with the inclusion criteria, data extraction, and quality assessment. Both
author-provided and publicly available individual-level data on child (<5 years) mortality were
used for the study. Data were collected through surveys, and all available data on mortality were
considered. We also extracted (from the appendices available online) summary data on all studies
in (9) to compare key characteristics between studies included in this meta-analysis and excluded
studies (Materials and methods, section 1).

Two review authors independently assessed the risk of bias using the same Newcastle-Ottawa
scale (13) as in (9) for each study included in this review on the following dimensions: sample
selection, responses (blinding versus no-blinding), treatment allocation, follow-up (attrition),
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degree of treatment exposure, compliance, the dimension of the assessment, and measurement of
the outcome.

Data analysis

For the meta-analysis model, we used an odds ratio (OR) outcome.1 Since death is rare (typically
1-2% annualized risk), we chose models that are appropriate for estimating treatment effects for
rare events: a frequentist Peto odds model and a Bayesian logistic model with non-informative
priors (14, 15). In both cases we chose a random effects model as our main specification due to
heterogeneity in types of water quality interventions and study settings. We decided to estimate
average effects for  all studies, and the sub-sample of studies that include water chlorination. The
models are described in Materials and Methods, section 2.

We also examined potential heterogeneity in treatment effects using Peto OR meta-regression
models, fitting one variable at a time for the following: baseline prevalence of diarrhea, level of
compliance, unit of randomization (cluster vs household), diarrhea effect estimates, and year of
implementation.

We performed sensitivity analyses to understand how researcher choices on data inclusion and
modeling assumptions could impact the meta-analysis estimates. Additional details explaining
these analyses case-by-case, as well as detailed results, are given in Materials and Methods,
section 3.

Additionally, posterior predictive distributions from Bayesian models and an alternative choice
of priors were used for cost-effectiveness calculations and are described below.

We examined potential publication bias through inspection of funnel plots and the use of Egger’s
and Andrews and Kasy’s tests (16). We made two checks: one for mortality outcome, using all
papers meta-analyzed in this paper, and another for diarrhea outcome, using more studies (that
measured diarrhea but not mortality) based on (9). We also checked for association between
availability of mortality data and effect on diarrhea and estimated a publication bias-adjusted OR
estimate following Andrews and Kasy.

All statistical analyses and visualizations were performed with R, version 4.1.

1 From a biological viewpoint, the choice of OR seems more appropriate than modeling risk difference (RD) and,
when events are rare (as is the case with child mortality), the odds ratio approaches the risk ratio (RR), and therefore
we did not compare OR and RR models. Moreover, the RD model is not appropriate when differences in mortality
risk across studies is very large, as is the case in our sample, due to heterogeneity in length of follow-up, which we
will discuss later. Therefore we included the RD model as a sensitivity analysis only.
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Cost effectiveness

Typically, policymakers’ decisions about health interventions take place in two stages, starting
with a regulatory decision of whether to approve a new intervention, followed by
cost-effectiveness analysis to inform investment. We do not consider the first stage since water
treatment has long been widely used and is widely accepted to be safe. We use the results from
the meta-analysis to conduct a cost-effectiveness analysis. We consider the problem of a
(risk-neutral) social planner investing on behalf of households, all given the same weight, to
reduce the incidence of child death. Such a social planner will invest in water treatment if and
only if the cost per expected life saved is below some threshold. We discuss the choice of such a
threshold below.

We calculate the expected reductions in deaths and DALYs due to implementation of water
treatment in a new setting based on the Bayesian posterior predictive distribution, which takes
into account uncertainty due to heterogeneity across studies. To calculate benefits per dollar
invested we then divide estimated costs by the expected reductions.2

We examine two water treatment approaches for cost-effectiveness analysis.  First,
point-of-collection dispensers of dilute chlorine solution, for which we have access to cost data
from a large-scale implementation.  Second, a hypothetical global program delivering free
water-treatment through a coupon program, which could potentially be applied in a wide range of
settings through existing health systems. Since it has not been implemented on a large scale, we
consider rough cost estimates. We provide more details on the calculation in Results. Our
analysis demonstrates cost effective approaches exist but it is not intended to make the case that
these approaches are more cost effective than alternatives. Different settings may require
different approaches and some, such as municipal water treatment programs, may generate
benefits on a range of dimensions.

We compare cost-effectiveness results with two commonly used metrics. First, thresholds of 1x
and 3x GDP per capita, which might be relevant if the program is funded through domestic taxes.
These thresholds were first proposed by the Commission on Macroeconomics and Health and
used in earlier editions of the World Health Organization’s “Choosing Interventions that are
Cost-Effective” (WHO-CHOICE) (henceforth 1xGDP threshold).

Second, we use cost-effectiveness brackets (e.g. $10 - $100 per DALY averted), used by the
most recent edition of WHO-CHOICE publication and the World Bank’s DCP-3 (17). Since this
calculation does not depend on GDP, it may be relevant if the program is financed by an external
actor seeking to maximize health benefits within a fixed budget.

2 In this calculation we do not put extra weight on studies of more similar interventions, but, as we will show below,
for a subgroup of chlorine studies the effects are larger in absolute magnitude.
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Results

Systematic review

Figure 1 illustrates the search and the selection process. The search strategy identified 1485
studies: 1412 studies through databases and 73 studies included in (8) and (9). We screened these
titles and abstracts to obtain a sample of 82 studies for full-text review. 52 studies matched the
inclusion criteria and we requested child mortality data from the authors of each study. 25
authors reported that they did not collect mortality data or that the data was no longer available.
The author of one study died and the authors of nine studies did not reply. Excluded studies are
given in Table S2. The sample of 17 studies with mortality data is summarized in Table 1. Two
studies were then excluded from the main analysis due to contamination in the control group but
we conduct a sensitivity analysis with these studies included (see Materials and Methods, section
3). Raw input data for meta analysis are in Table S3.3

Publication bias.

Neither Egger’s nor Andrews and Kasy’s tests provided evidence of publication bias on diarrhea
or mortality outcomes. We also did not find evidence of the magnitude of measured effect on
diarrhea being associated with availability of mortality outcomes. Since the power of these tests
for mortality outcome may be limited when applied to our sample of 15 studies, we also
conducted post hoc simulations. We  find that even if as many as 15 unpublished short studies
with null effects (i.e. assuming mortality risk in both arms of 0.4%, which is one quarter of
annual mortality in our data) were added to our dataset, the meta-analytic estimate of OR would
still be significant. We provide more details in Materials and Methods, section 5.

Risk of bias assessment

Among the included studies, we assessed the bias attributed to the selection of studies as low.
First, all included studies are randomized controlled trials. Second, although in only one out of
the fifteen studies the participants were blinded, reporting bias or experimenter effects are
unlikely (see Supplementary Material: Risk of Bias). The mortality status of a child who was
alive at baseline can be easily verified and is far less likely to be subject to reporting bias than
caregiver-reported diarrhea outcomes based on recall.

Characteristics of included studies

3 In the sample of the included studies, six studies had Steve Luby as an author, two had Michael Kremer as an
author, and one of these had Ricardo Maertens and Brandon Tan as authors. None of the authors have any financial
interest in these results.
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The studies included 25,300 participants. Twelve examined water chlorination, two examined
water filtration, and one examined spring protection. In aggregate, 170 deaths occurred among
11,701 children in treatment arms (1.5%); in the control arms, 339 among 13,599 (2.5%). Four
studies had no deaths in control and/or treatment arms. The annual risk of mortality in the pooled
control group was about 1.7%. We found studies to be representative of diarrhea prevalence in
LMICs (see Figure 2) and found no significant differences to the larger set of RCTs which
measured diarrhea. We provide detailed characteristics of 15 included studies and details of the
comparison with other RCTs in Materials and Methods, section 1.

Meta-analysis

In the full set of 15 studies, we estimated a significant average reduction in odds of all-cause
child mortality of 28% (Peto OR 0.72; CI 95% 0.55, 0.92) or 30% (Bayes OR 0.70; CrI 95%
0.49, 0.93), depending on the model (see Figure 3).4 OR confidence/credibility intervals for
individual studies were typically wide, as one would expect in modeling rare event data. In fact,
in only three studies the Peto or Bayesian OR 95% intervals were below 1. Restricting the
analysis to studies including chlorination, the reduction was 31% (Peto OR 0.69; CI 95% 0.47,
1.01; Bayes OR 0.69; CrI 95% 0.38, 1.03).

Heterogeneity was not precisely determined; between-study SD (difference in true study means),
measured on the log(OR) scale had a mean of 0.29 for Bayesian model (CrI 95% 0.01, 0.78) and
0.24 for the Peto model (CI 95% 0.00, 1.01). Relative to the mean that is 78% and 71%
respectively. The I-squared (% of variation due to underlying variation in true ORs) was 29% in
the Peto model (CI 95% 0%, 62%; p-value for being non-zero = 0.14) and 6% for Bayesian
model (CrI 95% 0%, 26%). A leave-one-study-out cross-validation procedure for the Bayesian
model suggested similar out-of-sample performance for fixed-effects and random-effects models.

Expected reduction in mortality odds in a new implementation, which is used by
cost-effectiveness calculations and based on Bayesian posterior predictive distribution, was 25%
(Bayes OR of 0.75; 95% CrI 0.29, 1.50).5 Using the distribution of expected effect we also
constructed a plot of predicted absolute mortality rates among treated for a setting with a specific
control group mortality rate (Fig S10).

5The effect in new implementation is different to the mean across 15 studies due to estimation being done on log
ORs, which is approximately normal, the heterogeneity has an impact on both the width of the interval (which
combines uncertainty in the mean with between-study variation) but also on the mean, and consequently on the
expected reductions in deaths. As we take variation between studies into account, variation increases, meaning the
distribution gets wider, and the asymmetry means this decreases the expected effect size. A policymaker with a
strong prior that water treatment is safe could view this calculation as conservative.

4 Since at low event rates ORs are approximately equal to RRs, assuming under-5 mortality in settings without
access to clean water is 5% (see Table S8 for details), our Bayesian OR estimate implies mean risk reduction of 29%
(Bayes RR of 0.71; 95% CrI 0.50, 0.92).
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We provide results for all sensitivity analyses of data and model choices that we performed in
Materials and Methods, section 3. The estimates remained qualitatively similar to our main
estimate, with mean OR estimates ranging from 0.64 to 0.80 for various data choices and 0.74 to
0.76 for alternative model choices.

At the beginning of this study, five RCTs were identified which reported mortality outcomes as
part of their analysis (18–22). The estimates from restricting the analysis to only the five studies
which published mortality outcomes were similar in magnitude to that of the full sample though
insignificant at the 95% confidence level (Peto OR 0.67; CI 95% 0.41, 1.11; Bayes OR 0.74; CrI
95% 0.28, 1.50).

We conducted a simple post-hoc simulation approach (Materials and Methods, section 6) to
determine whether there is sufficient power using our sample of 15 studies to find significant
impacts of covariates on treatment effect. We conclude that the power to detect these
relationships is low. However, the univariate meta-regression models did not find significant
differences on any of the examined variables (see Figures S5-S9). For the year of implementation
(Fig S9), we found an increase in log(OR) of 0.055 per year (SE = 0.029, p-value = 0.06). Given
that we have not corrected for multiple hypothesis tests, finding one effect significant at the 6%
level out of 5 tests is not strong evidence of heterogeneous effects, especially considering that the
assumption of a linear relationship between year and logarithm of OR seems unlikely to be
correct. However, more data should be collected to explore whether variables that might have
changed over time (such as the overall child mortality rate, the rollout of rotavirus vaccines, or
the adoption of oral rehydration therapy) influence the treatment effect.

Cost effectiveness

The cost-effectiveness calculations, based on the expected 25% reduction in the odds of
mortality in a new implementation are shown in Table 2 and more details are given in Materials
and Methods, section 4 and Table S8.

Point-of-access chlorine dispensers

Cost data was provided by the NGO Evidence Action, which has programs in Kenya, Uganda
and Malawi. We focus on Kenya, where Evidence Action operated approximately 18,400
point-of-collection chlorine dispensers as of 2020, providing roughly 2.19 million people with
access to safe water. Given an adoption rate of 52%, approximately 1.14 million people are
estimated to treat their water (23). We calculated cost per DALY averted due to water treatment
of USD 39 (Table 2, Column 1), far lower than Kenyan GDP per capita (about USD 1,878 in
2020), the relevant 1xGDP “highly cost-effective” threshold.
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Coupons for free dilute chlorine solution

While dispensers achieve relatively high usage rates, they are only suited to certain contexts. For
example, if few households share each water source, dispensers may be more costly per person
reached. Evidence Action restricted the placement of dispensers to water sources used by a
minimum number of households. Programs providing coupons for free dilute chlorine solution to
families with young children may have wider applicability. Because such programs have so far
only been conducted at a modest scale, it is difficult to assess costs for large-scale programs. A
150-milliliter bottle of dilute chlorine solution sufficient for treating one household-month of
water costs USD 0.31. If for every two households targeted the program covers an additional
untargeted household which already has clean water, and if the administrative costs of running a
coupon program were as large as the retail price of the chlorine solution, the cost of a scaled-up
program would still only be USD 2,974 per death of a child under 5 averted – or USD 38 per
DALY averted (Table 2, column 2).

Lists of highly cost-effective health interventions

As discussed earlier, several multilateral organizations produce lists of the most cost-effective,
evidence-backed health approaches and recommend that governments prioritize these approaches
for investment. Often these lists exclude or de-prioritize water treatment, presumably in part due
to insufficient evidence on child mortality impacts.

For example, the WHO-CHOICE’s latest publication for maternal, newborn and child health (17)
lists 39 interventions for sub-Saharan Africa with a cost of less than $100 per DALY averted,
including childhood vaccination, nutritional supplementation, and malaria treatment. It lists a
further eight interventions with a cost of $100 -  $1,000 per healthy life year. It does not include
water treatment.

The World Bank's Disease Control Priorities 3 (DCP-3) does not include water treatment in its
highest priority package for Essential Universal Health Coverage. It also categorizes water
treatment under “Injury and Environmental Health”, de-prioritizing it in the volume on
reproductive, maternal, newborn and child health (24, 25).

Discussion

Individual randomized control trials studying the impact of water treatment are typically not
powered for mortality, and lack of RCT evidence on mortality has historically constrained the
use of health funds for water treatment. Aggregating data from 15 studies, we estimate that water
treatment reduced the odds of all-cause child mortality by about 30% on average. Taking into
account heterogeneity across studies, the expected reduction in the odds of all-cause child
mortality in a new implementation is 25%.
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We also estimate the expected number of lives saved from water treatment relative to the cost.
Our analysis suggests that water treatment is one of the most cost-effective health approaches
available, and that policymakers aiming to improve child health should consider water treatment.
It also suggests that even small effects on mortality would meet the conventional
cost-effectiveness thresholds. For example, repeating the calculation for chlorine dispensers, we
find that the threshold of 1x GDP is reached at 0.6% reduction in odds of under-5 mortality.

The WHO estimates that 2.2 billion people around the world do not have access to safely
managed drinking water services (1) similar in magnitude to the global estimates from other
studies. To illustrate the potential magnitude of the benefits of water treatment, in Table S7 we
present a back-of-envelope calculation, which suggests that a global program that gives coupons
for free water treatment solution to families with under-5 children would save around 372,000
under-five lives at a cost of approximately USD 1.1 billion each year.

As we have shown, lists of child-health interventions often do not include water treatment.
Moreover, government officials responsible for water are typically based in water or public
works ministries rather than health ministries and often have other priorities, such as irrigation.
However, our analysis suggests that water treatment may have a very large impact on child
health. It can be delivered through the health system and, unlike water access more generally, it
has limited benefits beyond health benefits. Therefore it makes sense to consider it alongside
other child-health interventions.

Even though our cost-effectiveness analysis suggests high expected value from water treatment,
substantial uncertainty remains both about the expected effect and about how it may vary across
contexts. Standard decision theory suggests that policymakers should allocate budgets so as to
maximize expected benefits given current information. At the same time, additional information
could overturn the conclusion that water treatment is cost-effective, or yield better information
on when it's likely to be effective, or what types of treatment are more likely to be effective. That
would either require larger sample sizes, multiple studies, or a combination of the two, to the
extent that it's possible there is a time-trend in the impact of water treatment.

Combining information and comparison with other sources of evidence

In the future, decision makers could combine RCT evidence with other sources of evidence on
water interventions, for example from a review of scientific mechanisms and the
quasi-experimental literature. One way to incorporate this information is as priors in a Bayesian
meta-analysis model. We present an illustrative example of how our cost-effectiveness analysis
could be conducted with informative priors in Materials and Methods, section 4.

Policymakers deciding on the design and targeting of water treatment programs could also make
use of Bayesian priors to incorporate context-specific information about likely drivers of
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heterogeneity in treatment effects. Data on water treatment are fairly inexpensive to collect, since
water can be readily tested for chlorination.

The point estimate of the mortality effect obtained in this meta-analysis is much larger than the
point estimate predicted by a simple model in which diarrheal deaths are taken from the central
estimate of the Global Burden of Disease (GBD) project (2), the effect of water treatment on
diarrhea is taken from the central estimate in an earlier meta-analysis (8), and mortality is
assumed to be linear in diarrhea cases, so that reductions in diarrhea deaths are proportional to
reductions in diarrheal cases.  However,  this  model is unlikely to be an accurate model of the
relationship between water treatment and child mortality, for reasons discussed further in
Materials and Methods, section 7.

Limitations

We included all studies for which authors reported that mortality data were collected and
remained available, but there could be publication bias if authors were more likely to collect,
preserve, and report in situations in which effect sizes were likely to be larger. We find no
statistically significant evidence of publication bias (for diarrhea and for death outcomes,
assessed separately), but these tests have limited power. We attempt to address this through
simulations (Materials and Methods, section 5).

While including short studies does not have a major impact on this analysis (Materials and
Methods, section 3), we assume that odds in each included study can be interpreted as odds of
under-5 mortality. This would be an acceptable choice if treatment effect OR’s are homogeneous
with age, which is something we do not examine in the present analysis of aggregate data.6

Survival models could be used to address this in the future by making use of individual-level
data on age, which are available for a subset of studies (Materials and Methods, section 1).

This meta-analysis is also subject to the more general limitations of meta-analyses. The estimate
of the  mean effect we obtain in this study is specific to the sample of included studies, and
uncertainty when generalizing to new contexts is not fully captured by the uncertainty in the
mean effect. However, we incorporate heterogeneity into our cost-effectiveness assessment by
using predicted mean effect, which has a higher OR (smaller effect) than the mean within the 15
studies.

Several factors could influence the effect of water treatment on child mortality: including the
level of adherence, counterfactual levels of water treatment, local disease burden from diarrhea

6 Even under a correctly specified model and unbiased estimate, treating ORs from short studies as ORs over 5 years
will slightly bias the estimate in direction of no effect, due to compounding of risks. However, the bias this
introduces is small, e.g. ORs will differ less than 0.01 even when comparing a 13-week to a 260-week study.
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compared to other diseases, etc. We do not have sufficient power to determine the extent to
which these factors influence the effect of water treatment on child mortality, as we demonstrate
in simulations (Materials and Methods, section 6).

However, we find that the studies included in this meta-analysis are broadly representative of the
settings in which policymakers might implement water treatment programs in terms of diarrhea
prevalence and there are no significant differences from a larger sample of 73 studies (Materials
and methods, section 1). There are some plausible hypotheses for the treatment effect
diminishing over time due to improvements in quality of health care and availability of rotavirus
vaccines (Materials and methods, section 7) and more data will be needed to test them.

Lessons for meta-analysis and pre-analysis plans

Methodologically, our results suggest that meta-analysis may be important for assessing effects
which are small in absolute magnitude yet potentially large enough to be highly cost-effective.
Unfortunately, multiple hypothesis testing requirements could potentially discourage authors
from reporting outcomes for which power is low.

As we have shown, restricting the analysis to the five RCTs which reported mortality in
publications leads to a similar, but much less precise estimate of effect. By including the
additional ten studies we were able to increase statistical power (see Table S4, Fig 3).  However,
this necessitated a time-consuming process of contacting authors to request the data and led to
the loss of some data that was once available but is no longer available.

One potential reform would be for pre-analysis plans to include a section listing outcomes for
which the study is underpowered, either because the outcome is rare or noisily  measured, but
which will be reported for use in meta-analyses, and for individual studies to report such data,
but not to be expected to conduct multiple hypotheses testing on such outcomes.  Committees of
scholars in the field could recommend a limited set of outcomes such as mortality for collection
and incorporation in meta-analyses. Factors for inclusion could include importance and ease of
data collection.

Data sharing
All data and code to replicate the results (including all figures and tables) of this meta-analysis
has been made publicly available.
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Figures and Tables

Fig. 1. Study selection

Note: This funnel chart depicts the search strategy and selection criteria for studies included in the meta-analysis.
Non-contamination of control groups was added as an inclusion criteria after reviewing the studies and was not
decided prior to the review of studies
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Fig. 2. Distribution of diarrhea prevalence in low- and middle-income countries

Note: This histogram shows diarrhea prevalence (%) across sub national geographic units of 94 low- and
middle-income countries as of 2017. Black lines indicate the minimum, weighted average, and maximum diarrhea
prevalence in studies included in the meta-analysis.

Source: Institute for Health Metrics and Evaluation, 2020 (17)
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Fig. 3. Forest plots of meta-analysis results

(A)Peto Odds Ratio

Note: Dots and horizontal lines represent mean estimates and their 95% confidence intervals from individual studies.
Estimates for individual studies are Peto odds ratios. The size of each dot represents the weight given to the study.
Diamonds are centered around the meta-analysis estimates and their widths indicate the 95% confidence/credible
interval. In addition to the overall estimate we also show estimates for subgroups of studies by intervention type.
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(B) Bayesian Odds Ratio

Note: Dots and horizontal lines represent posterior means and 95% credible intervals: for individual studies they are
the ORs under Bayesian no pooling model, for chlorine studies and overall estimates they are the estimates from
partially pooled (random effects) model. See Materials and Methods, section 2 for details, including choice of priors.
We do not report the Bayesian OR for the subset of filtration studies because we only have two filtration studies in
our sample and the parameters of the Bayesian hierarchical model are not well-identified in that case.
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Table 1. Summary of studies included

Study Intervention Sample
size Country Population of study Observation

period

Infectious environment indicators
Compliance

rate**
Contamination levels Diarrhea

prevalence

Semenza et
al., 1998
(26)

(1) Chlorination (1) 68 hh
(C) 58 hh Uzbekistan Households with a

<5y old child 9.5 weeks 54 TTC/100 ml
pre-treatment

12.77% in control
children 73%

Reller et al.,
2003 (27)

(1) Flocculant-
disinfectant
(2) Flocculant-
disinfectant + vessel
(3) Chlorination
(4) Chlorination + vessel

(1) 102 hh
(2) 97 hh
(3)  97 hh
(4) 100 hh
(C) 96 hh

Guatemala

Households with a
≤11m old or
pregnant woman in
third trimester

1 year Concentration of E. coli
per 100ml: 63

13.2% in control
children (≤12m)

(1) 27%
(2) 34%
(3) 36%
(4) 44%

Crump et
al., 2005
(21)

(1) Chlorination
(2) Flocculant-
disinfectant

(1) 203 hh
(2) 201 hh
(C) 201 hh

Kenya
Family compounds
with at least one
child <2y old

20 weeks

Concentration of E. coli
per 100ml: 98 (mean at
baseline); Share of
households meeting WHO
water quality standard:
14% in control

9.6% in control
children;
2.7% in control
group (all ages)

52.5%

Luby et al.,
2006 (19)

(1) Chlorination
(2) Flocculant‐
disinfectant water
treatment

(1) 265 hh
(2) 262 hh
(C) 282 hh

Pakistan Households with a
<5y old child 37 weeks

Diarrhea is a leading cause
of death and the
environment is heavily
contaminated with sewage

8.62% in control
group Unavailable

Chiller et
al., 2006
(28)

(1) Chlorination

(1) 1702
ind.
(C) 1699
ind.

Guatemala Households with a
<1y old child 13 weeks

98% drinking water
sources contaminated with
E. coli at beginning of
study

6% in control
group 85%
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Kremer et.
al., 2011
(29)

(1) Spring protection (1) 749 hh
(C) 685 hh Kenya Households which

use selected springs 2 years Concentration of E. coli
per 100ml: 44.3

20% in control
children 69%

Peletz et al.,
2012 (22) (1) Filtration (1) 61 hh

(C) 59 hh Zambia

Households with a
6m-1y old at
enrollment and with
HIV+ mothers (100
HIV+ and 20 HIV-)

1 year 181 TTC/100ml for
control (endline)

13.6% in control
children (<2 y) 87%

Boisson et
al., 2013
(30)

(1) Chlorination

(1) 1080 hh
(C) 1083
hh India Households with a

<5y old child 1 year 
122 TTC/100 ml in
control over the course of
the study

5.2% at baseline
for children (<5 y) 32.0%

Null et al.,
2018 (18) (1) Chlorination

(1)  904 hh
(C) 1913
hh

Kenya Newborns 2 years

>75% of household
collected water from
improved water sources at
baseline

27.1% in (active)
control group* 30%

Luby et al.,
2018 (20) (1) Chlorination + vessel

(1) 698 hh
(C) 1382
hh

Bangladesh
Newborns and their
siblings under 36m
old

2 years
74% collected drinking
water from shallow tube
wells at baseline

5.7% in control
group 81%

Humphrey
et al., 2019
(31)

(1) Chlorination +
sanitation + hand
washing + play space +
hygiene counseling +
construction of improved
pit latrines (WASH)

(1) 918
children.
(C) 884
children.

Zimbabwe Households with a
<18m old child 1.5 years

63% of household
collected water from
improved water sources at
baseline

9.5% in control 79%

Kirby et al.,
2019 (32)

(1) Filtration +
Cookstoves

(1) 87 vill.
(C) 87 vill. Rwanda Households with a

<5y old child 1.25 years >100 TTC/100 ml for 38%
of households in control 12.9% in control 69.9%

Haushofer
et al. 2021
(33)

(1) Chlorination
(follow-up to Null et al.,
2018)

(1) 65 vill.
(C) 67 vill. Kenya Children <5y 4-6 years

>75% of household
collected water from
improved water sources at
baseline

27.1% in (active)
control group* 31%
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Dupas et al.
2021 (34)

(1) Coupons for
chlorination (subsidy)
(2) Coupons + free
delivery + WASH
promotion
(3) Coupons + WASH
(4) WASH

(1) 441 hh
(2) 458 hh
(3) 468 hh
(4) 468 hh
(C) 460 hh

Malawi Households with a
<6y old child 61 weeks

70.7%  of household
collected water from a
protected water source at
baseline

12.4% in control
group 40%

Quick et al.
1999 (35)

(1) Chlorination + safe
storage of treated water +
community education

(1) 400 ind.
(C) 391
ind.

Bolivia All households in
study communities 34 weeks

Median E. coli colony
count for well water
(baseline): 34/100 ml and
for stored water (baseline):
44/ 100 ml

38.0% in control
group 71%

Studies included for robustness checks     

Boisson et
al., 2010
(36)

(1) Filtration
(1) 546 ind.
(C) 598
ind.

Democratic
Republic of
Congo

All households in
selected
communities

1 year
75% of source water
samples had >1,000
TTC/100 ml

8.96% in control
children (<5 y) 68%

du Preez et
al., 2011
(37)

(1) Solar disinfection

(1) 579
children.
(C) 554
children.

Kenya Children 6m-5yo 1.5 years
Most households collected
water from standpipes
(with treated water)

5.2% of dysentery
in control 68%

Notes: * In Null et al., 2018 (18) there was an active control group which received enumerator visits and a passive control group with no visits. **Compliance
rate was defined in a way that was specific to each study; we provide these definitions in Materials and Methods, section 1.

For each study, the corresponding meta-analysis input data for each study - i.e. the number of events (deaths) and non-events in each study - are reported in Table
S3. Abbreviations: hh: “households;” ind.: “individuals;” child.: “children;” (C): “(Control).”.
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Table 2. Cost–effectiveness analysis

Chlorine Dispensers in Western
Kenya Global Coupon Program

Estimated mean OR effect of water
treatment on child mortality, mean
(95% CrI)

0.70
(0.49, 0.93)

0.70
(0.49, 0.93)

Posterior predictive estimate (RR) of
effect, mean 0.75 0.75

Expected deaths averted per person 0.015 0.007

Expected DALYs averted per person 1.16 0.53

Cost per expected death averted (USD) 3,104 2,974

Cost per expected DALY averted
(USD) 39 38

This cost-effectiveness calculation is based on the Bayesian logit model and incorporates uncertainty in
predicting effects to a new setting.Details of calculation and assumptions of costs are given in Table S8.
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Materials and Methods

Section 1 presents a summary of included studies and a comparison between studies included
and excluded from our analysis. Section 2 presents the meta-analysis models. Section 3 presents
sensitivity analyses. Section 4 presents additional considerations for cost-effectiveness analysis.
Section 5 presents an assessment of publication bias (for both diarrhea and mortality outcomes)
and exploratory simulation of small study publication bias. Section 6 provides an exploratory
assessment of power to detect heterogeneous effects. Section 7 compares meta-analysis estimates
with model predictions.

1. Details of included studies and comparison with other RCTs

Summary of 15 included studies

The median follow-up length for mortality was 52 weeks, with the longest follow-up being 4-6
years (33). Ten studies were conducted in lower-middle income countries, and five were
conducted in low-income countries, according to the World Bank classification at the time of the
study (38). The age at which children were enrolled, as well as the periods for which they were
followed, varied across studies; see below.

Out of the 15 studies, 13 were conducted in rural areas, one was conducted in both rural and
urban areas, and one was conducted in a peri-urban setting. The compliance rate (see Table 1 for
definition) in the sample ranged from a low of 27% to a high of 87%, with a median of 69%.

In all included studies, the primary outcomes were intermediate outcomes such as diarrhea, while
mortality data was collected as a secondary outcome, as part of internal respondent tracking
systems, or for IRB reporting purposes by the authors. Only five studies explicitly report
mortality outcomes in the published manuscript, highlighting the importance of following up
with authors to request the mortality data.

Baseline contamination levels of water in studies are also reported in Table 1. Contamination
level measures are not consistently reported across studies. Four studies report 54 to 181
TTC/100 ml (thermotolerant coliforms, which include E. Coli and three other bacteria species).
Another 4 studies report E.Coli concentration from 34 to 98 per 100 ml.

Estimates of diarrhea prevalence among the 15 included studies are representative of prevalence
in low- and middle-income countries. Household surveys across 94 low- and middle-income
countries found diarrhea prevalence in 2017 ranging from 3.2% to 66.4% across sub national
units, with a median of 19.2% (18). Diarrhea prevalence rates (at baseline or, if baseline not
available, in the control group) in our sample of studies range from 5.2% to 27.1%, with a
weighted mean (using weights from the Peto model) of 15.6%; this corresponds to the 35th

percentile of the distribution of sub national diarrhea estimates (see Figure 2).
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Choice of treatment and control groups

When relevant, multiple treatment or control arms were combined so as to maximize power and
to avoid introducing the correlation between treatment effect estimators that would arise if
different treatments were compared to the same control group. For two studies (18, 33) which
report the impact of closely related interventions on different samples, we report sensitivity to
combining these studies. For 13 out of 15 studies, water treatment was compared to a pure
control group which received no intervention. In two of these, several experimental arms with
different kinds of water treatment were combined. These included some combination of water
chlorination, flocculant-disinfection, and safe storage vessels (19, 27). In two cases, water
treatment was combined with another intervention, cookstoves (32) or other sanitation and
hygiene interventions (31).

Definition of compliance variable

Our definition of compliance for each study depends on the type of treatment and the available
data. For studies involving chlorination, compliance was defined as the percentage of stored
water samples (one per household) with detectable free chlorine above 0.1 ppm (Chiller et al.
2006; Reller et al. 2003; Luby et al. 2018; Haushofer et al. 2020; Crump et al. 2005; Humphrey
et al. 2019) or the percentage of samples with any detectable chlorine (Semenza et al. 1998;
Boisson et al. 2013; Dupas et al. 2021; Quick et al. 1999; Null et al. 2018). Data from
unannounced visits was used whenever it was available.  In Crump et al. (2005), compliance was
recorded as an average across two treatment groups, and in Null et al. (2018), compliance was
measured from the one-year follow-up. For the two studies on water filtration, compliance was
defined as the percentage of households which had a filter and reported using it in the last three
days (Kirby et al. 2019; Peletz et al. 2012). Peletz et al. (2012) additionally required that
reportedly-treated stored water with a low measured bacteria concentration was present in the
household. Finally, for the study involving spring protection, compliance was measured as the
increase in the fraction of trips to protected springs in the treatment group (Kremer et al. 2011).

Definitions for each study:

● Semenza et al: percentage with detectable chlorine residuals in the water at the time of
visit

● Reller et al: Proportion of households drinking water with detectable free chlorine > 0.1
mg/L

● Crump et al: Average effect across two treatment groups
● Chiller et al: Residual free chlorine concentration > 0.1 ppm (scheduled visits)
● Kremer et al. (2011): increase in fraction of trips to protected springs (units = percentage

points, not percentage)
● Peletz et al. (2012): percentage of households satisfying:
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○ The water filter was observed in household at the time of visit
○ The storage vessel contained water reported to be treated at the time of visit
○ The respondent reported using the filter on the day of or day prior to the day of

visit.
○ There was at least a 1 log10 TTC improvement in stored household water over

their unfiltered water, or stored water quality was 10 TTC/100 mL
● Boisson et al: Presence of residual chlorine in child’s drinking water
● Null et al. (2018): Just used detectable free chlorine measured in one-year follow-up
● Luby et al. (2018): Stored drinking water has detectable free chlorine (>0·1 mg/L) at

2-year follow-up
● Humphrey et al.: Percentage of households with detectable free chlorine above 0.1 ppm
● Kirby et al: “Filter observed and reports last filled since day before yesterday”
● Haushofer et al: Household uses chlorine dispensers (unannounced visit)
● Dupas et al. (2021): Positive chlorine test
● Quick et al.: Proportion of stored water samples with detectable levels of total chlorine

Comparison of characteristics between included and excluded studies

We additionally compare some key characteristics of the water treatment studies included with
those excluded from the analysis, but included in (9). There were 73 studies in (9), yielding 80
observations. Some studies had multiple observations on account of multiple study locations, and
hence yielded multiple effect estimates. 7 of these studies were included in our meta-analysis,
resulting in 73 observations excluded from our meta-analysis.

The distribution of effect estimates of water treatment on diarrhea and compliance rates are
similar across included and excluded data (see Fig. S4).

47 out of 73 observations (64%) are conducted in a rural setting, with 15.1% and 20.5% being
conducted in mixed and urban settings respectively. Similar to this, among the included studies,
73.3% (11 out of 15 studies) of the studies are set in rural areas and the proportion of the studies
conducted in mixed and urban settings is 13.3%  for both.

In terms of the water source, the primary source of water at baseline (or in the control group) was
an unimproved water source in 49 out of 73 observations (67%.) This is comparable to 86.6%
(13 out of 15 studies) among the included studies.

A t-test of mean difference between included and excluded studies yield insignificant differences
for the diarrhea effect size (p-val=0.34), compliance rate (p-val=0.23), setting (binary variable
indicating whether the setting was rural, p-val=0.51), and water source type (binary variable
indicating if the primary water source was unimproved, p-val=0.13).

Age characteristics of included children

Two studies excluded some of under 5 year olds at enrollment:
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● Luby et al., 2018 did not collect data for children over 3 years or under three months old
at the time of enrollment

● Null et al., 2018 did not collect data for children older than 2 years

Where available, we used individual-level data to characterize age composition of samples in 11
studies where we had access to age data.

Below is a summary of person-years at each age, per study. We also calculated mean age at
follow-up, varying from 1.0 (Null et al., 2018) to 3.5 (Kremer et al., 2011). In two studies – Null
et al., 2018 and Haushofer et al., 2020 – most of data collected came from children under the age
of 2, while Kremer et al. 2011, Boisson et al. 2013, Dupas et al., 2021 included much more
information on children aged over 2. (To illustrate this person-years calculation, if a child was
followed up between ages of 1.5 and 3 we counted 0.5 person-years in the “Age 1” column and 1
year in “Age 2”.)

Because in some cases the ages and follow-up times were not precisely recorded (e.g. rounded
up to a year and in four studies no age information was given), we report ranges rather than
means. We italicize studies with no age information.

Person-years

Study <1 W 1 W-1 M 1 M-1 Y 1-2 Ys 2-3 Ys 3-4 Ys 4-5 Ys

Boisson et al., 2013 6 22 445 601 574 562 543

Chiller et al., 2006 0 0-1 102-111 32-42 41-51 50-60 35-45

Crump et al., 2005 3 11 80-85 160-165 121-126 111-116 66-71

Dupas et al., 2021 0 1 241 712 689 578 429

Haushofer et al., 2020 38 126-127 1603-1605 1202-1203 742-743 325 24

Humphrey et al., 2019 0-38 0-125 0-1791 0-977 0 0 0

Kirby et al., 2019 5 19 414-418 657-661 682-684 758-761 610-614

Kremer et. al., 2011 0 2 496-509 1178-1188 1332-1338 1030-1033 469

Luby et al., 2006 0 0 204 168 207 253 274

Luby et al., 2018 0-38 0-126 0-1798 0-1962 0-1962 0-1962 0-1962

Null et al., 2018 62-69 189-217 2492-2895 579-993 47-454 0-1 0

Peletz et al., 2012 0 0 41 54 0 0 0

Quick et al., 1999 0-15 0-51 0-725 0-791 0-791 0-791 0-791

Reller et al., 2003 1-2 5-6 210-224 283-298 115-130 184-200 82-98

Semenza et al., 1998 0-3 0-11 0-154 0 0 0 0

Total 116-218 374-717 6328-11247 5625-9814 4549-7748 3851-6643 2532-5320

Total/Interval Length 6040-11347 5836-11185 6903-12269 5625-9814 4549-7748 3851-6643 2532-5320
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Note: The above table displays person-years of data within each study and age group. In cases where age or
follow-up time are not known precisely, the minimum and maximum numbers of person-years are shown. The final
row adjusts for time interval length (~0.02 years for column 1, 0.06 years for column 2, 0.92 years for column 3, and
1 year for all other columns). Studies with no age information are in italics.

As discussed in the main text, understanding possible heterogeneity of treatment effects with age
would require us to use survival analysis, which we plan to do in the future.

To validate individual-level data we also summed person-years within each study and compared
those values to the number of person-years that was implied by multiplying the
publication-stated follow-up length by number of subjects. With the exception of Haushofer et
al., 2020 (5-year follow-up), we found values agreed with what was stated in publications. For
Haushofer et al., 2020 the actual time between start of treatment and last follow-up was about 2
years. This is because that study (in its main model specification, which we follow in this paper)
only included children born after the year of the intervention, thereby reducing the average
follow-up length in the observed data.

Study N Length (weeks) Total person-years
in microdata

Average follow-up
length (weeks),

microdata

Chiller et al., 2006 1093 13 22 12.4

Crump et al., 2005 1538 20 46 18.7

Haushofer et al., 2020 1981 260 339 106.7

Kirby et al., 2019 2470 65 263 66.6

Kremer et. al., 2011 2221 104 378 106.3

Null et al., 2018 3699 104 511 86.2

Peletz et al., 2012 121 52 8 40.8

Reller et al., 2003 926 52 73 49.5

Boisson et al., 2013 2991 52 229 47.9

Dupas et al., 2021 2616 61 221 52.7

Luby et al., 2006 1548 37 92 37.2

Semenza et al., 1998 168 10 NA NA

Humphrey et al., 2019 1954 78 NA NA

Luby et al., 2018 1962 104 NA NA

Quick et al., 1999 791 34 NA NA
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2. Meta-analysis models

Comparing odds ratios and risk ratios for rare events

We chose modeling of odds ratios (ORs) instead of risk ratios (RRs). The standard odds ratio
estimator is given by where a is the observed number of events (deaths) in the treatment 𝑎/𝑐

𝑏/𝑑  

group, and is the number of non-events in the treatment group. Similarly, b and d are the 𝑐  
number of events and non-events in the control group respectively. A normal approximation of
the logarithm OR is typically used to meta-analyze odds ratios. Under this notation, risk ratios
are given by . As we can see, when a and c are small in relation to b and d,𝑎/𝑐

(𝑏+𝑎)/(𝑑+𝑐)

respectively, relative odds will be close to relative risks.

The following table illustrates how OR changes as a function of event rate in the controls
and RR, for a plausible range of values for mortality:

RR = 0.9 RR = 0.8 RR = 0.7

c / (c+d) = 1% OR = 0.899 OR = 0.798 OR = 0.698

c / (c+d) = 2% OR = 0.898 OR = 0.797 OR = 0.696

c / (c+d) = 5% OR = 0.895 OR = 0.792 OR = 0.689

Peto odds ratio model

The main frequentist specification is the Peto one-step OR method. However, the sample OR
and/or its variance estimates are undefined when there are zero deaths in either the control or the
treatment group, meaning that the standard meta-analysis approach requires dropping three
studies (19, 26, 28).7 Instead, the Peto one-step method computes an approximation of the log
odds ratio which allows for zero deaths in one of either the control or treatment group (39), but is
not defined when both control and treatment arms have no events.

The Peto odds ratio under the assumption of fixed effects is estimated as follows:

7 Chiller et al., 2006 (28), Semenza et al., 1998 (26) report zero deaths in the treatment group, and Luby et al., 2006 (19) has zero
deaths in the control group.
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𝑛2(𝑛−1)

where a is the number of treatment group participants who died, b is the number of treatment
group participants who did not, c is the number of control group participants who died, and d is
the number of control group participants who did not; n = a+b+c+d is the total number of
participants in a given study (in the notation above we drop subscripts for simplicity); k indexes
each study, and m is the total number of studies.

The canonical Peto OR specification (39) uses fixed effects. A random-effects specification may
be preferable since treatment effect heterogeneity is expected due to differences across studies in
ages of children, baseline child mortality rates, baseline water contamination, treatment
compliance, and water treatment technologies.8 We therefore fit a random-effect model of Peto
log odd ratios by using the default Restricted Maximum Likelihood (REML) estimator as
implemented in R package meta (41). We use a typical continuity correction of adding 0.5 events
to each of the cells (a,b,c, and d) in the study where a=0 and c=0.

Bayesian logistic meta-analysis model

We also estimate the effect under a hierarchical Bayesian logistic regression model. This model
is particularly suitable for the setting as it is able to handle zero death events and  also model
heterogeneity. The model accounts for both sampling variation and heterogeneity across studies
by applying a logit model of individual-level data (which can be generated from aggregate data
on numbers of events and non-events in each study), as follows:

𝑦
𝑖
 | µ

𝑘 𝑖( ),
τ

𝑘 𝑖( )
,  𝑇

𝑖
∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑙𝑜𝑔𝑖𝑡−1 µ

𝑘 𝑖( )
+ τ

𝑘 𝑖( )
𝑇

𝑖[ ]( )
where,

8 However, meta-analysis simulation studies show that heterogeneity may have a minor impact on estimates when
rare events are considered (28, 40).
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where is an indicator variable for child being dead, and is an indicator for the treatment𝑦
𝑖

𝑖 𝑇
𝑖

group; corresponds to study-specific control group probabilities of event and are theµ
𝑘

τ
𝑘

estimated study-specific effects. Under this formulation, the mean (also referred to as
hypermean) log odds ratios of death between treatment and non-treatment in the population of
included studies are given by and (hypervariance) reflects the true variation in mean effectsτ σ

τ
2

across settings. Rates of events in the control arms are also partially pooled, i.e. assigned a
hierarchical distribution.

For the main specification, we use mildly informative priors on the hyper-parameters, similar to
(15). For , we set a normal distribution with mean 0 and standard deviation of 10. This priorτ
encodes the belief that causal effects should not be thought of as large unless data contains
evidence to the contrary. For , we use a standard distribution with SD of 10, but centered atµ
-4.59, to encode our knowledge that child mortality is a rare event (approximately log(0.01) =
-4.59).  For and we use a zero-centered standard distribution with SD of 10, which allowsσ

τ
σ

µ
 

for very large heterogeneity. The discussion of the Bayesian OR estimates throughout the paper
refers to 95% posterior credible intervals (CrI) from Bayesian inference, which may not be
symmetric.

Figure 3B uses a no pooling model, i.e. one where is infinite (assuming that individual studiesσ
τ
2

do not influence each other). Following the literature (15), in the sensitivity analysis section (see
below) model fit is compared across full pooling (fixed effects) and partial pooling (random
effects) specifications using cross validation. Full pooling model is one where =0, i.e., thereσ

τ
2

are no differences between studies. All other priors are unchanged across no, partial, and full
models. For each specification, 15 Bayesian hierarchical models are fitted to the data, leaving out
one study at a time and then calculating expected log predictive density (ELPD) for each study
(42). This measures the out-of-sample predictive performance of the model for each study,
automatically penalizing the model for the number of parameters. The ELPD averaged over the
fifteen models is used as the cross-validation information criterion. A value closer to zero
implies a better fit.

For the Bayesian model the weight of study , , is determined by the estimated between-study𝑘 𝑤
𝑘

variance of effects, , and the sampling variance of study , , as follows: σ
τ
2 𝑘 𝑠𝑒

𝑘
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We report the meta-analysis weights in Table S5.
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3. Sensitivity analysis

List of sensitivity analyses

To understand the impact of model choice on treatment effect estimates, we fitted: (i) a fixed
effects (Bayesian logit) model instead of random effects, (ii) an inverse variance model instead
of Peto OR model, and (iii) a risk difference model instead of OR.

For sensitivity to choice of data, we considered the following: (i) exclusion of any particular
study from the analysis, (ii) combining two studies that measure impacts of a similar program on
different populations (18, 33), (iii) the inclusion of studies with contaminated control groups (12,
31), (iv) the use of an alternative control  group in a study with active and passive control arms
(16), (v) use of an alternative treatment group in a spring protection study (36), (vi) restricting to
studies with long monitoring durations, and (vii) dropping studies where water treatment was
combined with another intervention (31, 32).

Summary of result

Over a set of the following 50 sensitivity analysis models (8 Peto OR models looking at lengths
of follow-up, additional inverse variance model, Bayes and Peto models repeated for 15 choices
of dropping one study and, 6 other choices of studies to include/exclude) the study estimates
remain qualitatively similar to our main estimate. In this set of sensitivity analyses, the mean OR
estimates range from 0.67 to 0.80.

Case-by-case details of sensitivity analyses

The exclusion of any single particular study. The Peto and Bayesian odds ratio estimates are
given in Table S5. For the Bayesian model, the mean OR ranged from 0.67 to 0.80, with the
lowest 95% CrI  lower bound of 0.49 and the highest 95% CrI upper bound of 0.97. For Peto
OR, the means ranged from 0.67 to 0.78, with the lowest lower bound of 0.42 and the highest
upper bound of 1.01.

Combining studies that cover related programs. One of the studies (33) relies on a
continuation9 of a program from another study (18). The two studies cover different populations,
time-periods, and interventions. In Null et. al (18), households have access to both chlorine

9 In (33), the study sample includes 132 villages from two of the three counties (65 treatment villages and 67 passive
control villages) of the original WASH-B study (18). The 65 treatment villages include villages which received free
sodium hypochlorite dispensers for point-of-collection water treatment (which was continued by the NGO Evidence
Action after the end of the WASH-B study) and dilute chlorine solution. Villages where water treatment was
combined with sanitation, handwashing, or nutrition interventions in (18) were excluded from the sample. (33) uses
data collected by John & Orkin (2018) four to five years after the rollout of the water treatment intervention on a
sample of children born to mothers not enrolled in (18), over twice as large as that analyzed in the original study.
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dispensers, and home delivery of water treatment solution.  One study (33) uses data on
non-treated individuals collected four to five years after the initial roll-out of the program studied
in (18). In (33), home delivery of water treatment was discontinued, some chlorine dispensers
had closed, and others had opened. We do not have data on how compliance varied between the
two studies (33) measures the combined effect of the roll-out and continuation of the program.
As a sensitivity test, we combine these into one study. The meta-analysis estimates remain
quantitatively similar and significant with a mean reduction in mortality odds of 29-31%,
depending on the model (see Table S6).

Including studies with a contaminated control group.

Two studies were not included in the main analysis due to contaminated control groups. In the
blinded filtration study (36), the placebo filter removed more than 90% of the source water
bacterial contaminant.  Participants in the solar disinfection trial (37) were temporarily displaced
due to political violence and following the displacement, most gathered water from standpipes
with treated water—largely reducing the likelihood of source water contamination. Moreover,
displacement could have affected adherence to solar disinfection practices. We report
meta-analysis estimates including these two studies in a Table S6. Adding the solar disinfection
trial (37) to the meta-analysis results in a mean reduction in mortality odds of 28-29%; adding
the blinded filtration study (19) results in a mean reduction of 26-27% (see Table S6).

Alternate control group in study with active and passive arms. In one study (19), the
experimental design included two control arms: an active one, receiving monthly visits by
enumerators, and a passive one with no such visits. While in the original publication the authors
restricted their analysis to treatment vs. active control comparisons, the present analysis
combines data from the active and passive controls into a single control group to increase
statistical power. Ignoring data from the passive control group (18) for the meta-analysis, leads to
a mean reduction in mortality odds of 28-30% (see Table S6).

Alternate treatment group in spring protection study. In one study (29), the treatment effect
from the water intervention was estimated using data from the study’s treatment group, who
received spring protection in Year 1, and the control group, who received spring protection in
years 3 and 4.  When those who receive spring protection in year 2 are included in the treatment
group (29) for the meta-analysis, the estimated mean reduction in mortality ranges from 28-30%
(see Table S6).

Dropping studies which combine water treatment with other interventions. Dropping studies
where the water treatment intervention was combined with the provision of cookstoves (32) or
other hygiene and sanitation interventions (31) leads to significant Peto OR and Bayesian OR
estimates, with a mean reduction in mortality odds around 35% (Peto OR 0.66, Bayes OR 0.64),
see Table S6.

Restricting to studies with longer monitoring periods. The studies included in the
meta-analysis have differing lengths of follow-up, ranging from 9.5 to 260 weeks. Meta-analysis
models of event data may overweight the contribution (“effort”) of shorter studies. However, the
weights in both the Peto OR and Bayesian logit model assigned to short studies are low, as seen
in Table S5. For the Peto OR model, estimates are expected to be imprecise for studies with
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shorter monitoring periods, owing to the shorter period over which events can occur. In our
Bayesian logit model, when mortality event rates are low, this is reflected in the model by
estimation of imprecise baseline risk and, hence, imprecise estimation of treatment effects, which
ultimately leads to a lower weight in the meta-analysis estimate. As a sensitivity check, we
repeat Peto OR analysis by excluding studies that are shorter than any given follow-up length in
our dataset (104, 78, 65, 52, 37, 20, 13 and 9.5 weeks).

The results are plotted in Figure S2. For Peto OR, the mean reduction in mortality odds ranges
from 19% (Peto OR 0.81: CI 95% 0.66, 0.98) to 28% (Peto OR 0.72: CI 95% 0.55, 0.92), and all
estimates are significant.

We conducted an additional check of whether short studies may be unduly impacting the model.
We started from 10 studies in the dataset that include one year or more of follow-up data and fit
the Peto OR model. Then, we considered a hypothetical short study of 13 weeks (3 months),
where the death risk is supposed to (crudely) approximate event rates in the dataset, 0.4%, and
the size of the control arm is same as average size of control in the dataset, 1189. We assumed
1:1 randomization and that the true OR is the same as in the model of 10 long studies (0.80). We
then simulated a growing number of short studies, 1, 2, 3, …, 10, in each case conducting 100
replications. We examined the behavior of mean and 95% intervals. Predictably, the mean was
not affected and the intervals shrank only slightly: in the model of only 10 long studies the 95%
interval was 66.0% to 97.2%. In the model with 10 long and 10 simulated short studies the 95%
interval was 66.9% to 95.6% (averaged over 100 replications). This suggests that including short
studies has a negligible impact on precision of the estimate, unless they have high event rates.

Inverse variance estimation. The inverse variance method assigns to each study a weight
proportional to the inverse of the variance of the effect estimate. As a result, larger studies are
given more weight than smaller studies, which have larger standard errors. To perform an inverse
variance random effects estimation, we use a normal approximation of the log odds ratios and
drop studies with zero deaths in either the treatment or control group: Chiller et al., 2006 (28)
and Semenza et al., 1998 (26) report zero deaths in the treatment group; Luby et al., 2006 (19)
reports zero deaths in the control group; Quick et al. (35) reports zero deaths overall. The results
are presented in Figure S1. Inverse variance random effects estimation implies an average
reduction in all-cause odds of child mortality of 26% with random effects (OR 0.74, 95% CI 0.59
to 0.93).

Below, we report results using only studies with published mortality outcomes to highlight the
importance of collecting data from studies that did not report mortality outcomes as part of their
analysis.

Contribution of studies with published mortality outcomes only. At the beginning of the
study, five randomized controlled trials (RCTs) were identified which reported mortality
outcomes as part of their analysis (18–22).10 Two of the five studies did not pre-specify mortality
as an outcome, yet reported large effects on mortality in their published manuscript (14, 27). By

10 Papers which reported mortality in Clasen et al., 2015 (1) and other studies that we were aware of.
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including studies which did not report mortality outcomes, we are able to increase statistical
power to detect significant effects in our main results.11 Another key reason is to avoid bias if
those with positive point estimates are more likely to publish.

The estimated reduction in all-cause odds of child mortality with the Peto OR model was 33%.
However, the result was not significant at the 95% confidence level (Peto OR 0.67: CI 95% 0.41,
1.11). The Bayesian logistic odds ratio estimate is similar in point estimate, and the uncertainty
interval includes 1 (Bayes OR 0.74: CI 95% 0.28, 1.50). Dropping the study with zero deaths in
its treatment arm (21) and using inverse variance OR results in significant estimates for only the
fixed effect specification (random OR 0.65: CI 95% 0.40, 1.05; fixed OR 0.73: CI 95% 0.55,
0.97), see Table S4.

Risk difference (RD) model. As discussed, RD specification is not appropriate when there are
very large differences in baseline risks, as is the case in this meta-analysis: one study had no
events, and another had a 10% event rate in controls. A RD model is also not appropriate when
probabilities are low, as this would imply that expected event rates for some studies are negative.
This is also the case in our meta-analysis, since several studies had close to 0 events. However,
we include results using an RD model for transparency. Fitting a Bayesian RD model we found a
non-significant reduction in mortality risk of 0.2 percentage points (d = -0.002, 95% CrI -0.007,
0.001).

Fixed and random effects model. We used both full (fixed effect) and partial (random effect)
pooling specifications for the Bayesian logit model. Under a fixed effect Bayesian logit model
the reduction in odds was 24% (OR 0.76, 95% CrI 0.63, 0.91), compared to 30% under the
random effects model. Using a leave-one-study-out cross-validation (LOO CV) procedure, the
expected log predictive density (ELPD) for the partial pooling model was -956 (with SE of 268)
and for the full pooling model -944(SE of 266). This suggests no significant differences in the
out-of-sample performance of both models, with slight preference for the full pooling model.

11 In January 2021, Waddington and Cairncross released a protocol for a meta-analysis of the effect of WASH
interventions overall on mortality. They are planning to rely on mortality estimates in published manuscripts, similar
to our analysis in this section.
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4. Cost-effectiveness analysis

The cost-effectiveness analysis in this paper does not seek to determine the most cost-effective
approach to water treatment, which may vary by context, but to simply use a few illustrative
examples to argue to that there is likely to be tremendous potential to cost effectively reduce
child mortality in a wide variety of settings in low-and middle income countries that do not
already have access to safe water. To the extent that other delivery technologies can do so more
effectively, benefits will be even greater.  The present estimates imply that free provision of
water treatment is a very cost-effective way to reduce child mortality.

We limit ourselves to a cost-effectiveness analysis and do not consider an earlier process that is
used to determine whether regulatory approval should be given to water treatment, since water
treatment has been widely used and has been generally accepted to be safe and effective against
multiple pathogens.

Cost effectiveness results are given in the main text and Table 2 and more detailed calculations
are given in Table S8 of this supplement.

In this section we provide more detail for two cost-effectiveness calculations presented in the
paper and then discuss how decision maker’s priors would impact the analysis.

Chlorine dispensers in western Kenya

The cost effectiveness of chlorine dispensers for point-of-collection water disinfection in western
Kenya is calculated using data from Evidence Action, which operates 18,405 dispensers with
1,138, 964 people using the dispensers in western Kenya (43). Only benefits of reduced child
mortality risk are included, while possible health gains through reduced child morbidity and
health gains for people over the age of 5 years - such as those with suppressed immune systems
(e.g., HIV+) - are ignored. The estimated cost of installing and maintaining chlorine dispensers at
scale in western Kenya is about USD 9.13 per child under five served, per year (see Table S8,
row 7).12 Thus, the cost of operations is USD 3,104 per death of a child under 5 averted.
Assuming that a death within the first 5 years of life leads to 81.25 disability-adjusted life years
(DALYs)13, the cost of chlorine dispensers for point-of-collection water disinfection is USD 39
per DALY averted (see Table S8, row 9). This cost is far lower than the Kenyan gross domestic
product (GDP) per capita (about USD 1,878 in 2020), which is the threshold suggested by the
Commission on Macroeconomics and Health to determine if interventions are “highly
cost-effective” and, of course, even lower than three times the GDP per capita which is the
threshold to determine if interventions are “cost-effective” (44).

Coupons for water treatment solution

13 As recommended by the World Health Organization.

12 This is calculated as the ratio of the total cost of the program (serving all community members) and the number of children
under 5 served by dispensers.
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Programs providing coupons for free water treatment solution to families with young children
have so far only been conducted at modest scales (34, 45), but back of the envelope calculations
suggest coupon programs would also be highly cost effective (see Table S8 Column 4). These
calculations are based on rates of usage and coupon redemption in Kenya (45) and Malawi (34).
Approximately 32% of all households who receive coupons treat their water with 37% of all
coupons being redeemed.14 The under-5 mortality rate among populations without access to safe
drinking water is estimated as 5.02% using data from the UN Interagency Group for Child
Mortality Estimation – slightly lower than that for rural Kenya used in the calculation above.15

Based on the expected effect of water treatment on child mortality in a new implementation
(Bayes OR 0.75; 95% CrI 0.29 to 1.46) and adjusting for usage rates, it is estimated that the
program would reduce under-5 mortality per year by 0.7 p.p. (see Table S8, row 5). Each
150-milliliter bottle of WaterGuard (a brand of dilute chlorine solution) costs USD 0.31 and is
enough for roughly one month’s supply of treated water (for drinking and cooking) for a
household. The studies that evaluated this intervention (34, 45) focused on environments where
people did not have access to clean water. In scaling up such a coupon program, it may be
difficult to exclude areas where much of the population already has access to clean water and it is
possible that people in these areas might also treat their water. However, even considering that
for every two households targeted the program covers an additional untargeted household which
already has clean water, and that the administrative costs of running a coupon program were as
large as the retail price of the chlorine solution, the cost of a scaled-up program would still only
be USD 2,974 per death of a child under 5 averted – or USD 38 per DALY averted (see Table S8,
rows 9).

Coupon programs could potentially be operated almost everywhere in the world, and rough
calculations suggest that a global chlorine coupon program for all families with under-5 children
without access to safe drinking water could avert up to half a million under-5 deaths each year
(see Table S7). 2.2 billion people around the world do not have access to safely managed
drinking water services (1), see row 1.16 This number is similar in magnitude to the global
estimates from other studies (46, 47). Of this population approximately 273 million are children
under the age of 5 (2, 48).17 The under-5 mortality rate among populations without access to safe
drinking water implies 2.74 million deaths per year in absence of water treatment. Based on the
expected effect of water treatment on child mortality in a new implementation (Bayes OR 0.75)

17 The mean under 5 population share is computed across countries weighted by population without access to safe drinking water.

16 Safely managed drinking water services are defined as improved sources of drinking water accessible on premises, available
when needed and free from contamination. The “free from contamination” component of the indicator relies on data from
household surveys and administrative data to estimate what proportion of users of improved sources drink water which does not
contain fecal indicator bacteria (E. coli or thermotolerant coliform) and, where data is available, arsenic or fluoride.

15 The mean under 5 mortality rate is calculated across countries, weighted by the population without access to safe drinking
water.

14 Average across Dupas et al., 2016 (45) and Dupas et al., 2021 (34) who find water treatment rates of 34.5% and 30.0% and
coupon redemption rates of 41.1% and 33.4%, respectively.
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and adjusting for coupon usage rates, it is estimated that a program that targets this population
would save approximately 372,000 under-5 lives at a cost of approximately 1.1 billion USD each
year.

Using alternative estimates that 1.8 billion people globally use a source of drinking water which
suffers from fecal contamination (46), the total cost of the program would be USD 892.8 million
and 304,000 under-5 lives would be saved annually. Alternatively, a coupon program targeting
the 1.1 billion people estimated as only having access to drinking water that is of at least
‘moderate’ risk (>10 E. coli or triphenyltetrazolium chloride (TTC) per 100 ml) (46) would save
approximately 186,000 lives at an annual cost of around a half billion dollars. If coverage of the
program was restricted to the twenty countries18 where Population Services International already
markets hypochlorite solution at scale, approximately 95,000 deaths would be averted annually
at a cost of around a quarter billion USD.

As noted, we include these estimates not to recommend these particular approaches to water
treatment, as other approaches may be better suited to particular contexts. However, since this
could be achievable virtually anywhere, it serves as a lower bound. Additionally, as the
developing world becomes increasingly urban, our estimates potentially can be applied to
improving access to clean water through piped water systems.

Alternative prior choices and detailed calculations

The main case we present (Table 2) uses the Bayesian model with diffuse prior. However, a
decision maker may want to use informative priors (see “Cost-effectiveness” in Methods). As we
discuss in the main text and in section 7 of this supplement, the effect we estimate is higher than
what extrapolating from evidence on reductions in diarrhea would suggest, so informative
expert-derived priors for effect are likely to be centered at a value lower than the effect estimated
in this meta-analysis. Here, we do not attempt to define such informative priors, but rather
provide two illustrative examples.

First, we define a prior centered on a 10% reduction in odds of mortality. We set SD on the mean
effect (Bayesian hypermean) so that a roughly 30% reduction is two SDs away from the mean,
i.e. log(OR) hypermean distributed according to Normal(log(0.9), log(0.9 - 0.7)/2). That means a
priori there is a 2.5% chance for the reduction in odds of mortality to exceed 30% (and 20%
chance that the odds ratio is greater than 1).

For heterogeneity we use an informative prior proposed by Turner et al. for binary outcomes,
based on review of the Cochrane Database of Systematic Reviews (49), with hyperSD distributed
as lognormal(-2.56/2, 1.74/2).

However, the normal prior on log(OR) is very restrictive in terms of tail behaviour: under this
prior, the probability of reduction in odds exceeding 50% is 1 in a million and of 35% —less
than 0.5%. A decision maker may want to instead use a strongly informative but less restrictive

18 Zambia, Madagascar, Tanzania, Rwanda, Malawi, Kenya, Afghanistan, Burkina Faso, India, Uzbekistan, Myanmar,
Mozambique, Nigeria, Uganda, Nepal, Vietnam, Ethiopia, Burundi, Guinea, and Cameroon.
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prior for hypermean, such as a generalized Student T distribution with few degrees of freedom,
which will have heavy tails. For illustration purposes we also fit a model where we replace
Gaussian distribution with generalized Student’s T with 1 degree of freedom, that is T(1)*log(0.9
- 0.7)/2 + log(0.9). This prior resembles the Gaussian distribution around the mean but has
heavier tails: the probability of reduction in odds exceeding 30% is 15% and the probability of
exceeding 50% reduction is 6.6%.

The detailed calculation and results for three different models (diffuse prior, informative prior
with Gaussian hypermean, informative prior with Student T hypermean) are given in Table S8.
We find that replacing diffuse prior with a strongly informative priors of 10% reduction in odds
which lead to cost per DALY of $50 to $59 (depending on model and intervention), compared to
$38-39 under diffuse prior. However, as discussed in the main text, even at $60 per DALY the
intervention is highly cost-effective.

Our simple example also highlights that the model is sensitive not only to choice of location and
scale parameters but also choice of family of distributions, with the choice of Student T instead
of Gaussian leading to over 10% lower estimate of costs. Any decision maker looking to
incorporate Bayesian priors must therefore be careful in deciding on how to incorporate various
sources of uncertainty.

5. Publication bias

Publication bias on diarrhea outcome

Using the same dataset of 80 diarrhea outcomes as in section 1, but with diarrhea outcomes from
several studies included in this meta-analysis added to the original dataset, for a total of 86
observations (see Materials and Methods section 1 just above for details). For simplicity, we
assumed multiple observations from the same publication are independent. The outcome variable
was risk ratio for diarrhea in children under-5, same as in (9).

We created funnel plots (Figure S11) and estimated Egger’s tests for funnel plot asymmetry for
all studies and studies that include chlorination interventions only. We rejected the hypothesis of
asymmetry in both cases (p-value=0.782, p-value=0.341 respectively), which matches the result
in Wolf et al., who also found no evidence of funnel plot asymmetry across water interventions
(p-value=0.8).

We also used Andrews and Kasy’s publication bias correction technique (16) on the joint dataset.
The table below shows estimates obtained by assuming symmetric publication bias cut-off
around z = |1.96| and the meta-study replication method. For this result we included all data
points. The distribution of intervention effects, adjusted for publication bias and assumed to be
normal, has a (hyper)mean of -0.40 (SE = 0.06) and (hyper)SD of 0.32 (SE = 0.05). The relative
probability of publication (between studies with |z| less/more than 1.96), beta_p, is 1.009. That
is, insignificant results are 0.9% more likely to be published relative to significant results with a
standard error of 0.379. Repeating the same method for the subset of studies that considered
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chlorination (lower panel of table below), the results are noisier. We cannot reject the hypothesis
that relative publication probability is equal to 1.

Funnel plots, Egger’s test, and Andrews and Kasy’s test all seem to indicate there is little
evidence of publication bias in papers investigating interventions targeting diarrhea.

Results for the Andrews and Kasy publication bias adjustment method:

hypermean (theta) hyper-SD (tau) beta_p

All Interventions

mean -0.404 0.315 1.009

SE (0.060) (0.047) (0.379)

Chlorination Studies Only

mean -0.472 0.331 2.249

SE (0.116) (0.058) (1.557)

Relationship between mortality and diarrhea

As mentioned, point estimates and z-values for diarrhea outcome are available for 86
observations, including 14 out of 15 studies with mortality data. We tested (using a logistic
model) if availability of mortality data in a given study depends on (1) point estimate of diarrhea
effect in that study, (2) absolute z-value of the diarrhea effect exceeding 1.96. In both cases the
diarrhea effect was measured as log(RR). We found no evidence of either association, with
p-values of 0.34 and 0.19 respectively.

Publication bias on mortality outcome

We report a funnel plot (Figure S3) and conduct Egger’s and Begg’s tests for the funnel plot
asymmetry. In both the tests we are not able to reject the null hypothesis of symmetrical funnel
(p-value=0.45 and p-value=0.78 respectively).

We also use meta-study publication bias adjustment methods from Andrews and Kasy, 2019
(same as in the case of diarrhea outcome above). We used Peto log odds ratios as inputs into the
random effects model, assuming that probability of publication changes when |z| > 1.96. As
discussed in the main text, this ignores potential bias in diarrhea outcomes and treats mortality
results as the sole factor on which publication decisions are made. However, since there are only
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two studies outside of the funnel (see Figure S3), the relative probability of publication (of
insignificant to significant results) is not precisely estimated (mean of 2.3 with SE = 2.1). The
mean of the true treatment effect across 15 studies (adjusted for publication bias) is not
meaningfully different from our estimate, OR = 0.63 (logOR = -0.46, SE = 0.26). Mean
hyper-SD (heterogeneity) parameter across studies is 0.3 (SE = 0.2). (16)

Exploratory simulation of small-study publication bias

As an exploratory assessment, we simulated additional unpublished studies to better understand
the potential impact of publication bias. Since studies with few events might be less likely to
report on mortality, we simulated studies with a low mortality risk of 0.4% (equivalent to 3
months of follow-up on average in our dataset). For simplicity we assumed that all simulated
studies had true OR of 1 (a strong assumption, given our strong prior of non-negative effects
based on water treatment literature), a per-arm sample size of 1189 (the average across 15 studies
included in our dataset). We added the simulated unpublished studies to the original dataset of 15
studies and fit all data using the default Peto OR model. We calculated averages over 250
replications.

With 5 additional studies the estimated reduction in odds was 24%. With 15 additional
unpublished simulated studies with a true OR of 1 (i.e. 15 real studies with OR of 0.72 + 15
simulated studies with OR of 1), the meta-analysis estimate had a mean of 0.81, with 95%
interval of 0.67 to 0.99. Given our search strategy, which included directly contacting
researchers, we find it unlikely that so many studies could be missed. We also find it unlikely
that the effect of publication bias is so strong that all missed studies would have an OR of 1.
However, this assessment does not cover the scenario where studies with large numbers of deaths
were missed.

In the future version of the paper we will conduct additional simulations, based on a more
realistic sample of studies which measured diarrhea but not mortality outcomes. This will allow
us to obtain realistic sample sizes and follow-up durations.

6. Exploratory assessment of power to detect heterogeneous effects

As shown in Fig S5-S9, univariate meta-regressions do not find statistically significant linear
relationships between five predictors and treatment effect estimated using the frequentist model.
However, given small sample size and uncertain estimates in individual studies, a
meta-regression  model that would typically be used in such situations may not have sufficient
power to detect linear relationships between the predictors and the treatment effects. To assess
this, we conducted a simple post-hoc exploratory analysis of  whether a meta-regression model
would have sufficient power to detect the relationship between treatment effects and three
continuous predictors: prevalence of diarrhea, compliance, and year of implementation. The
linear relationship between the first two is easiest to hypothesize, since at x=0 (no compliance,
no prevalence), we would expect the true effect to be 0; we also investigate year of
implementation as it is of practical importance to policy makers.
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Let us assume there is a strict linear relationship between y = log(OR) and x, which will denote
compliance, prevalence, or year of implementation. We parameterise these such that the expected
average effect in the population corresponds to the estimated mean OR. That is, in the case of
prevalence we set slope (y=ax) to a = -0.335*x/0.183, where -0.335 = log(0.7149), i.e. the
logarithm of the OR estimated by the Peto OR model; 0.183 is population-weighted prevalence
across 15 studies. In the case of compliance we set it to a = -0.335*x/0.462, where 0.462 is the
population-weighted compliance across 14 studies (see Table 1); one study did not report
compliance. In the case of year of implementation we set y = (0.0335/2)*(x-2010) - 0.335, that
is, we assume that in 2010 (weighted average of year of implementation in 15 studies) the mean
effect was log of 0.7149 and it decreased linearly to the point where by 2020 half of the effect
disappears, which we would consider to be a very strong effect.

We simulate new datasets with some noise (y = ax + e), using observed compliance/prevalence
values for each x (for compliance we impute the one missing value as mean) and for noise e
using posterior SDs for 15 studies from the main Bayesian model, to obtain a crude but realistic
estimate of variation in each study. For each simulated dataset we fit a univariate linear
regression model and check if the coefficient is significant. We repeat this 10,000 times.
Simulated power is the fraction of coefficients that were significant. We find it to be 43% for
compliance, 51% for diarrhea prevalence, and 29% for year of implementation. While the
simulated power results will vary a lot depending on assumptions, our calculation should already
be treated as optimistic with regards to power, since we assumed no confounding and a strictly
linear relationship. This suggests our data are insufficient to detect the relationship between
compliance, year of implementation, or prevalence and mortality, even under the assumption of
strong effects.

7. Comparing meta-analysis estimates with model predictions

The point estimate of the mortality effect from the meta-analysis is much larger than the point
estimate predicted by a simple model in which diarrheal deaths are taken from the central
estimate of the Global Burden of Disease (GBD) project (2), the effect of water treatment on
diarrhea is taken from the central estimate in the Clasen meta-analysis (8), and mortality is
assumed to be linear in diarrhea cases, so reductions in diarrhea deaths are proportional to
reductions in diarrheal cases.  However, the differences are small enough that they could fairly
easily be accounted for by known epidemiological factors not captured by this simple linear
model and sampling variation

A recent Cochrane review (8) found a reduction in under-five diarrhea due to water quality
interventions of 39% (CI 95% 25%, 51%).19 Under a simple model in which deaths are

19 This confidence interval reflects sampling variation only, but estimated effects of water treatment on
caregiver-reported diarrhea may also be subject to reporting bias (8, 9).
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approximated as linear in cases and cases are estimated as linear in treatment rates, multiplying
the central GBD estimate of the proportion of under-5 deaths attributable to diarrhea of 9.9% (CI
95% 8.2%, 11.6%) times the central Cochrane estimate of 39%  gives a predicted 3.9% mean
reduction in child mortality from water treatment. If we interpret the two CIs above as Bayesian
intervals, the 95% interval on this estimate is 2.6% to 5.5%. In contrast, the meta-analysis in this
paper gives a central estimate of an approximately 30% reduction in the odds of all-cause child
mortality.

One likely reason for differences between the predictions of a simple linear model and the
meta-analysis findings is that several scientifically plausible pathways through which water
treatment could reduce mortality are not captured by the linear model.

First, water treatment could reduce both the mortality rate and the incidence of diseases other
than diarrhea (Mills-Reincke phenomenon) (50, 51). Epidemiological studies lend support to this
hypothesis, showing that diarrheal episodes are followed by increased risk of acute lower
respiratory tract infection among children in Ghana, Nepal, India, Pakistan and Israel (52–55).
Continued exposure to diarrheal pathogens alters the gut microbiome, increasing susceptibility to
infection (56). Such subclinical or clinical episodes of infection can induce impairments in gut
function and undernutrition phenotypes leading to increased mortality (57, 58) . Relatedly,
diarrhea can lead to malnutrition (59, 60), which in turn can put a child at risk for higher
mortality from a range of illnesses, or simply death from malnutrition itself. The Global Burden
of Disease uses a “one death one cause” methodology, which allows it to estimate all causes of
deaths without double counting. However, it could under-estimate the mortality effect of
addressing a given disease in scenarios like this, where morbidity from multiple diseases
combines to cause a death.

Second, water treatment could prevent diseases which can cause life-threatening illness in the
absence of diarrhea.  It could reduce worm loads; kill enteroviruses, Salmonella Typhi and
Salmonella Paratyphi, and prevent hepatitis A and hepatitis E. Water treatment could also
prevent deaths from sepsis among infants by facilitating cleaner births and postnatal care
practices (61). Poor water quality and exposure to a more pathogenic environment is associated
with preterm birth and low birth weight (62).

Third, water treatment could potentially have a larger effect on severe diarrhea than on overall
diarrhea. This is the case for some other interventions. For example there is evidence that
RRV-TV rotavirus vaccines lead to greater reductions in severe diarrhea episodes than in mild
ones (10, 11). Another example is COVID-19 vaccines, many of which have been far more
effective against hospitalization and death than infection.

Fourth, the GBD estimates of the diarrheal death rate are limited by data availability, requiring
modeling to fill data gaps, and according to the authors, many datasets have biases or errors,
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such as the misclassification of causes of death or assignment of deaths to causes that cannot be
primary causes of death (63). For example, estimated effects of water treatment on
caregiver-reported diarrhea may be subject to reporting bias (11, 12).

There is also uncertainty in our estimates and in the estimates from the Clasen et al.
meta-analysis, although the portion of uncertainty due to sampling variation in these is more
easily quantified.

As discussed  above, the linear model likely underestimates the impact of interventions to
improve water quality on child mortality. However, even under the predictions from this model,
chlorine dispensers would remain cost-effective according to the 1x GDP “highly cost-effective”
threshold.  Thus, independent of the tightness of their priors, an analyst who starts with priors
based on the linear model and updates based on evidence from this meta-analysis would
conclude that water treatment is also cost-effective.
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Supplementary Figures

Fig. S1. Random-effects forest plot of child mortality estimates of the
impact of water quality interventions (Odds Ratios Inverse Variance)

Notes: Dots and horizontal lines represent point estimates and 95% confidence intervals-
from individual studies, respectively. The area of the square around each dot represents
the weight given to each study in the fixed-effects estimation. Diamonds are centered
around the random-effects estimate (by intervention type or overall), their widths indi-
cate the 95% confidence interval. 4 studies are dropped due to zero deaths in either the
treatment or control group.
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Fig. S2. Restricting set of studies to longer follow-up lengths

Notes: This figure presents the odds ratio estimated by the frequentist (Peto) meta-
analysis model with studies shorter than X weeks removed. Each point is the Peto OR
estimate, and the bars represent the 95% Confidence Interval for each estimate. All 15
studies in the main sample are included for X = 9.5 weeks, and 4 studies are included for
X = 104 weeks (2 years).
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Fig. S3. Funnel plot to examine publication bias

Notes: This figure presents a funnel plot. Symmetry on either side of the vertical line
(representing the overall effect) suggests that publication bias is not present. Results for
Egger’s and Begg’s test are reported in Materials and Methods, Section 5.
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Fig. S4. Diarrhea effect estimates and compliance rates across included and excluded
studies

(A) (B)

Notes: Figure (A) presents the diarrhea effect size across included (bottom panel) and
excluded (top panel) studies. Figure (B) presents the compliance rate across included
(bottom panel) and excluded (top panel) studies.
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Fig. S5. Heterogeneity in treatment effects, by diarrhea prevalence

Notes: This figure presents the relationship between child mortality Peto odds ratio es-
timates and the level of diarrhea prevalence across 15 studies in the sample. We find no
significant differences (slope of -1.483 per unit increase in diarrhea prevalence rate, pval
0.252) in effect estimates by prevalence of diarrhea. Each point represents a study. The
size of the bubble is inversely proportional to the variance of the estimated Peto Odds
ratio for each study.
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Fig. S6. Heterogeneity in treatment effects, by compliance rate

Notes: This figure presents the relationship between child mortality Peto odds ratio esti-
mates and the level of compliance across 14 studies in the sample (one study (19) did not
report any measure of compliance). We find no significant differences (slope of 0.439 per
unit increase in compliance rate, pval 0.488) in effect estimates by the level of compliance.
Each point represents a study. The size of the bubble is inversely proportional to the
variance of the estimated Peto Odds ratio for each study.
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Fig. S7. Heterogeneity in treatment effects, by unit of randomization

Notes: This figure presents the relationship between child mortality Peto odds ratio esti-
mates and the unit of randomization across 15 studies in the sample. We find no significant
differences (Decrease of -0.023 for randomizing at the household level, p-value = 0.944) in
effect estimates by the unit of randomization. Each point represents a study. The size of
the bubble is inversely proportional to the variance of the estimated Peto Odds ratio for
each study.
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Fig. S8. Heterogeneity in treatment effects, by diarrhea effect estimates

Notes: This figure presents the relationship between child mortality Peto odds ratio es-
timates and the diarrhea effect estimates across 15 studies in the sample. We find no
significant association (slope of 0.324 per unit increase in the diarrhea effect estimate,
p-value = 0.644) between mortality and diarrhea effect estimates. Each point represents
a study. The size of the bubble is inversely proportional to the variance of the estimated
Peto Odds ratio for each study.
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Fig. S9. Heterogeneity in treatment effects, by study year

Notes: This figure presents the relationship between child mortality Peto odds ratio es-
timates and the study year across 15 studies in the sample. Year of Intervention is the
year the study’s intervention was launched. We find no significant association (slope of
0.055 per year, p-value = 0.056) between mortality and study year. Each point represents
a study. The size of the bubble is inversely proportional to the variance of the estimated
Peto Odds ratio for each study.
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Fig. S10. Predicted mortality among treated as a function of control group mortality

Notes: The relationship between a given mortality rate in control group, p (x axis) and
mortality among treated (y axis) is, for a given OR, [OR*p/(1-p)]/[1 + OR*p/(1-p)]. For
small values of p the relationship is nearly linear, as seen in the figure. We use the posterior
predictive distribution (of ORs in a new setting) from the Bayesian model to construct
mean (solid line) and 90% interval (shaded area) for mortality among treated.
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Fig. S11. Funnel plot for all diarrhea interventions and chlorine diarrhea intervntions

Notes: Funnel plot to assess publication bias in risk ratio estimates of diarrhea morbidity
in all augmented WaSH studies and chlorination WaSH studies.
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Supplementary Tables
Table S1. Search strategy and search terms

Search set Embase (Ovid) Pubmed Scopus Cochrane Library

Water Quality    

1 ((Water adj3 (treatment or quality
or cleaning or purif* or chlorin*
or decontamination or filt* or
disinfect* or floccul* or storage
or recontamination or
re-contamination)).mp. or exp
water quality/ or exp water
management/) and ((water.mp. or
exp water/) adj3 (drinking or
consumption).mp)

((treatment[tw] OR quality[tw] OR
cleaning[tw] OR purif*[tw] OR
chlorin*[tw] OR
decontamination[tw] OR filt*[tw]
OR disinfect*[tw] OR floccul*[tw]
OR storage[tw] OR
recontamination[tw] OR
"re-contamination"[tw]) OR "Water
Quality"[MeSH] OR "Water
Purification"[MeSH]) AND
((water[tw] OR water[MeSH])
AND (drinking[tw] OR
consumption[tw]))

TITLE-ABS-KEY ( water  W/3
( treatment  OR  quality  OR
cleaning  OR  purif*  OR
chlorin*  OR  decontamination
OR  filt*  OR  disinfect*  OR
floccul*  OR  storage  OR
recontamination  OR
"re-contamination" ) )  AND
(TITLE-ABS-KEY ( water
W/3  ( drinking  OR
consumption  ) ) )

((water near/3 (treatment or quality or
cleaning or purif* or chlorin* or
decontamination or filt* or disinfect*
or floccul* or storage or
recontamination or
"re-contamination")):ti,ab,kw or
MeSH descriptor: [Water] explode all
trees or MeSH descriptor: [Water
Quality] explode all trees or MeSH
descriptor: [Water Purification]
explode all trees) and ((Drinking or
consumption) near/3 water):ti,ab,kw

Water Access    

2 (Water adj3 (supply or
availability or access or connect*
or distance or improved or
distribut* or quantity or
volume)).mp or  exp water
supply/

(water[tw] AND (supply[tw] OR
availability[tw] OR access[tw] OR
connect*[tw] OR distance[tw] OR
improved[tw] OR distribut*[tw] OR
quantity[tw] OR volume[tw])) OR
"Water Supply"[MeSH]

TITLE-ABS-KEY ( water  W/3
( supply  OR  availability  OR
access  OR  connect*  OR
distance  OR  improved  OR
distribut*  OR  quantity  OR
volume ) )

(Water near/3 (supply or availability
or access or connect* or distance or
improved or distribut* or quantity or
volume)):ti,ab,kw or MeSH
descriptor: [Water Supply] explode all
trees

1



Sanitation     

3 toilet*.mp. or latrine*.mp. or
pit.mp. or pits.mp. or sanita*.mp.
or ecosan.mp. or sewage.mp. or
sewer$1.mp. or sewerage.mp. or
exp sewage/ or open
defecation.mp or (((feces or
faeces or fecal or faecal or excre*
or waste).mp. or exp feces/) adj3
(disposal or manag* or
service*).mp.) or exp sanitation/
or exp environmental sanitation/

toilet*[tw] OR latrine*[tw] OR
pit[tw] OR pits[tw] OR sanita*[tw]
OR ecosan[tw] OR feces[tw] OR
faeces[tw] OR fecal[tw] OR
faecal[tw] OR excre*[tw] OR
"waste disposal"[tw] OR "disposal
of waste"[tw] OR "waste
management"[tw] OR
"management of waste"[tw] OR
sewage[tw] OR sewer*[tw] OR
sewerage[tw] OR "open
defecation"[tw] OR "Toilet
Facilities"[MeSH] OR "Toilet
Training"[MeSH] OR
Sanitation[MeSH] OR
Feces[MeSH] OR Sewage[MeSH]

TITLE-ABS-KEY ( toilet*  OR
latrine*  OR  pit  OR  pits  OR
sanita*  OR  ecosan  OR
sewage  OR  sewer*  OR
sewerage  OR  "open
defecation" )   OR  (
TITLE-ABS-KEY ( ( feces
OR  faeces  OR  fecal  OR
faecal  OR  excre*  OR  waste )
W/3  ( disposal  OR  manag*
OR  service* ) ) )

(toilet* or latrine* or pit or pits or
Sanita* or ecosan or sewage or
sewer* or sewerage or open
defecation or ((feces or faeces or fecal
or faecal or excre* or waste) near/3
(disposal or manag* or
service*))):ti,ab,kw or MeSH
descriptor: [Toilet Facilities] explode
all trees or MeSH descriptor: [Toilet
Training] explode all trees or MeSH
descriptor: [Sanitation] explode all
trees or MeSH descriptor: [Feces]
explode all trees or MeSH descriptor:
[Sewage] explode all trees

Diarrhoeal disease    

4 (((f?ecal adj1 coliform$1) or
bacterial or microbiological or
viral or diarrh?ea? or intestinal or
enteric or gastro-enteric or
protozoa$1 or waterborne or
water-borne or enterovirus or
"enteric virus" or poliovirus or
rotavirus or norovirus or
"norwalk-like virus" or hepatitis
or campylobacter or helicobacter
or legionellos$ or vibrio or
cholera or escherichia or
salmonell$ or shigell$ or
cryptosporidi$).mp. or exp

("fecal coliform"[tw]  OR "fecal
coliforms"[tw]  OR "faecal
coliform"[tw]  OR "faecal
coliforms"[tw]  OR bacterial[tw]
OR microbiological[tw]  OR
viral[tw]  OR diarrhoea*[tw]  OR
diarrhea*[tw]  OR intestinal[tw]
OR enteric[tw]  OR
"gastro-enteric"[tw]  OR
protozoa*[tw]  OR waterborne[tw]
OR "water-borne"[tw]  OR
Diarrhea[MeSH] OR
enterovirus[tw]  OR "enteric
virus"[tw]  OR poliovirus[tw]  OR

TITLE-ABS-KEY ( ( ( fecal
OR  faecal )  PRE/1  coliform*
)  OR  bacterial  OR
microbiological  OR  viral  OR
diarrhoea*  OR  diarrhea*  OR
intestinal  OR  enteric  OR
"gastro-enteric"  OR  protozoa*
OR  waterborne  OR
"water-borne"  OR  enterovirus
OR  "enteric virus"  OR
poliovirus  OR  rotavirus  OR
norovirus  OR  "norwalk-like
virus"  OR  hepatitis  OR
campylobacter  OR

((((fecal or faecal) next coliform*) or
bacterial or microbiological or viral or
diarrhoea* or diarrhea* or intestinal
or enteric or gastro-enteric or
protozoa* or waterborne or
water-borne or enterovirus or enteric
virus or poliovirus or rotavirus or
norovirus or norwalk-like virus or
hepatitis or campylobacter or
helicobacter or legionellos* or vibrio
or cholera or escherichia or
salmonell* or shigell* or
cryptosporidi*):ti,ab,kw or MeSH
descriptor: [Diarrhea] explode all
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diarrhea/)  and (disease$1 or
infection$1 or episode$1 or
illness$2).mp

rotavirus[tw]  OR norovirus[tw]
OR "norwalk-like virus"[tw]  OR
hepatitis[tw]  OR
campylobacter[tw]  OR
helicobacter[tw]  OR
legionellos*[tw]  OR vibrio[tw]
OR cholera[tw]  OR escherichia[tw]
OR salmonell*[tw]  OR
shigell*[tw]  OR
cryptosporidi*[tw]) AND
(disease*[tw]  OR infection*[tw]
OR episode*[tw]  OR illness*[tw])

helicobacter  OR  legionellos*
OR  vibrio  OR  cholera  OR
escherichia  OR  salmonell*
OR  shigell*  OR
cryptosporidi* ) AND
(TITLE-ABS-KEY ( disease*
OR  infection*  OR  episode*
OR  illness* ) )

trees) and (disease* or infection* or
episode* or illness*):ti,ab,kw

Epidemiological study    

5 (prevalence or incidence or risk
or exposure or exposed or
outcome or epidemiology or
epidemiological or impact or
effect or evaluation or odds).mp

prevalence[tw] OR incidence[tw]
OR risk[tw] OR exposure[tw] OR
exposed[tw] OR outcome[tw] OR
epidemiology[tw] OR
epidemiological[tw] OR impact[tw]
OR effect[tw]  OR evaluation[tw]
OR odds[tw]

TITLE-ABS-KEY ( prevalence
OR  incidence  OR  risk  OR
exposure  OR  exposed  OR
outcome  OR  epidemiology
OR  epidemiological  OR
impact  OR  effect  OR
evaluation  OR  odds )

(prevalence or incidence or risk or
exposure or exposed or outcome or
epidemiology or epidemiological or
impact or effect or evaluation or
odds):ti,ab,kw

Limits     

6 Limit to (humans and (english or
french) and yr="2012 -Current")

("2012/01/01"[PDat] :
"2016/02/05"[PDat]) AND
Humans[Mesh] AND
(English[lang] OR French[lang])

LIMIT-TO ( LANGUAGE ,
"English" )  OR  LIMIT-TO (
LANGUAGE ,  "French" ) )
AND  ( LIMIT-TO (
PUBYEAR ,  2016 )  OR
LIMIT-TO ( PUBYEAR ,
2015 )  OR  LIMIT-TO (
PUBYEAR ,  2014 )  OR
LIMIT-TO ( PUBYEAR ,

Publication Year from 2012 to 2016
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2013 )  OR  LIMIT-TO (
PUBYEAR ,  2012 )

Search for Water Quality, Water Access, Sanitation and Diarrhoeal
Diseases

  

(1 or 2 or 3) and 4 and 5 and 6 (1 OR 2 OR 3) AND 4 AND 5
AND 6

(1 OR 2 OR 3) AND 4 AND 5
AND 6

(1 or 2 or 3) and 4 and 5 and 6
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Table S2. Excluded studies

Reason for Exclusion Studies

Not a developing country Colford (2002) (64), Colford (2005) (65), Rodrigo (2011) (66)

Not a randomized control trial
Kirchhoff (1985) (67), Alam (1989) (68), Mahfouz (1995) (69), Conroy (1996) (70), Xiao (1997)
(71), Quick (2002) (72), Jensen (2003) (73), Majuru (2011) (74), Johri et al. (2019) (75), Reese et al.
(2019) (76)

Does not include children under 5 years in age Abebe (2014) (77)

Authors responded but no mortality data collected

Gruber (2013) (78), Günther (2013) (79), Jain (2010) (80), Opryszko (2010a, b, c) (44), Patel (2012)
(81), Roberts (2001) (82), Tiwari (2009) (83)), URL (1995a, b) (84), Boisson (2009) (85), Doocy
(2006) (86), Stauber (2009, 2012a, b) (87–89), Lindquist (2014a, b) (90) , Fabiszewski (2012) (91),
Clasen (2004b, c) (92, 93), Pickering et al. (2019) (94), Handzel (1998) (95),

Authors responded and mortality data was collected but
no longer available Gasana (2002) (96), Brown (2008) (97)

Authors did not respond Torun (1982)* , Austin (1993a,b) (98), Mengistie (2013) (99), McGaugan (2011) , Mäusezhal (2009)
(100), Lule (2005) (101), du Preez (2008, 2010) (102)

Note: *The only author died.
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Table S3. Numbers of events (deaths) and non-events in treatment and control groups

Study
Treatment group Control group

Events Non-events Events Non-events

A. Main sample

Semenza et al., 1998 (26) 0 88 2 78

Reller et al., 2003 (27) 10 729 5 182

Crump et al., 2005 (21) 9 1009 15 505

Luby et al., 2006 (19) 2 1013 0 553

Chiller et al., 2006 (28) 0 132 1 137

Kremer et. al., 2011 (29) 18 691 47 1465

Peletz et al., 2012 (22) 3 58 6 54

Boisson et al., 2013 (30) 2 1505 1 1507

Null et al., 2018 (18) 30 858 114 2697

Luby et al., 2018 (20) 27 629 62 1244

Humphrey et al., 2019 (31) 49 946 50 909

Kirby et al., 2019 (32) 8 1198 12 1252

Haushofer et al. 2021 (33) 7 987 22 965

Dupas et al. 2021 (34) 5 1288 2 1321

Quick et al. 1999 (35) 0 400 0 391

Total 170 11531 339 13260

B. Studies included for robustness checks

Boisson et al., 2010 (36) 4 81 1 104

du Preez et al., 2011(37) 3 355 3 334

6

https://www.zotero.org/google-docs/?zTqeRX
https://www.zotero.org/google-docs/?gMSs5K
https://www.zotero.org/google-docs/?W8hvd5
https://www.zotero.org/google-docs/?5LyudC
https://www.zotero.org/google-docs/?aWwEiy
https://www.zotero.org/google-docs/?89gYtJ
https://www.zotero.org/google-docs/?EMv3p8
https://www.zotero.org/google-docs/?LWADZ8
https://www.zotero.org/google-docs/?tC5q9u
https://www.zotero.org/google-docs/?wOCDra
https://www.zotero.org/google-docs/?SXoZ5Z
https://www.zotero.org/google-docs/?5Bqkxr
https://www.zotero.org/google-docs/?irQpzJ
https://www.zotero.org/google-docs/?JJ6LBL
https://www.zotero.org/google-docs/?1v7tfZ
https://www.zotero.org/google-docs/?M8udq3
https://www.zotero.org/google-docs/?Iguru1


Table S4. The child mortality impact of water quality interventions –  initial studies which report
child mortality effects

Crump et al.,
2005 (21)

Luby et al.,
2006 (19)

Peletz et al.,
2012 (22)

Luby et al.,
2018 (20)

Null et al.,
2018 (18)

IV
Random-Effec

ts OR

IV
Fixed-Effects

OR

Mean
Bayesian/Peto
OR (5 studies)

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Bayesian OR

ITT effect on
child
mortality

0.54 0.67 0.78 0.77 0.65 0.73 0.74

CrI 95% (0.54,0.90) (0.67,1.24) (0.78,1.15) (0.77,1.09) (0.40,1.05) (0.55,0.97) (0.28,1.50)

Panel B: Peto OR

ITT effect on
child
mortality

0.27 4.60 0.86 0.83 0.48 0.67

CI 95% (0.12,0.64) (0.25,85.10) (0.55,1.36) (0.56,1.34) (0.12,1.86) (0.41,1.11)

Obs. 1538 1548 121 1962 3699

Notes: The studies (Columns 1-5) included are studies which were identified reporting mortality outcomes at the beginning of the
meta-analysis. Panel A Columns 1 to 5 report Bayesian odds ratio estimates for individual studies. There is no estimate for Luby et
al., 2006 (19) due to zero deaths in the control group. Panel B Columns 1 to 5 report Peto odds ratio estimates for individual studies.
Column 6 reports the random effects inverse variance odds ratio meta-analysis estimate including the studies from columns 1 through
5 except Luby et al., 2006 (19). Column 7 reports the fixed effects inverse variance odds ratio meta-analysis estimate including the
studies from columns 1 through 5 except Luby et al., 2006 (19). Column 8 reports the Bayesian/Peto odds ratio meta-analysis
estimate including the studies from columns 1 through 5.
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Table S5. Sensitivity of main results to dropping each study

Haushofer
et al., 2021

(33)

Luby et
al., 2018

(20)

Null et
al.,

2018
(18)

Kremer
et. al.,
2011
(29)

Humphr
ey et al.,

2019
(31)

Kirby
et al.,
2019
(32)

Dupa
s et
al.,

2021
(34)

Relle
r et
al.,

2003
(27)

Boisson
et al.,
2013
(30)

Peletz
et al.,
2012
(22)

Luby
et al.,
2006
(19)

Quick
et al.,
1999
(35)

Crump
et al.,
2005
(21)

Chille
r et
al.,

2006
(28)

Semen
za et
al.,

1998
(26)

Panel A: Bayes Odds Ratio

Mean effect 0.80 0.68 0.68 0.69 0.67 0.71 0.69 0.73 0.70 0.72 0.70 0.71 0.80 0.72 0.73

CrI 95% (0.66,
0.97)

(0.49,
0.93)

(0.49,0.
94)

(0.50,
0.94)

(0.49,
0.90)

(0.53,
0.94)

(0.53,
0.90)

(0.56,
0.95)

(0.54,
0.92)

(0.55,
0.94)

(0.54,
0.91)

(0.55,
0.92)

(0.66,
0.97)

(0.56,
0.93)

(0.57,
0.94)

% weight in
meta-analysi
s

8.8 15.7 17.9 13.3 17.4 6.7 2.7 3.6 1.2 3.2 0.8 0.4 7.0 0.4 0.8

Panel B: Peto Odds Ratio

Mean effect 0.77 0.69 0.69 0.70 0.67 0.70 0.69 0.73 0.70 0.73 0.70 0.72 0.78 0.72 0.73

CI 95% (0.54,
1.01)

(0.45,
0.99)

(0.44,
0.99)

(0.45,
1.01)

(0.42,
0.96)

(0.45,
0.99)

(0.46
,0.92)

(0.48,
1.01)

(0.46,
0.95)

(0.50,
0.99)

(0.46,
0.93)

(0.50,
0.96)

(0.56,
1.028)

(0.50,
0.96)

(0.51,
0.99)

% weight in
meta-analysi
s

7.3 15.5 17.6 12.7 17.8 6.9 2.8 5.2 1.4 3.4 0.5 0.3 7.6 0.6 0.5

Notes: Columns 1 through 15 report meta-analysis estimates of OR obtained by excluding the study in the column heading from the full sample. Panel A reports Bayesian
odds ratio estimates, and Panel B reports Peto odds ratio estimates. Row 3 of each panel reports the weight of each study in the meta-analysis from Table S3.
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Table S6. Additional sensitivity checks

Combining studies
that cover related

programs

Including study with
contaminated control

group I

Including study
with contaminated

control group II

Alternate control
in study with

active and passive
arms

Alternate
treatment in spring

protection

Studies where
water treatment
was combined
with another
intervention

(18, 33) (37) (36) (18) (29) (31, 32)

Mean
Peto
OR

Mean
Bayesian

OR

Mean
Peto OR

Mean
Bayesian

OR

Mean
Peto OR

Mean
Bayesian

OR

Mean
Peto
OR

Mean
Bayesian

OR

Mean
Peto
OR

Mean
Bayesian

OR

Mean
Peto
OR

Mean
Bayesian

OR

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

ITT effect
on child
mortality

0.71 0.69 0.72 0.71 0.74 0.73 0.72 0.70 0.72 0.70 0.66 0.64

CI/CrI
95%

(0.56,
0.91)

(0.48,
0.92)

(0.57,
0.92)

(0.49,
0.92)

(0.57,
0.96)

(0.50,
0.97)

(0.55,
0.93)

(0.47,
0.94)

(0.56,
0.92)

(0.48,
0.91)

(0.47,
0.93)

(0.41,
0.89)

p-value 0.006 0.01 0.022 0.014 0.009 0.02

Notes: Columns 1 and 2 present meta-analysis estimates combining Null et al., 2018 (18) and Haushofer et al., 2021
(33) into a single study. Columns 3 and 4 present meta-analysis estimates including Du Preez et al., 2011 (37).
Column 5 and 6 present meta-analysis estimates including Boisson et al., 2010 (36). Columns 7 and 8 present
meta-analysis estimates using only the active control group in Null et al., 2018 (18). Columns 9 and 10 present
meta-analysis estimates including both those who received spring protection in year 1 and 2 into the treatment group
in Kremer et al., 2011 (29). Columns 11 and 12 present meta-analysis estimates by dropping studies (31, 32) where
the water treatment intervention was combined with other interventions (cookstoves, sanitation and hygiene).
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Table S7. Total lives saved and costs: preliminary calculations for the global Coupon Program

Target Population Source Population size
(millions)

# of <5y
children
without

access to
safe drinking

water
(millions)

Number of deaths
among <5y

without access to
safe drinking
water per year

(millions)

Cost of providing
coupons to <5

population
without access to

safe drinking
water per year ($

millions)

Total <5y
lives saved

per year
(thousands)

(1) (2) (3) (4) (5)

Population without
access to safely managed
drinking water services

WHO/UN
ICEF,
2019 (1)

2200 272.8 2.739 1091.2 372

Population using a
source of drinking water
which suffers from fecal
contamination

Bain et al.,
2014 (46) 1800 223.2 2.241 892.8 304

Population using a
source of drinking water
with >10 E coli or TTC
per 100 ml

Bain et al.,
2014 (46) 1100 136.4 1.369 545.6 186

Population without
access to safely managed
drinking water services
in countries where PSI
sells chlorine1

WHO/UN
ICEF,
2019 (1)

561 69.6 0.698 278.4 95

1 Countries are Zambia, Madagascar, Tanzania, Rwanda, Malawi, Kenya, Afghanistan, Burkina Faso, India, Uzbekistan,
Myanmar, Mozambique, Nigeria, Uganda, Nepal, Vietnam, Ethiopia, Burundi, Guinea, and Cameroon.

Notes: Column 2 is calculated by multiplying (1) by the mean under 5 population share across countries weighted by population
without access to safe drinking water. Column 3 is calculated by multiplying (2) by the mean annual mortality rate in the under 5
population , calculated as the mean <5 mortality rate across countries (UN Interagency Group for Child Mortality Estimation)
weighted by population without access to safe drinking water (WHO/UNICEF Joint Monitoring Programme for Water Supply,
Sanitation and Hygiene, 2019 (1)/5). Column 4 is calculated by multiplying the cost of providing coupons from Table S8 row 7
by (2) for one year. Column 5 is calculated by multiplying (3) by the estimated reduction in child mortality adjusted by usage
rates: (1 – posterior predictive estimate of effect (RR)) * usage rate in meta-analysis / usage rate in coupons from mean across
Dupas et al., 2016 (45) and Dupas et al., 2021 (34).

Sources: WHO/UNICEF Joint Monitoring Programme for Water Supply, Sanitation and Hygiene, 2019 (1), Bain et al., 2014 (46)
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Table S8. Cost–effectiveness analysis

Chlorine Dispensers in Western Kenya Global Coupon Program

Meta-analysis,
diffuse prior

Meta-analysis,
informative Gaussian

prior

Meta-analysis,
informative Student’s

T prior

Meta-analysis, diffuse
prior

Meta-analysis,
informative Gaussian

prior

Meta-analysis,
informative Student’s

T prior

(1) Posterior predictive estimate (RR) of effect, mean A 0.75 0.84 0.82 0.75 0.83 0.81

(2) <5y mortality rate (in pp) B 6.9 6.9 6.9 5 5 5

(3) Average take-up in meta-analysis 0.59 0.59 0.59 0.59 0.59 0.59

(4) Average take-up rate of intervention C
0.51 0.51 0.51 0.32 0.32 0.32

(5) Expected deaths averted, per person D
0.0147 0.0098 0.011 0.0067 0.0045 0.0051

(6) Expected DALYs averted, <5 child E
1.16 0.77 0.87 0.53 0.36 0.4

(7) Cost of provision per <5 child, 5 years (USD) F 45.5 45.5 45.5 20 20 20

(8)  Cost per death of a <5 child averted (USD) G

3104 4656 4124 2974 4451 3936
(9)  Cost per DALY averted (USD) H

39 59 52 38 56 50

A Converted from posterior predictive distribution of ORs, assuming mortality risk as in row (2)
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B Dispensers: Kenya DHS, 2014 (103) (<5 mortality rate weighted by the % of dispensers present in that region); Coupons: UN Interagency Group for Child
Mortality Estimation (104) (<5 mortality rate across countries weighted by population without access to safe drinking water. )

C Dispensers: Evidence Action (43);  Coupons: mean across Dupas et al., 2016 (45) and Dupas et al., 2021 (34)

D ((2)/100)* ((5)/(4))*(1-(3))

E (2)/100)* ((5)/(4))*(1-(3))*DALYs lost from child death <5y; The number of DALYs lost from death under 5 assumes a life expectancy of 81.25 years and
average age at death of 2, following the standard approach of calculating DALY outlined in “WHO methods and data sources for global burden of disease
estimates 2000-2019” (2).
F Dispensers: Evidence Action (43), 0.30 USD (Retail cost per bottle of chlorine) * 2 (Assumption that administrative costs are as large as the price of chlorine
bottles) * 12 months * 0.37 (Share of coupons redeemed) * 1.5 (Assumption that for every two households with a child <5y without access to safe drinking
water, one untargeted household receives coupons. 0.37 is the average share of coupons redeemed across Dupas et al., 2016 (45) and Dupas et al., 2020 (34).

Coupons: Dupas et al., 2016 (45) and Dupas et al., 2021 (34),  average cost over the 2016-2017 period
G ((8)/(6))

H ((8)/(7))
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