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Introduction

The Younger Dryas has long been viewed as the canonical
abrupt climate change event. The name is derived from the
late 1800s Swedish and Danish pollen records that indicated
a return of the cold-tolerant plant Dryas octopetala following
a warm interval (the Allerod warm period) (Andersson,
1896; Hartz and Milthers, 1901). The advent of radiocarbon
dating techniques constrained this European cooling event
to ~11-10ka (ka: 1000 years ago) in radiocarbon years
(Mangerud et al., 1974) or ~12.9-11.7 ka in calendar years
(Rasmussen et al., 2006). At this time, boreal summer insola-
tion (the driving force behind deglaciation) neared its peak
(Figure 1(a)) and the sea level was approximately halfway
through its deglacial rise of 120-130 m (Figure 1(e)). Subse-
quent research identified climate changes correlative to the
European Younger Dryas in the North Atlantic and North
Pacific Oceans, across Asia and North America, and in the
tropics (e.g., Clark et al., 2002; Shakun and Carlson, 2010).
The footprint of Younger Dryas climate change suggests that it
was caused by a reduction in Atlantic meridional overturning
circulation (AMOC) (Stouffer et al., 2006), for which there
has been growing evidence since the mid-1980s (Boyle and
Keigwin, 1987). This article reviews the Younger Dryas climate
event, starting with the geographic pattern of climate change,
followed by a discussion of ocean circulation changes, and
ending with its ultimate forcing.

Extent of the Younger Dryas
The Northern Hemisphere Younger Dryas

Greenland ice cores

In the Northern Hemisphere, Greenland ice cores provide the
best expression of the Younger Dryas as a cold event. Ice core
3'80 (& signifies a change in isotopic ratio relative to a stan-
dard multiplied by 1000) consistently decreases by ~3%o with
an ~3.5%o increase at the end of the event, reflectingup to 9 °C
of cooling and 11 °C of warming (Figure 1(b)) (Alley, 2000).
Isotopic ratios of nitrogen and argon gases from the GISP2
(Greenland Ice Sheet Project 2) ice core suggest 10 & 4 °C of
warming at the end of the Younger Dryas (Grachev and
Severinghaus, 2005). The 8'%0 records could also have an
imprint of precipitation source change because Greenland Ice
Sheet accumulation decreased by ~40% (0.11-0.07 m year ')
(Figure 1(c)) and dust records suggest atmospheric reorgani-
zation in only several decades (Alley, 2000). Greenland
deuterium excess, a proxy of precipitation source, shifted in
1-3 years at the start of the Younger Dryas, suggesting that
2-4 °C of source cooling was imprinted on the isotopic records
(Steffensen et al., 2008). The trapped nitrogen isotopes also
indicate that high-altitude Greenland was ~15 °C colder than
present, but this estimate should not be extended to the ice

margins as it may reflect a strengthening of the near-surface
atmospheric inversion that is common over ice sheets
(Severinghaus et al., 1998). Indeed, east Greenland valley gla-
cier records suggest that summers were only 6-7 °C cooler than
present (Kelly et al., 2008). Greenland runoff to the ocean was
also enhanced (Figure 1(d)) (Carlson et al., 2008b) with mild
terrestrial and marine summer conditions (Bjorck et al., 2002;
Williams, 1993) during the Younger Dryas.

Europe

European pollen, chironomid, lake 5180, and speleothem
records indicate that a cooler (2-6 °C) and/or drier climate
characterized the Younger Dryas, which potentially changed
in decades (Figure 2(a) and 2(b)); e.g., Brauer et al., 1999;
Genty et al., 2006; Heiri et al., 2007; von Grafenstein et al.,
1999). Mountain glaciers readvanced in the Swiss Alps
implying 3-4 °C of cooling (e.g., Ivy-Ochs et al., 2009). The
Scandinavian Ice Sheet also readvanced, depositing an exten-
sive moraine system across southern Norway, Sweden, and
Finland (Andersen et al., 1995). Records from glacially influ-
enced lakes in western Norway show an increase in glacier
activity (Nesje, 2009), and the Iceland Ice Cap halted retreat
during the Younger Dryas (Licciardi et al., 2007).

North Atlantic records

In the eastern North Atlantic, Iberian Margin and Mediterranean
sea surface temperature (SST) records show 1-3 °C of cooling
(Figure 2(d)) (e.g., Bard et al,, 2000; Cacho et al., 2001).
Northward up to the Norwegian Sea, SST records indicate
1-7 °C of cooling (Figure 2(c)) (e.g., Benway et al., 2010;
Chapman and Maslin, 1999; Dolven et al., 2002; Ebbesen
and Hald, 2004; Karpuz and Jansen, 1992). Westward, SSTs
cooled by 1-2 °C in the subtropical gyre (Carlson et al., 2008a;
Chapman and Maslin, 1999) and by 5-10 °C near maritime
Canada (de Vernal et al., 1996; Keigwin and Jones, 1995).
In contrast, SST increased by ~1.5 °C near southeastern United
States (Figure 2(e)), which was related to the slowing of AMOC
and decreased northward heat transport (Carlson et al., 2008a).
The Gulf of Mexico also cooled slightly near the end of the
Younger Dryas (Figure 2(f)) (Flower et al., 2004).

North America

Pollen, lake §'20, and soil 8'3C records from maritime Canada
to north-central United States suggest a cooler and drier
Younger Dryas (e.g., Dorale et al., 2010; Shuman et al., 2005;
Yu and Eicher, 1998). In the southeastern United States, how-
ever, the Younger Dryas is characterized by a warmer and/or
wetter climate, reflecting the trapping of heat in the western
subtropical gyre due to reduced AMOC (Grimm et al., 2006).
The Pacific Coast of the United States and Canada experienced
2-3 °C of Younger Dryas cooling (Figure 3(a) and 3(b)) and a
wetter climate (e.g., Barron et al., 2003; Kaufman et al., 2010;
Kienast and McKay, 2001; MacDonald et al., 2008; Mathewes
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Figure 1  Greenland. (a) June insolation at 65°N (Berger and Loutre,
1991). (b) Greenland ice core 8'®0 (red = GISP2 (Greenland Ice Sheet
Project 2), blue = GRIP (Greenland Ice Core Project), green = NGRIP
(North Greenland Ice Core Project); left) (Rasmussen et al., 2006) and GISP2
temperature (black; right) (Alley, 2000). (c) GISP2 ice core accumulation
rate (Alley, 2000). (d) Ti concentration record off southern Greenland
(Carlson et al., 2008b). (e) Relative sea-level data (Clark et al., 2009). Gray
bar on this and other figures indicates timing of the Younger Dryas.

etal., 1993; Sea and Whitlock, 1995; Vacco et al., 2005). In the
North American southwest, packrat midden §'*C temperature
reconstructions imply >3 °C of cooling (Cole and Arundel,
2005), and lake, speleothem, and water table records suggest
an increase in net precipitation during the Younger Dryas
(Figure 3(c) and 3(d)) (Asmerom et al., 2010; Benson et al.,
1997; Pigati et al., 2009; Polyack et al., 2004; Wagner et al.,
2010). Valley glaciers readvanced or reoccupied cirques in
many of the mountain ranges of the North American Cordil-
lera (e.g., Davis et al., 2009). The southern margin of the
Laurentide Ice Sheet also readvanced, depositing a moraine
from western Lake Superior to southeastern Quebec (Lowell
et al.,, 1999), with its northwest margin in Hudson Strait in-
creasing iceberg discharge during the Younger Dryas (Andrews
and Tedesco, 1992).

North Africa and the Middle East

In North Africa, climate cooled and net precipitation decreased
during the Younger Dryas. A record of terrigenous input off the
coast of northwest Africa indicates an increase in dust during
the Younger Dryas, implying drying of the Sahara Desert
(Figure 4(a)) (deMenocal et al., 2000), which is consistent
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Figure 2 Europe and North Atlantic. (a) German lake 8'%0

(von Grafenstein et al., 1999). (b) French speleothem §'®0 (Genty et al.,
2006). (c) Feni Drift Mg/Ca-SST (Benway et al., 2010). (d) Iberian Margin
alkenone-SST (two different alkenone—SST relationships shown)

(Bard et al., 2000). (e) Blake Outer Ridge Mg/Ca-SST (Carlson et al.,
2008a). (f) Gulf of Mexico Mg/Ca-SST (Flower et al., 2004). Symbols are
individual measurements; line is 3-point running average.

with speleothems from North Africa and the Middle East
(Figure 4(b)) (e.g., Genty et al., 2006; Shakun et al., 2007).
This precipitation decrease is attributable to the southward
shift in the Intertropical Convergence Zone (ITCZ) in response
to reduced AMOC and North Atlantic cooling (Stouffer et al.,
2006). Reduced upwelling in the Arabian Sea because of
decreased winds is also consistent with southward ITCZ migra-
tion (Altabet et al., 2002; Schulz et al., 1998). North African
SSTs cooled 0.5-1°C (deMenocal et al., 2000; Zhao et al.,
1995), but Arabian SSTs were relatively constant during the
Younger Dryas (Saher et al., 2007).

Asia

Large portions of central to northern Asia currently lack paleo-
climate records spanning the Younger Dryas interval. Never-
theless, a decrease in 880 from Lake Baikal in southern Russia
implies shifts in moisture sources to the lake and potential
cooling during the Younger Dryas (Morley et al., 2005). Fur-
ther east, a pollen record from central Japan suggests <3 °C of
cooling during the Younger Dryas (Nakagawa et al., 2003),
whereas SST records from the China Sea indicate 0.5-1 °C of
cooling (Kubota et al., 2010; Sun et al, 2005). Multiple
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Figure 3 Western North America. (a) Northwest Pacific alkenone-SST
(Barron et al., 2003). (b) Oregon speleothem 580 (Vacco et al., 2005).
(c) Arizona speleothem 8'80 (Wagner et al., 2010). (d) New Mexico
speleothem '80 (Asmerom et al., 2010).
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Figure 4 North Africa and Asia. (a) West Africa dustiness

(deMenocal et al., 2000). (b) Yemen speleothem §'0 (Shakun et al.,
2007). (c) Chinese speleothem §'80 (Wang et al., 2001). (d) North Indian
Ocean &'80 of seawater (sw) (Rashid et al., 2007).

speleothem 8'%0 records from China and India and Indian
Ocean marine salinity proxies imply a weakening of the sum-
mer Indo-Asian monsoon (Figure 4(c) and 4(d)) (Dykoski
et al., 2005; Rashid et al., 2007; Sinha et al., 2005; Wang
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Figure 5 Tropics. (a) Mg/Ca-SST from Cariaco Basin (purple)

(Lea et al., 2003) and alkenone-SST from Caribbean Sea (green)
(Ruhleman et al., 1999). (b) Mg/Ca-SST from eastern tropical Pacific
(Leaetal., 2006). (c) Lake Tanganyika, Africa temperature (Tierney et al.,
2008). (d) Mg/Ca-SST from western tropical Pacific (three records)
(Stott et al., 2007).

et al.,, 2001), with a south China lake record suggesting an
increase in winter Asian monsoon strength during the Younger
Dryas (Yancheva et al., 2007). Overall, these paleomonsoon
proxies are consistent with a southward shift in the ITCZ.

Tropical Climate and the Younger Dryas

East Atlantic and Central America

The temperature pattern observed in the tropics during the
Younger Dryas is complex (Shakun and Carlson, 2010). SSTs
show a warming of 0.25-1.2 °C in the Caribbean Sea and off
northeast Brazil (Jaeschke et al., 2007; Rithleman et al., 1999;
Schmidt et al., 2004; Weldeab et al., 2006), but a cooling
of ~3.3°C north of Venezuela (Figure 5(a)) (Lea et al,
2003), possibly from a southward shift in the ITCZ that in-
creased trade wind strength and upwelling (Hughen et al.,
1996). Indeed, precipitation proxies suggest that precipitation
decreased north of the equator and increased south of the
equator (Haug et al., 2001; Jaeschke et al., 2007; Wang et al.,
2007). Ice cores from Peru and Bolivia show an ~2%o decrease
in 3’0 (Thompson et al., 1998), concurrent with higher lake
levels in nearby Lake Titicaca and consistent with southward
ITCZ migration (Baker et al., 2001). Despite wetter conditions,
a warmer climate would explain glacier recession in Peru
during the Younger Dryas (Rodbell and Seltzer, 2000).

West Atlantic and Africa
Off tropical West Africa, SST records indicate ~0.2 °C of warm-
ing during the Younger Dryas (Shefuf et al., 2005; Weldeab
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et al., 2007) in agreement with air temperature proxies that
suggest ~0.8 °C of warming (Weijers et al., 2007). Another
Younger Dryas SST record from southwestern tropical Africa,
however, suggests a slight cooling from increased winds and an
enhanced local upwelling of colder waters (Kim et al., 2002),
which may extend to ~25°S (Farmer et al., 2005). Eastern
tropical Africa temperature records indicate a complex pattern
with warming at Lake Tanganyika (Figure 5(c)) and potential
cooling at Lake Malawi and surrounding regions (Gasse et al.,
2008; Tierney et al., 2008; Weldeab et al., 2007). Off the
southeast coast of Africa near Madagascar, SSTs warmed during
the Younger Dryas (Levi et al., 2007). Interestingly, despite
evidence for a southward shift in the ITCZ in tropical Africa
(e.g., Gasse et al., 2008; Johnson et al., 2002; Tierney and
Russell, 2007), leaf wax 313C from Lakes Malawi and Tangan-
yika indicate arid conditions, highlighting a complex tropical
African climate response to reduced AMOC (Castaneda et al.,
2007; Tierney et al., 2008).

Tropical Pacific

In the eastern tropical Pacific, most SST records indicate little
temperature change or slight warming during the Younger Dryas
(Figure 5(b)) (e.g., Benway et al., 2006; Lea et al., 2006), with
one record showing ~0.4 °C of cooling (Kienast et al., 2006).
Paleosalinity reconstructions suggest a net decrease in moisture
transport from the Atlantic to the Pacific because of a southward
displacement of the ITCZ (Benway et al., 2006). Further west,
the Mauna Kea Ice Cap of the Hawaiian Islands may have read-
vanced during the Younger Dryas from a southward shift in the
ITCZ, with enhanced extratropical storms and northward local
winds that transported more moisture to Hawaii (Anslow et al.,
2010). In the tropical west Pacific, SSTs generally warmed
but with regions of cooling potentially reflecting proxy biases
(Figure 5(d)) (Kienast et al., 2001; Levi et al., 2007; Linsley
et al,, 2010; Rosenthal et al., 2003; Stott et al., 2007).

Southern Hemisphere Climate During the Younger Dryas

During the Younger Dryas, the extratropical Southern Hemi-
sphere generally warmed (Shakun and Carlson, 2010). Antarctic
ice cores record increasing §'®0 and 8D (Figure 6(e) and 6(f))
(e.g., Blunier and Brook, 2001; EPICA Community Members,
2006; Jouzel et al.,, 2007). SST records show a warming
of 0.3-1.9 °C from the southeast Atlantic to New Zealand
(Figure 6(a)-6(c)) (Barker et al., 2009; Barrows et al., 2007;
Carlson et al., 2008b; Lamy et al., 2004; Pahnke and Sachs,
2006). Speleothem and pollen records from New Zealand and
pollen records from South America confirm that the Younger
Dryas was generally a period of warming (e.g., Hajdas et al.,
2003; Moreno et al.,, 2009; Newnham and Lowe, 2000;
Turney et al., 2003; Williams et al., 2005), consistent with
New Zealand and Patagonian glacier retreat (Kaplan et al.,
2008; 2010; Moreno et al., 2009; Putnam et al., 2010).

Geographic Response Summary

Globally, the Younger Dryas was a period of climate change.
Plotting Younger Dryas temperature and climate anomalies
against latitude shows that climate anomalies increased in
magnitude toward the poles with opposite signs in the
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Figure 6 Southern Hemisphere. (a) Mg/Ca-SST near southeast Brazil
(Carlson et al., 2008a). (b) Alkenone-SST near southern Chile

(Lamy et al., 2004). (c) Alkenone-SST near New Zealand (Pahnke and
Sachs, 2006). (d) Atmospheric CO, (Monnin et al., 2001). (e) Antarctic
Dome C change in temperature (Jouzel et al., 2007). (f) Antarctic EDML
ice core 5'20 (EPICA Community Members, 2006).

Northern and Southern Hemispheres (Figure 7) (Shakun and
Carlson, 2010), reflecting the bipolar seesaw response (Blunier
and Brook, 2001). Nevertheless, greater cooling at high north-
ern latitudes than warming at high southern latitudes results in
a net global cooling of ~0.6 °C likely caused by more extensive
snow and sea-ice cover increasing Northern Hemisphere
albedo during the Younger Dryas (Shakun and Carlson, 2010).

Ocean Circulation During the Younger Dryas

The first evidence for a change in AMOC during the Younger
Dryas came from North Atlantic proxies of water mass nutrients
(benthic 8'C and Cd/Ca) that showed that Southern Ocean
Deep-water volume increased in the North Atlantic at the ex-
pense of North Atlantic Deep-water (Figure 8(b) and 8(c))
(Boyle and Keigwin, 1987). More recently, a proxy of water
export (?*'Pa/?*°Th in marine sediments) from the North
Atlantic suggests a ~30% reduction in deep AMOC strength
during the Younger Dryas (Figure 8(a)) (McManus et al.,
2004), consistent with a reduction in the North Atlantic
bottom water currents (Figure 8(d)) (Praetorius et al., 2008).
Other tracers of water mass source and age confirm increased
Southern Ocean Deep-water and Antarctic Intermediate-
water and reduced North Atlantic Deep-water volume
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Figure 8 North Atlantic overturning circulation. (a) 22'Pa/?3°Th for the
North Atlantic with up indicating more water export past Bermuda Rise
(McManus et al., 2004). (b) Benthic Cd/Ca from Bermuda Rise

(Boyle and Keigwin, 1987). (c) Benthic §'3C from Bermuda

Rise (Boyle and Keigwin, 1987). (d) Sortable silt from the Iceland-
Scotland Overflow (Praetorius et al., 2008). Gray bar indicates timing of
Younger Dryas.

(Pahnke et al., 2008; Roberts et al., 2010; Robinson et al,,
2005). The rise in atmospheric CO, during the Younger
Dryas (Figure 6(d)) implies increased upwelling and degassing
of carbon-rich water, evidence for which exists in the Southern
Ocean and along Baja California (Anderson et al., 2009;
Marchitto et al., 2007). The reduction in AMOC strength dur-
ing the Younger Dryas provides the causal mechanism for
Northern Hemisphere cooling and Southern Hemisphere warm-
ing, as well as the southward displacement of the ITCZ. Coupled

atmosphere-ocean climate models consistently simulate a reduc-
tion in AMOC and these attendant climate impacts in response
to increased freshwater discharge to the North Atlantic (Liu etal.,
2009; Meissner and Clark, 2006; Otto-Bliesner and Brady, 2009;
Peltier et al., 2006; Stouffer et al., 2006).

The Cause of the Younger Dryas

The forcing of the Younger Dryas was originally inferred to be
northward retreat of the southern Laurentide Ice Sheet margin
out of the Great Lakes, thereby routing western Canadian
Plains freshwater from the Mississippi River to the St. Lawrence
River, with the attendant increase in freshwater discharge to
the North Atlantic slowing AMOC (Johnson and McClure,
1976; Rooth, 1982). This hypothesis has more recently been
questioned based on marine, terrestrial, and ice-sheet model
results.

In the St. Lawrence Estuary, planktic 8180 records show a
0.5-0.8%o decrease at the start of the Younger Dryas (de Vernal
et al., 1996; Keigwin and Jones, 1995; Keigwin et al., 2005)
when §'80 increases in the Gulf of Mexico (Figure 9(b)) (e.g.,
Flower et al., 2004). Concurrent Younger Dryas cooling of
5-10°C in the St. Lawrence Estuary (de Vernal et al., 1996;
Keigwin and Jones, 1995) may have masked a much larger
3'80 signal associated with eastward freshwater routing
(1.8-2.7%0) (Carlson et al., 2007). Four independent geo-
chemical freshwater source and amount proxies and mollusk
8'80 from the St. Lawrence River and Estuary support the
eastward routing of western Canadian Plains freshwater at the
start of the Younger Dryas (Figure 9(c) and 9(d)) (Brand and
McCarthy, 2005; Carlson et al.,, 2007; Cronin et al., 2008).
Modeling of the geochemical records indicates a base-flow
freshwater discharge increase of ~0.12 Sv (Sv = Sverdrup,
10°m® s ') (Carlson et al., 2007), which is sufficient to slow
AMOC (Liu et al., 2009; Meissner and Clark, 2006; Otto-
Bliesner and Brady, 2009; Peltier et al., 2006; Stouffer et al.,
2006). Although dynoflagellate cyst reconstructed sea surface
salinity does not decrease, which led de Vernal et al. (1996) to
argue that St. Lawrence River freshwater discharge did not
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Figure 9 North American runoff records. (a) Two planktic 80 records
from the Greenland-Iceland-Norwegian (GIN) Sea (Fram Strait, open
symbols; Norwegian Sea, diamonds) (Dokken and Jansen, 1999;
Ngrgaard-Pedersen et al., 2003). (b) Planktic 580 records from the Gulf
of Mexico (Southern QOutlet: SO) (purple; Flower et al., 2004) and

St. Lawrence Estuary (Eastern Outlet: EQ) (blue; Keigwin et al., 2005).
(c) Planktic 53C (light green; de Vernal et al., 1996) and AMg/Ca
(brown; Carlson et al., 2007). (d) Planktic 8Sr/%Sr (red) and U/Ca
(dark green) from the St. Lawrence Estuary (Carlson et al., 2007).

increase during the Younger Dryas, subsequent research has
shown that dynoflagellate cysts are insensitive to salinity
changes above 12 practical salinity units (Telford, 2006).
Similarly, '*C dates from the eastern outlet of the western
Canadian Plains have been interpreted as implying that the
eastern outlet was not open until after the start of the Younger
Dryas (Lowell et al., 2009). The dates, however, are only min-
imum limiting and indicate that the eastern outlet was open
prior to ~12.6 ka, in agreement with the Mississippi and St.
Lawrence runoff records (Carlson et al., 2009).

Arguments for a northern routing of western Canadian
Plains freshwater and an abrupt discharge of Laurentide melt-
water to the north have also been proposed as the forcing of
the Younger Dryas. Murton et al. (2010) used optically stimu-
lated luminescence (OSL) ages from sand layers bracketing an
erosional surface on the Mackenzie River Delta to argue that
the erosional event (e.g., flood) occurred shortly after ~13 ka
based on the average of the stratigraphically lower dates. How-
ever, the OSL ages overlying the erosional surface of ~11.9 ka
would be a closer age constraint on the erosion event, because
erosion removed some unknown amount of sand and the

overlying ages are conformable with the end of the erosion
event as flow waned, depositing the sand. Therefore, the ero-
sion event is not related to the onset of the Younger Dryas.
Tarasov and Peltier (2005) suggested that a 0.09 Sv discharge
of Laurentide meltwater into the Arctic Ocean for 0.3 ka could
have forced the Younger Dryas. Climate models do not,
however, produce a >1 ka long reduction in AMOC from a
0.3 ka discharge of freshwater (Liu et al., 2009; Meissner and
Clark, 2006; Otto-Bliesner and Brady, 2009; Peltier et al., 2006;
Stouffer et al., 2006). Although such a melting event could
be longer, sea-level records constrain the global meltwater
discharge to <5 m of sea-level rise (Figure 1(f)) (Bard et al.,
2010) or ~0.05 Sv over 1.2 ka. Furthermore, there is no exist-
ing paleoceanographic evidence for an increase in freshwater
discharge to the Arctic Ocean at the start of the Younger Dryas
(Figure 9(a)) (Carlson and Clark, 2008).

Another recent hypothesis for the source of the freshwater
that forced the Younger Dryas is a comet that impacted on or
near the Laurentide Ice Sheet (Firestone et al., 2007), but
evidence for Younger Dryas-like events during earlier deglacia-
tions precludes a unique comet forcing (Carlson, 2008). These
earlier events occur at approximately the mid-point of the
deglacial sea-level rise, similar to the sea level during the
Younger Dryas, suggesting that the AMOC reduction is related
to ice-sheet volume/extent (Carlson, 2008). Only continental
routing from the Laurentide Ice Sheet retreat pertains to ice-
sheet extent/size and the existing records all suggest that this
freshwater routing was from the southern outlet to the eastern
outlet, consistent with the originally hypothesized forcing of
the Younger Dryas.

See also: Glacial Climates: Thermohaline Circulation. lce Core
Records: Correlations Between Greenland and Antarctica.
Paleoceanography: Paleoceanography An Overview.
Paleoclimate Reconstruction: Sub-Milankovitch (DO/Heinrich)
Events; Younger Dryas Oscillation, Global Evidence.
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