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ABSTRACT 
 

   

This thesis explores Benders decomposition for solving interdiction 

problems on electric power grids, with applications to analyzing the vulnerability 

of such grids to terrorist attacks.  We refine and extend some existing 

optimization models and algorithms and demonstrate the value of our techniques 

using standard reliability test networks from IEEE.   

Our implementation of Benders decomposition optimally solves any 

problem instance, in theory.  However, run times increase as Benders’ cuts are 

added to the master problem, and this has prompted additional research to 

increase the decomposition’s efficiency.  We demonstrate empirical speed ups 

by dropping slack cuts, solving a relaxed master problem in some iterations, and 

using integer but not necessarily optimal master-problem solutions.  These mixed 

strategies drastically reduce computation times.  For example, in one test case, 

we reduce the optimality gap, and the time that it takes to achieve this gap, from 

16% in 75 hours to 5% in 16 minutes. 
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DISCLAIMER 
 
   

The reader is cautioned that computer programs developed in this 

research may not have been exercised for all cases of interest.  While every 

effort has been made to ensure that the programs are free of computational and 

logic errors, they cannot be considered fully validated.  Any application of these 

programs without the additional verification is at the risk of the planner. 
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EXECUTIVE SUMMARY 

 
 

This thesis extends existing optimization models and methods for 

analyzing the vulnerability of electric power grids to terrorist attacks.   

Electric power systems are critical to the United States’ economy and 

security.  After the events of September 11, 2001, and the United States’ ensuing 

war against terrorism, the fear of retaliation against critical infrastructures has 

become a major concern for security analysts.  The vulnerability of the electric 

power systems to physical disruptions heads the list of concerns, because the 

U.S. transmission grid has not expanded as quickly as demand has over the last 

decade, and thus the system has become “brittle.”  This brittleness (vulnerability) 

became more evident on 14 August 2003 when a relatively modest number of 

system malfunctions caused a blackout of the northeastern region of the country, 

and raises this question:  How much worse might the blackout have been had it 

resulted from a well-planned terrorist attack?   

This thesis first considers certain modeling issues of the problem of 

optimal interdiction, and then focuses on techniques for solving the proposed 

models.  This should help us identify the most critical components of the U.S. 

power grid, and ultimately help determine effective protective measures to 

improve the system’s robustness. 

We refine and extend the existing optimization models and algorithms of 

Salmeron et al. that identify critical system components (e.g., transmission lines) 

by creating maximally disruptive attack plans for terrorists, who are assumed to 

have limited offensive resources.  Most importantly, this thesis exploits bi-level 

structures embedded in the interdiction models to enable faster solutions through 

the use of Benders decomposition.   

We first validate the DC power-flow model that underlies in the interdiction 

models.  By manipulating a few equations, the inherent nonlinearities in these 

models are substituted by linear forms, converting those models into (linear)  
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mixed-integer problems (MIPs).  We explore Benders decomposition for solving 

the MIPs, and successfully apply it to two standard reliability test networks from 

IEEE. 

Although we solve the IEEE test cases to optimality, we notice that the 

efficiency of the Benders’ master problem deteriorates as (a) the number of 

components in the test cases increases, and (b) the number of Benders’ cuts in 

the master problem grows.  We investigate several techniques in order to 

improve the algorithm’s speed.  First, we demonstrate faster convergence by 

solving the mixed-integer master problem exactly every kth iteration only, and 

solving its easier, linear-programming relaxation otherwise.  Importantly, the 

algorithm thus modified always maintains a valid upper (optimistic) bound, just as 

the original does.  Since relaxed (non-integer) master-problem solutions cannot 

be used by the subproblems to compute lower (pessimistic) bounds, we exploit 

sub-optimal integer solutions to the master problem every mth iteration to improve 

the lower bound.  In one of our two test networks, this combined techniques 

reduce computational time by one third.  We also show that limiting the number 

of cuts in the master problem can speed convergence, and study several 

strategies for keeping or deleting cuts.  Results are mixed, but improvements can 

be dramatic.  For example, in the second of our test networks, by limiting the 

number of cuts to 500 and solving a relaxed master problem nine of every ten 

iterations, we achieve an optimality gap under 5% in 16 minutes; this compares 

to a 16% gap in 75 hours using the original decomposition algorithm 
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GLOSSARY 

 

The following briefly defines the general concepts related to electric power 

networks and interdiction.  Some of these definitions are from (or strongly based 

on) the glossaries provided by Energy Information Administration (EIA 2003), 

Elec-Saver (2003) and SIEMENS(2004). 

AC Power:  Power associated with alternating current circuits. 

Admittance:  Property that allows the flow of electrical current through 

reactive circuit elements under the action of a potential difference.  Admittance is 

the reciprocal of impedance.  Admittance equations establish the relationship 

between current, impedance and voltage. 

Alternating Current:  Current that periodically reverses direction.  

Bus (or Busbar):  A heavy, rigid electrical conductor that makes a common 

connection between several electrical circuits. 

Capacitance:  The property of a circuit that allows it to store an electrical 

charge.  

Case: A set of data to be analyzed, along with the results of the analysis.  

Data consists of power grid components (lines, buses, generators, substations, 

etc), physical data (i.e., such as line impedances, generating capacities, etc.), 

non-physical data (e.g., interdiction resource, optimization parameters, etc.).  

Results include the interdicted components, associated generation and power 

flows, and load shedding for every period, among others. 

Costumer Sector:  A type of load with specific requirements (e.g., amount 

of power demand and cost for failing to provide it). 

Current:  The flow of electrons in a circuit. Current is measured in 

amperes. 

DC Power: Power associated with direct current circuits. 
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Direct Current:  Current that flows in one direction 

Disruption:  The cost of power shed (in dollars per hour) or the cost of 

energy shed (in dollars), as a consequence of interdiction. 

Energy:  The result of integrating power over time. 

Energy Shed:  Amount of energy that cannot be supplied to the load (one 

or several customer sectors) over the course of a given period. 

Generation (of electricity): The production of electric energy through the  

transformation of  other forms of energy.  The amount of electric energy 

produced. 

Generating Unit (or Generator):  Any combination of physically connected 

generator(s), reactor(s), boiler(s), combustion turbine(s), or other prime mover(s) 

operated together to produce electric power. 

Impedance:  The total opposition to alternating current. Impedance is the 

vector sum of resistance and reactance.  The unit for impedance is the ohm. 

Inductance:  The property of an electrical circuit that causes it to oppose 

changes in current. 

Interdiction Plan:  Specific subset of the electric system equipment that 

might be interdicted by terrorists.  Optimal or near-optimal interdiction plans are 

identified in for given interdiction-resource scenarios. 

Interdiction Resource:  A numerical value associated with a mathematical 

expression that represents the capacity of terrorists to carry out attacks.  For 

example if such an expression has the form:  “(3 × total number of attacks to 

buses) + (1 × total number of attacks to lines) ≤ 5,” then “5” is the interdiction 

resource. 

Line:  See “Transmission Line.” 

Load:  Demand for electric power, measured in watts, at a specific point in 

time. 
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One-line Diagram:  Schematic drawing of an electrical power system that 

uses graphical symbols to represent electrical equipment such as buses, 

generators, loads, transmission lines and transformers.  It may incorporate 

numerical values for the system, such as line power flows, generating unit 

outputs, bus voltages, etc.   

Phase angle:  The angle by which the sine curve of the voltage in a circuit 

element (or a combination of elements) leads or lags the sine curve of the current 

in that circuit element(s).  

Period (of restoration):  Each of the stages that an electric power network 

undergoes following an attack, as interdicted components are repaired or 

replaced over time. 

Power (transmission): The transfer rate for energy. Unit of measurement is 

watts.  Power is sometimes used loosely to refer to electricity. 

Power Shed:  Amount of power that cannot be supplied to a load or loads 

(one or several customer sectors) at a specific point in time. 

Reactance: Opposition to the flow of alternating current. Measured in 

ohms. 

Reactive Power: Power associated with inductance or capacitance. 

Resistance: The propensity of a circuit to oppose current flow.  It is 

measured in ohms. 

Scenario: A particular value of the interdiction resource.  In our 

formulation, we analyze the worst-possible Interdiction Plans for a given 

scenario. 

Slack Bus:  (Also called swing bus.)  A bus whose (initially unspecified) 

power generation must be determined in order to match supply and demand in 

the network. 

Substation:  Facility with equipment that switches, changes, or regulates 

electric voltage and current. 
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Transformer:  A static electrical device which, by electromagnetic 

induction, regenerates AC power from one circuit into another and/or changes 

the voltage of alternating current. 

Transmission:  The movement or transfer of electric energy over an 

interconnected group of lines and associated equipment between points of 

supply and points at which it is transformed for delivery to consumers, or is 

delivered to other electric systems.  Transmission is considered to end when the 

energy is transformed for distribution to the consumer. 

Transmission Line (High-voltage):  The high-voltage (≥ 69 kV in the U.S.) 

conductors used to carry electrical energy from one location to another. 

Transmission System (also referred to as Electric Power Grid and Electric 

Network in this thesis):  An interconnected group of electric transmission lines 

and associated equipment for moving or transferring electric energy in bulk 

between points of supply and points at which it is transformed for delivery over a 

lower-voltage distribution system to consumers, or is delivered to other electric 

systems. 

 

 

   

 
 
 



1

I. INTRODUCTION  

This research continues the development of mathematical models and 

optimization methods for planning electrical power grids that are robust to 

terrorist attacks.  We focus on solving an interdiction model, which is represented 

as a mixed-integer program (MIP), through the use of Benders decomposition.      

 

A. THE ELECTRIC POWER GRID IN THE U.S. 
The electric power grid in the United States (U.S.) consists of over 10,000 

generating units with a total production in excess of 760 giga-watts (GW), and 

over 700,000 miles of transmission lines, all controlled by approximately 100 

control centers.  (Actually, only modest interconnection capacity exists between 

three main sub-systems in this grid, namely the Eastern interconnection, the 

Western interconnection and the Texas interconnection.  Therefore, “the U.S. 

power grid” may be viewed as three, nearly independent systems.)  

In the past, utilities have been concerned with the grid’s vulnerabilities to 

isolated natural disasters and unscheduled, technical outages caused by 

equipment failures.  To date, protecting the electric grid against multiple, nearly 

simultaneous failures has not been a high priority for utilities because of the 

expense involved and the relatively low frequency of such events.  However, in 

the current era, a set of nearly simultaneous failures might be the precise 

objective of a terrorist attack.  “Low frequency” may no longer be so slow.   

As a result of the threat that terrorism currently poses to critical 

infrastructure of all types in the U.S., understanding the physical vulnerability of 

the electric grid has become more important not only for the electric power 

industry, but also for national security (NSTAC 1997).  In fact, a National Security 

Assessment (1997) states that man-made physical destruction is the greatest 

threat facing the electric power infrastructure.   

The U.S. electric power grid is plagued by a number of inherent 

weaknesses.  Among the most significant of these weaknesses are the traversals 
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of sparsely populated areas, which readily expose the system to malicious 

attacks, and the decreasing reserve in transmission capacity. 

The U.S. transmission network is built with some redundancy and multiple 

protective devices; however, current reserve levels in transmission capacity may 

be insufficient to back up multiple failures in some key components, as  

exemplified by the 14 August 2003 power-system failure (which cost our national 

economy between $7 and $10 billion dollars; ICF Consulting 2003).  Not 

surprisingly, this failure brings additional speculation about terrorist threats to the 

U.S. power grid (Germain 2003), and raises important questions about the 

resilience of the U.S. power grid and the possibility of widespread loss of power 

to customers. 

The August 14th blackout could be financially insignificant when compared 

to the effects of a coordinated terrorist attack on several key facilities during a 

period of peak load.  ICF Consulting (2003), which analyzed the cost of the 

August 14th blackout, states that a terror-induced blackout could prove 

significantly more costly and have debilitating impacts on the affected region as 

well as the entire country.  Additionally, a simulated terrorist attack on the Pacific 

Northwest's power grid was recently conducted under the project name “Blue 

Cascades.”  An analysis of that simulated attack showed that a real attack, if 

successful, could wreak havoc on the nation's economy, shutting down power 

and productivity in a domino effect that would last for weeks (Allen 2003).  

The discussion above motivates the development of optimization models 

to represent the problem of terrorists attacking a power grid.  By studying how to 

attack power grids, one can gain insight on how to protect them.  

This research follows Salmeron et al. (2003, 2004), who develop bi-level 

mathematical models to identify maximally disruptive attacks for terrorists, who 

are assumed to have full access to power-system data, but limited offensive 

resources.  Salmeron et al. initially introduce a static interdiction model and then 

extend it to capture the dynamics of system operation as the grid is repaired after 

an attack (which can make slow-to-repair grid components more attractive 
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targets).  An attack is optimal in the first model if it maximizes the total, 

instantaneous, unserved demand for power; in the extended model, it is optimal if 

it maximizes the total cost of unserved demand for energy.  These models have 

been tested using standard reliability test systems (RTSs) drawn from IEEE 

(1999-I, 1999-II).  

This thesis makes no attempt to extend the modeling approach for power 

flows used by Salmeron et al.  Thus, some values representing power-system 

behavior (such as reactive power flows, line losses, voltage magnitudes, 

transformer tap positions, etc.) are still disregarded and/or are assumed fixed in 

this work.  However, we assess the accuracy of that approach by comparing 

results from our approximating “DC power-flow model” with those provided by a 

full AC power-flow model.  We use the AC model embedded in the PowerWorld 

Simulator (PowerWorld 2003) to carry out this comparison.     

Salmeron et al. (2003) propose heuristic algorithms for finding an 

approximate solution to their interdiction models.  These heuristic solutions are 

generally within 10% of optimality but in some instances that gap can reach 25%.  

The possibility of large gaps was discovered after publication of the referenced 

paper, when the authors were able to solve equivalent Mixed Integer Linear 

Program (MIP) formulations exactly (Salmeron et al. 2004).  These MIP 

formulations have been reviewed and consolidated in the framework of this 

thesis  

In theory, a MIP can be solved exactly by standard techniques such as 

“branch-and-bound” (e.g., Wolsey 1998, pp. 95-107).  However, these 

techniques cannot always solve the large-scale problems found in practice, and 

this motivates the search for alternative techniques with better scalability.  

Benders decomposition (Benders 1962) is a well-known method for solving large-

scale MIP models, and this thesis investigates its use to solve the interdiction 

problem efficiently.  Previous application of Benders decomposition to interdiction 

problems can be found in Cormican (1995) and Israeli and Wood (2002).   
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B. THESIS OUTLINE 
Subsequent chapters in this thesis are organized as follows: Chapter II 

introduces the DC power-flow model that is the basis for the interdiction model. It 

also defines the interdiction model and presents the heuristic and MIP 

approaches developed previous to this work to solve the problem.  Finally, 

Chapter II introduces Benders decomposition and its associated algorithm in the 

framework of our interdiction problem.  Chapter III validates the DC power-flow 

model through comparison with an AC power-flow model. We compare power 

flows for different interdiction plans on IEEE’s “One Area RTS.”  Chapter IV 

details the application of Benders decomposition to our interdiction model.  A 

three-bus example demonstrates the decomposition process, which is then 

applied to the interdiction problem without system restoration.  Computational 

results are presented.  Chapter V presents the Benders decomposition for the 

interdiction model with system restoration over time.  Chapter VI discusses 

refinements to the algorithm and provides computational results.   Chapter VII 

summarizes results and recommends topics for future work.  Appendices A and 

B show the full derivation of the interdiction models, which are introduced in 

Chapter II and further described in Chapters IV and V.  Appendix C describes the 

linearization of cross products for the three-bus problem developed in Chapter 

IV.     
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II. PRELIMINARIES 

This chapter introduces the DC Optimal Power Flow model (DCOPF) that 

is the basis for the development of two interdiction models:  without system 

restoration (see Section B), and including system restoration (see Section C).  

Both Sections B and C describe heuristic and MIP approaches explored prior to 

this research for solving the interdiction models.  Section D introduces Benders 

decomposition in the context of our models. 

 

A. INTRODUCTION TO DCOPF 
At the heart of the interdiction models is a DC power-flow model (DCPF), 

so we first provide some background on this and related models.  DCPF 

simplifies the so-called “full AC power-flow model” (ACPF), which is generally 

accepted as a valid representation of power flows under steady-state conditions 

and symmetry (Frauendorfer et al. 1993).  The DCPF representation entails 

various assumptions which may be acceptable in the context of security analysis 

(Wood and Wollenberg 1996).  For example, DCPF disregards reactive power 

effects and assumes nominal voltage magnitudes at the buses.    

DCPF can be used to construct an optimization problem, DCOPF, which 

optimizes a merit function subject to DCPF constraints.  The merit function 

typically measures generating costs.  In contrast, our DCOPF not only minimizes 

generation costs, but also the penalty associated with unmet demand (“load 

shed”), because we cannot guarantee that all demand will be met in the 

presence of interdiction.  The DCOPF formulation from Salmeron et al. (2003) is 

presented below for completeness.  (Definitions of terms can be found in the 

glossary.)               

Sets: 

i I∈ ,  set of buses 

g G∈ ,  set of generating units 
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l L∈ ,  set of transmission lines 

c C∈ ,  set of consumer sectors 

s S∈ ,  set of substations 

si I∈ ,        subset of buses at substation s  

ig G∈ , subset of generating units connected to bus i  

Bus
il L∈ ,       subset of lines connected to bus i  

Sub
sl L∈ , subset of lines connected to substation s  (including 

transformers, which are represented by lines) 

*G G⊆ , *L L⊆ , *I I⊆ , *S S⊆ , interdictable generators, lines, buses, and 

substations, respectively.  These are “interdictable 

components.” 

Parameters (units, if applicable): 

( ),  ( ),o l d l  origin and destination buses of line l  respectively (more than 

one line with the same ( )o l , ( ) d l may exist). 

( )i g ,  bus for generator g , i.e., ( )i gg G∈  

( ),s i   substation s S∈   associated with bus si I∈  

icd ,  load of consumer sector c at bus i  (MW) 

Line
lP ,  transmission capacity for line l  (MW) 

Gen
gP ,   maximum output from generator g  (MW) 

,  l lr x , resistance, and reactance of line l  respectively (Ω).  (We 

assume l lx r>>  ) 

lB ,  series susceptance, calculated as 2 2 1/( ) ( )l l l lB x r x= + Ω  
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gh ,  generation cost for unit g  ($/MWh) 

icf ,  load-shedding cost for customer sector c  at bus i  ($/MWh) 

Decision variables (units): 

Gen
gP ,  generation from unit g  (MW) 

Line
lP ,  power flow on line l  (MW) 

i cS ,  load shed (unmet) for customer sector c at bus i  (MW) 

iθ ,  phase angle at bus i  (radians) 

Remark:  All units are converted to per unit (p.u.) values for a base load of 

100 MW.  (Remark:  We use this same value in all implemented models.)  For 

example, to convert lr  to per-unit values, we consider the transmission line ( l ) 

nominal voltage rating lE  (in kV).  Then: 

lr  (per unit) = lr  (ohms) × 100 (MW)/(line rating(kV)) 2 = 

2 2 2 2 2 2

100 MVA 100 MVA 100 A 100 p.u. (since 1V=1A 1 )
(kV) ( k VV V

l l l l

l l l l

r r r r
E E E E

   Ω Ω Ω = = = × Ω         
 

The same process is carried out for reactance ( lx ) conversions.  For the 

rest of MW magnitudes, we use per-unit values after dividing by the 100 MW 

base load. 

The formulation of DCOPF is: 

(DCOPF): 
, , ,
min

Gen Line

Gen
g g ic ic

P P S g i c

h P f S
θ

+∑ ∑∑   

s.t. 

( ) ( )( )Line
l l o l d lP B l Lθ θ= − ∀ ∈                                                         (2.1) 

| ( ) | ( )

( )Gen Line Line
g l l ic i c

g l o l i l d l i c

P P P d S i
= =

− + = − ∀∑ ∑ ∑ ∑       (2.2)

Line Line Line
l l lP P P l L− ≤ ≤ ∀ ∈         (2.3) 
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,Gen Gen Gen
g g g iP P P i g G≤ ≤ ∀ ∀ ∈  (2.4) 

0 ,i c i cS d i c≤ ≤ ∀   (2.5) 
 
This model assumes fixed (nominal) voltage magnitudes and does not 

represent shunts, reactive power flows, power losses, DC lines, transformer tap 

positions, phase transformers, and other features that could destroy the linear 

structure of the approximation.  Discrepancies in power flows in DCOPF and a 

full ACPF are discussed in Chapter III. 

 

B. THE INTERDICTION MODEL WITHOUT SYSTEM RESTORATION 
 

1. Interdiction Model 
After some manipulation, DCOPF above can be stated in standard form 

as:     

 

(DCOPF):  min

s.t.
0

y
c y

Ay b
y

=
≥

  (2.6) 

where y  represents generation outputs, load shedding, power flows and phase 

angles variables, along with slack variables associated with constraints (2.3)-

(2.5). 

The interdiction model extends (2.6) in order to choose the most 

disruptive, resource-constrained interdiction plan, δ ∈∆ , where ∆  is a set of 

binary vectors representing possible terrorist attack plans.  An interdiction plan is 

represented by the binary vector δ , where eδ  is 1 if component e  of the power 

grid is attacked and is 0 otherwise.  We assume that terrorists attempt to 

maximize the minimum post-interdiction “disruption” which is measured as the 

generating cost plus the load-shedding cost (penalty) evaluated by DCOPF.   

A simple representation of the max-min Interdiction of the DCOPF (I-

DCOPF) model is shown below: 
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(I-DCOPF) : max min

s.t. ( , ) 0
0

y
c y

g y
y

δ

δ
∈∆

=
≥

 (2.7) 

where ( , )g yδ  represents a set of constraints, some of which involve functions 

that are nonlinear in ( , )yδ  (see Appendix A.1).  For a given interdiction plan, δ̂ , 

the inner minimization is still a DCOPF model which is, of course, linear in y .   

Prior to this thesis, model (2.7) was tackled by (a) using a heuristic 

algorithm and by (b) reformulating  (2.7) as a MIP which was solved with a 

standard solver.  This thesis contributes to (b) by refining the MIP formulation 

that serves as basis for the Benders decomposition approach.   In order to place 

this thesis’ contributions in context, the following two subsections summarize 

approaches (a) and (b). 

2. Heuristic Approach 
A heuristic algorithm introduced by Salmeron et al. (2003) solves model 

(2.7) approximately, and has been tested using small- and medium-scale 

networks drawn from the IEEE Reliability Test Data (1999-I, 1999-II).  This 

heuristic solves DCOPF for a given grid configuration (i.e., for a given interdiction 

plan).  Then it assigns “values” to interdictable electrical components in the grid 

(lines, buses, substations, etc.) based on present and previous flow patterns 

associated with the components.  Finally, the heuristic maximizes the value of 

the components to be interdicted while excluding previously explored solutions.  

This process is repeated for a pre-specified number of iterations.  This 

decomposition-based approach has been empirically proven to obtain good, but 

not necessarily optimal, interdiction plans.  Figure 1 depicts the basic cycle of the 

algorithm.  Additional details on the heuristic can be found in the cited reference.   
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Based on present and previous flow 
patterns, assign a “Value” to each 

interdictable asset 

Solve the DC-OPF for the present 
grid configuration 

 Maximize the Value of the Assets 
to be Interdicted (excluding 

previously explored solutions) 

 
Figure 1.   Framework for a heuristic interdiction algorithm.  (From Salmeron et al. 

2003.) 

The inability to prove optimality of the heuristic solution (unless all possible 

solutions are enumerated explicitly) has led to the search for alternative 

representations of (2.7) that are amenable to solution by MIP techniques, such 

as branch-and-bound, as described in the following section.      

3. The MIP Approach 
a.  Overview 
The development of a MIP model enables validation of the heuristic 

solution and the development of exact decomposition algorithms that are 

frequently used solve large-scale problems.  (Typically the solutions are 

approximate, but then large-scale systems are almost never solved exactly by 

any technique.)  The derivation of the MIP begins with the linearization of 

constraints in ( , ) 0g yδ = , followed by the dualization of the inner minimization 

problem in (2.7).  This procedure converts the max-min problem into a nonlinear 

maximization problem which is linearized through additional steps.  Both of these 

linearization techniques are fully explained in Salmeron et al. (2004), but are 

briefly described in the following for continuity. 

b. Derivation 
The nonlinearities in the expression of ( , ) 0g yδ =  in model (2.7) are 

associated with admittance equations in the presence of interdiction variablesδ .  

These have the form: 
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 ( ) ( ) ( ) ( )
|

(1 )(1 )(1 ) (1 ) ( ),
s

Line Line Bus Bus Sub
l l o l d l s l o l d l

s l L

P B l Lδ δ δ δ θ θ
∈

 
= − − − − − ∀ ∈  

 
∏  (2.8) 

Note that in the interdiction model, the original admittance equation 

(DC.1) for every interdictable line l  is modified as (2.8) to account for potential 

interdiction (directly or indirectly) of the line, in which case the admittance 

equation should not be enforced.  This leads to nonlinearities in the form of 

multiple cross-products.   

Following Salmeron et al. (2004), (2.8) can be fully linearized.   For 

example, one can convert the nonlinear constraint 1 2( )(1 )(1 )a bP B θ θ δ δ= − − − into 

the following two linear inequalities:  

 1 2

1 2

( ) ( )
( ) ( )

a b

a b

P B M
P B M

θ θ δ δ
θ θ δ δ

− − ≤ +
− − ≥ − +

 (2.9) 

Here, M P Bθ= + , where θ  is an upper bound  on the maximum 

phase angle difference between buses a and b. (2.9) enforces ( )a bP B θ θ= −  

when all the related δ -variables are 0, and eliminates the constraint when any of 

these δ  variables is 1.  The resulting model is still called I-DCOPF in this thesis, 

and is specified in detail in Appendix A.1.   

We proceed by taking the dual of the inner minimization in (2.7), 

assuming constraints in ( , ) 0g yδ =  have been linearized as described above.  

This converts the max-min problem into a simple maximization.  The resulting 

model is called DI-DCOPF (“Dual of I-DCOPF,” although only the inner 

minimization is dualized).  The full formulation is given in Appendix A.2.  This 

model’s objective function consists of a linear function of continuous vector π , 

along with nonlinear costs involving cross-products of type δ π .  The new 

variables π  correspond to duals of each of the balance and bound constraints in 

I-DCOPF.  The terms associated with the δ π  products arise from the line and 

generator capacity constraints.   
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The resulting problem can be stated, in brief, as: 

 

(DI-DCOPF): max max  

                    s.t.   A ( )
( , )

vb b v

c y
v V

π

δ π
π

π
δ π

∈∆
+

≤
∈

 (2.10) 

Here, bπ and vb  are appropriately dimensioned coefficient vectors, 

π  is a vector of dual variables to constraints in I-DCOPF and v  is a vector where 

each component is the result of a cross product of a variable δ  and a variable 

π .  Variables in parentheses, here and elsewhere, are dual variables for the 

associated constraints; in this case the variables are y . 

To linearize a cross-product involving a δ − variable and a 

π −variable, we create an intermediate variable, e.g., jk j kv δ π= , with the 

property that, 0 0j jkvδ = ⇒ = , and 1j jk kvδ π= ⇒ = .  Since the sign of kπ  is 

known (assume 0kπ ≥  for demonstration purposes), we add the following linear 

constraints, represented as ( , )v V δ π∈ , to ensure the above relationships 

between , ,j kδ π  and jkv  hold: 

 (1 )

0
0,

jk k j

jk k

jk j k jk k k j

k k

jk

v

v

v v

v

π δ
π

δ π π π δ
π π

≤
 ≤
= ≡ ≥ − −
 ≤ ≤
 ≥

 (2.11) 

where kπ  is an appropriate upper bound on kπ . 

Let us drop the ( ,j k ) subindices for simplicity.  Then, the following 

scheme depicts the validity of the representation in (2.11): 
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[ ]

[ ]

0

0
0

0,         
0

         
0

( , )          (1 )
         0
         0

1
0,

0
0

v
v v

v
v
v

v
v V v

v
v

vv
v

v

π
δ π π

π ππδ π π
π

δ π π π δ
ππ π
π π

δ π
π π

π π

 ≤ 
 ≤  =  = ⇒ ⇒≥ −   ∈≤  ≤ ≤  ≤  ≥  ∈ ≡ ≥ − − → 

≤  ≤ ≤   ≤  =≥    = ⇒ ≥ ⇒  ∈ ≤ ≤ 
≥  

 (2.12) 

Remark: When 0π ≤ , the linearization is carried out as: 

 (1 )

0
0

jk k j

jk k

jk j k jk k k j

k k

jk

v

v

v v

v

π δ
π

δ π π π δ
π π

≥ −
 ≥
= ≡ ≤ + −
− ≤ ≤
 ≤

 (2.13) 

Finally, generation phase angles, power flows and load shedding 

are jointly denoted by the dual variable y . 

The dualization and linearization described above allow us to 

represent the interdiction problem as a MIP.  The resulting model is called LDI-

DCOPF (Linearization of DI-DCOPF; see Appendix A.3).   

 

C. INTERDICTION MODEL WITH SYSTEM RESTORATION 
  

1. System Restoration 
The model described in Section B is a static representation of power 

disruptions at a given point in time.  That model does not represent the 

consequences of the variability in repair times of damaged system components 

and the increased cost of load shedding resulting from repair-time delays.  

Unless the outage duration of each interdictable component is the same, the 

interdiction model presented in Section B cannot capture this effect.  For 
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example, Salmeron et al. (2003) show that if the interdictor’s decisions are driven 

by the goal of maximizing short-term power shedding (or its hourly cost), the 

resulting interdiction plan might be far from optimal had his or her goal been 

maximizing total energy shed (or its cost) until the system repair is completed.  

This issue is especially important when transformers and other difficult-to-replace 

equipment are subject to interdiction.  

Figure 2 depicts of the ideas above using two graphs. 

 

  

 

 

 

 

 

 

 

 

 

 

 
Figure 2.   Power disruption and energy disruption.  The model without restoration 

provides the optimal interdiction plan according to instantaneous picture of 
power shed (left).  The model with restoration over time accounts for 

energy disruption (right).  (From Salmeron et al. 2004.) 

 
2. Interdiction Model 
Salmeron et al. (2004) show how I-DCOPF (2.7) can be extended to 

handle the time associated with repairs.  This resulting model seeks to maximize 

total cost of energy shed, accounting for the fact that the system will be 

progressively restored over time.  The interdiction model with system restoration 

can be stated in brief as: 

time after  
the attack 

measure of 
effectiveness

Power Shed  
(MW) 

time after  
the attack

measure of 
effectiveness 

Power Shed  
(MW) 
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max min

s.t. ( , ) 0,
0,

t ty
t T

t t

t

t T

t T

D c y

g y
y

δ

δ
∈∆ ∈

∀ ∈

∀ ∈

=
≥

∑
 (2.14) 

This model uses interdiction constructs to couple instances of DCOPF, 

one for each system state that represents a stage or “time-period” of system 

repair:  Note the time subindex t , where T is the set of time periods based on 

repair times of all components in the system (see Appendix B.1).  That index is 

added to all of the inner decision variables to account for power flows in the grid 

and other decision variables that change over time.  tD  represents the duration 

of time period t , ty  is the same y  described in (2.6)  but for every time period t , 

and tg  is the resulting set of nonlinear equations in ( , tyδ ).  Note the time-

dependent constraints ( , ) 0t tg yδ =  not only ensure that some components are 

out of service right after interdiction, but also guarantee that components will be 

in service again after their posted repair time.  Thus, the constraints ( , ) 0t tg yδ =  

for different periods t  are coupled by the variables δ .  The full model derivation, 

described in detail in Salmeron et al. (2004), consists of the inner DCOPF model 

with system restoration (referred to as DCOPF-R) and the associated interdiction 

model (referred to as I-DCOPF-R); see Appendix B.1 for additional definitions 

and notation, and Appendix B.2 for the formulation.   

As in the case without system restoration, a solution to the interdiction 

model with system restoration can be obtained through a heuristic algorithm or 

through a MIP reformulation of the problem, as described in the following 

paragraphs.  

3.  Heuristic Approach 
a. Description 
The Heuristic for a model with system restoration over time 

(schematically depicted in Figure 3) follows the approach of that for a model 

without system restoration. 
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For a fixed interdiction vector δ  (i.e., ˆδ δ= ), the inner DCOPF-R 

subproblem provides the joint flow patterns for a number of system stages 

(restoration periods).  The subproblem decomposes into |T| sub-subproblems 

(because when δ̂  is fixed, the subproblem is no longer coupled by time periods).   

Each subproblem consists of an instance of DCOPF with some subset of system 

components being “out of service.”  Components that are out of service are 

determined “on the fly” as the algorithm solves a DCOPF model for every time 

period.  

Salmeron et al. (2004) redefine the concept of a component’s value 

in this dynamic model by factoring the time it would be out of service if 

interdicted.  

 

 

Based on present and previous flow 
patterns, assign an (energy-based) 
“Value” to each interdictable asset 

Solve the DC-OPF-R for the given 
Interdiction Plan:   

Solve |T| DC-OPF problems 

MP-R: Maximize the Value of the 
Assets to be Interdicted (excluding 

previously explored solutions) 

 
Figure 3.   Interdiction algorithm framework with restoration.  DCOPF-R decomposes 

into |T| sub-subproblems, each being an instance of DCOPF with some 
components “out of service.”  (From Salmeron et al. (2004).) 

4. The MIP Model 
a. Overview 
The structure of I-DCOPF-R allows us to convert it into a standard 

MIP through a process of dualization and linearization, just as in the case without 

system restoration. 
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b. Derivation 
As the new interdiction model is a variant of the model without 

system restoration, where the inner model has a similar structure to a power flow 

model (replicated over time), the development of the MIP formulation is 

performed as in Section B: First, admittance equations are linearized (Appendix 

B.2).  Next, the inner minimization problem is dualized (Appendix B.3).  Finally, 

cross-products in the objective function are linearized.  The resulting MIP, called 

LDI-DCOPF-R, is specified in Appendix B.4. 

 

D. BENDERS DECOMPOSITION  
Benders Decomposition is a well-known technique for solving MIPs 

(Benders 1962).  This technique has proven effective in solving large-scale 

optimization problems (e.g., facility location problems, two-stage stochastic 

optimization problems, etc.) including interdiction problems (Cormican 1995, 

Israeli and Wood 2002).  Benders decomposition is well suited when the 

assignment of a subset of variables, so-called “complicating variables,” yields 

easily solvable, disconnected and convex subproblems, such as the network-flow 

problems in Geoffrion and Graves (1974) and Brown and McBride (1984); these  

MIPs could probably not have been solved directly, i.e., using branch and bound.  

Based on the successful application of Benders decomposition to these similar 

problems, we implement it to solve LDI-DCOPF and LDI-DCOPF-R.  

Since the development of Benders decomposition is similar for both 

models, we focus on LDI-DCOPF.  The MIP formulation of this model embeds a 

bi-level structure that makes Benders decomposition suitable for solving the 

problem:  The first level is the interdictors’ level, which is modeled through binary 

decision variables.  The second level is an instance of DCOPF (actually, its dual), 

where some components of the original power grid have been removed through 

the first-level decision variables.  Because DCOPF is linear, it satisfies Benders’ 

theoretical requirement for convexity in the subproblem.    
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Our interdiction problem (LDI-DCOPF) may be stated, in brief, as: 

  

, ,
(P):  z* max  

        s.t.    ( )
0
0

v

v

v

c v c

A v A B b y

v

π

δ π

π

π

π δ
π

δ

= +

+ + =
≥
≥
∈∆

   (2.15) 

Note: This problem is referred to as LDI-DCOPF elsewhere in this thesis, 

but for simplicity in this section, we refer to it as problem (P).    

Note: non-positive 'sπ  and 'sv  have been converted to non-negative 'sπ  and 

'sv .  

In our Benders decomposition scheme, the interdiction vector δ  plays the 

role of the vector of “complicating variables.” 

Rewriting (P) as: 

 

,
(P):  max max  

s.t.    ( )
0
0

v

v

v

c v c

A v A b B y
v

π

δ π

π

π

π δ

π

∈∆
+

+ = −
≥
≥

 (2.16) 

the dual of the inner maximization above is: 

   

min  ( )

s.t. ( )
( )

y

v v

y b B

yA c v
yA cπ π

δ

π

−

≥
≥

   (2.17) 

where y  represents the vector of dual variables corresponding to the constraints 

of the primal problem in (2.16).  We assume the polytope 

{ },v vH y yA c yA cπ π= ≥ ≥  always contains a feasible solution, and its optimal 

solution is not unbounded.  We will show later that these assumptions are valid.    

Since the solution to (2.17) will lie at one of the extreme points of the 

feasible region H , we can rewrite (2.17) as: 



19

 min ( )          ii I
y b Bδ

∈
−  (2.18) 

where { }1, 2,...,I k=  indexes the set of extreme points of H  which is 

{ }1 2, ,..., Iy y y . 

Since min ( )  ( ),i ii I
y b B y b B i Iδ δ

∈
− ≤ − ∀ ∈ , we can rewrite (P) as:  

 ,
(P) :    max

           s.t. ( )     
z

i

z

z y b B i Iδ
∈∆ ∈

≤ − ∀ ∈
δ  (2.19) 

If we relax (2.19) by considering a subset of constraints i I∈ , indexing 

these constraints by 1,2,...,i k= , at a given iteration k  of our Benders 

Decomposition Algorithm (BDA), we have the following “master problem” (MP) to 

solve:  

 ,
ˆ(MP ) :    max

           s.t. ( )  1, 2,...,  

k k z

i

z z

z y b B i kδ
∈∆ ∈

=

≤ − =
δ  (2.20) 

( MPk ) is a relaxation of (P), and therefore its optimal objective function 

value, ˆkz , constitutes an upper bound on *z , the optimal objective value to (P). 

If the solution to ( MPk ), denoted ˆ ˆ( , )k kzδ , is not optimal to (P), then ˆ ˆ( , )k kzδ  

must violate some constraints in (2.19) not included in ( MPk ), i.e., constraints 

associated with extreme points 1, 2,{ ..., }k k Iy y y+ + .  (Remark:  Here, the subindex k 

refers to the iteration counter, and k̂δ  is the incumbent interdiction vector.) 

A natural way to check for one of these extreme points is to identify the 

vector yk+1 satisfying 1ky H+ ∈  that violates  1
ˆˆ ( )k k kz y b Bδ+≤ −  the most.  That 

identification problem can be stated as the following optimization “subproblem:” 

 
1

1

1

1

ˆ ˆ(SP ( )) :   min  ( ) 

                     s.t. ( )

( )

k
k k k ky

v v
k k

k k

y b B

y A c v

y A cπ π

δ δ

π

+
+

+

+

−

≥

≥

 (2.21) 

or, in its primal version:  
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,

1

ˆ(SP ( )) :  max  

ˆs.t.     ( )
0
0

v
k k v

v
k k

c v c

A v A b B y
v

π

π

π

δ π

π δ

π

+

+

+ = −
≥
≥

 (2.22) 

It is interesting to note that model (SP )k  in (2.22) is the same problem as 

problem (P) in (2.16) when the value of the decision variable δ  is fixed as k̂δ δ= .  

(SP )k  is therefore feasible, because problem (P) is feasible for any k̂δ δ= . 

(Recall that the inner problem in (2.16) is equivalent to a DCOPF model, which is 

always feasible, even if this feasibility entails penalties for unmet load.)  In 

addition, (SP )k  is bounded for any k̂δ δ= , because our DCOPF models have 

non-negative cost coefficients only.   

The solution to (SP )k , denoted ˆ ˆ( , )k kv π , along with k̂δ  from model (MP )k , 

form a combined solution ˆ ˆ ˆ( , , )k k kvδ π , which is feasible to our original (P).  Its 

objective function value is ˆ ˆv
k kc v cππ+ , which represents a lower bound on the 

optimal solution to problem (P).  

Solving the subproblem above yields a new extreme point 1ˆky + , whose 

associated cut 1ˆ ( )kz y b Bδ+≤ −  will be violated by the incumbent solution ˆˆ( , )k kz δ  

unless ˆˆ( , )k kz δ  is already optimal to (P).  The newly generated cut is added to 

(MP )k , becoming 1(MP )k+ , and the process is repeated.    

E. DECOMPOSITION ALGORITHM 
The mathematical derivation described in Section D, leads to the following 

step-by-step algorithm:  (The ( )ϑ ⋅   notation refers to the optimal objective 

function value of the problem in the argument.) 

Benders Decomposition Algorithm (BDA): 

Input:  Initial solution 0̂δ ∈∆ , matrices vA , Aπ , and B , vector b , and an 

optimality tolerance 0ε > . 
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Output: ε -optimal interdiction plan *δ , and associated power flows, 

generation phase angles, and load shedding (jointly denoted as *y ). 

1.  Set the iteration counter :  0k = , the lower bound LB := −∞ , and the 

upper bound UB := +∞ .   

2.  Solve ˆSP ( )k kδ  for 1ˆ ˆ ˆ( , , )k k kv yπ + .  Let ( )ˆLB : SP ( )k k kϑ δ= . 

3.  If LB LBk ≤ , then update the lower bound: LB : LBk= , and set 

* *
1

ˆ ˆ: , :k ky yδ δ += = . 

4.  If UB LB , STOPε− ≤ ; otherwise continue to step 5. 

5.  Add the newly generated cut: 1 1ˆ ( )k kz y b Bδ+ +≤ −  to ( MPk ). 

6.  Set : 1k k= + . 

7.  Solve (MP )k  for k̂δ , and ˆ (MP )k kz ϑ= .  

8.  Update the upper bound: ˆUB : kz= , and return to step 2.  

At each iteration, the solution 1ˆky +  to ˆSP( )kδ  gives us a new candidate 

solution 1
ˆ ˆ( , )k kyδ + .  Whenever the objective value for this candidate solution is 

greater than the previous lower bound, we replace the lower bound with this 

value. This provides a non-decreasing lower bound.  The solution to ( MPk ) is 

monotonically decreasing with each cut added, and therefore we automatically 

update the upper bound at each iteration.  This procedures is repeated until the 

bounds converge, or are sufficiently close, which in the worst case will occur after 

generating all possible extreme points of the subproblem, i.e., when k K= . 

To improve the BDA efficiency, we incorporate some enhancements in 

Chapter VI.  Figure 4 depicts the original BDA for ease of comparison with the 

flow chart for the enhanced BDA. 
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END
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Y
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N

UB : (MP )kϑ=

Benders Decomposition Algorithm (BDA)
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ˆLB: (SP ( ))k kϑ δ=

1 1
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ˆ ˆ ˆ ˆSolve (SP ( )) for ( , , )k k k k kv yδ π
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* *ˆ ˆ: , :k ky yδ δ= =

ˆSolve (MP ) for k kδ

0

LB:=
UB:=
:=0
ˆ , 0

k

δ ε

− ∞
∞

∈ ∆ >0

LB:=
UB:=
:=0
ˆ , 0

k

δ ε

− ∞
∞

∈ ∆ >

k :=k+1

END

ˆIs (SP ( ))<LB?k kϑ δ̂Is (SP ( ))<LB?k kϑ δ

Y

Y

N

N

UB : (MP )kϑ=UB : (MP )kϑ=

Benders Decomposition Algorithm (BDA)

Is UB-LB< ?εIs UB-LB< ?ε

ˆLB: (SP ( ))k kϑ δ= ˆLB: (SP ( ))k kϑ δ=

1 1

Generate new cut:
ˆ ( )k kz y b Bδ+ +≤ −1 1

Generate new cut:
ˆ ( )k kz y b Bδ+ +≤ −

ˆ ˆ ˆ ˆSolve (SP ( )) for ( , , )k k k k kv yδ πˆ ˆ ˆ ˆSolve (SP ( )) for ( , , )k k k k kv yδ π

1
ˆ ˆ ˆ ˆSolve (SP ( )) for ( , , )k k k k kv yδ π +1
ˆ ˆ ˆ ˆSolve (SP ( )) for ( , , )k k k k kv yδ π +

* *ˆ ˆ: , :k ky yδ δ= =* *ˆ ˆ: , :k ky yδ δ= =

ˆSolve (MP ) for k kδ̂Solve (MP ) for k kδ

 
Figure 4.   Benders Decomposition Algorithm flowchart. 
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Using the above template, we implement BDA using the full formulation of 

the interdiction problem, with and without system restoration, and test it on 

several benchmark cases.   

The decomposition for the model without system restoration is presented 

in Chapter IV, starting with a simple example to familiarize the reader with the 

process.  Chapter V expands upon this model to take into account system 

restoration, and presents computational results for that model for BDA.  

Before describing details of the decomposition process, we validate the 

inner power-flow model in the next chapter. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



24

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 



25

III. VALIDATING THE DC POWER FLOW MODEL  

This chapter validates the DC Power Flow model (DCPF) introduced in 

Chapter II, whose accuracy must be established to ensure the reasonableness of 

our interdiction model, I-DCOPF.  We do this using non-interdicted and 

interdicted instances of the IEEE One Area test case (IEEE Reliability Test Data 

1999-I).   

 

A. INTRODUCTION 
DCPF is a simplification of the full AC Power Flow model (ACPF) (e.g., 

Wood and Wollenberg 1996).  ACPF includes reactive power flows (DCPF 

disregards these), voltage magnitudes at the buses (DCPF assumes nominal 

voltages, i.e., 1.00 p.u.), and power losses on the line (DCPF assumes these to 

be zero), among others.     

Overbye et al. (2004) conduct an analysis to validate the use of DCPF in 

place of ACPF for market analyses; they find it adequate.  Wood and Wollenberg 

(1996) indicate that DCPF is adequate for security analysis of many systems.  

Although we believe that similar results should hold for interdiction problems, 

further analysis is desired because these problems have additional 

complications.  In particular, they involve removing critical components of grids 

and adjusting loads to minimize disruption costs.   

We validate DCPF through comparative analysis with the ACPF provided 

by software in the PowerWorld Simulator (PWS) (PowerWorld 2003).  PWS is 

standard software, widely used in the electric power industry.  Our assessment is 

carried out by comparing “optimal power flows” (OPFs) obtained using DCOPF 

with those identified by the ACPF.  It is important to note that ACPF does not, per 

se, attempt to minimize load shedding (or its cost) as DCOPF does.  However, 

for given loads and generation, it provides accurate active and reactive power 

flows on the lines and bus voltages (magnitude and phase), along with other 

system values.  We want to assess whether power flows and voltage angles, 
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obtained through DCOPF, are in fact close to those from ACPF when we use our 

optimized generation and load shedding as input data. 

We present the comparison between both approaches assuming no 

interdiction first, followed by other cases where critical components have been 

interdicted. 

 

B. DCOPF VS. ACPF IN THE ABSENCE OF INTERDICTION 
To enable comparison between the DCOPF and the PWS ACPF, we 

incorporate the IEEE RTS One Area case into PWS through its one-line diagram 

building interface.    First, we reconstruct the underlying power grid, as shown in 

Figure 5, using the following symbols to represent the different system 

components:     

   
 

 

Bus  Line Fraction of line 

capacity in use 

(if <80%) 

Fraction of line 

capacity in use 

(if ≥ 80%) 

Generator 

     

     

Load Transformer Flow direction Circuit  breaker 

(close) 

Circuit breaker 

(open) 

For simplicity (and given that generating units are not interdictable in our 

test cases), we aggregate all generating units at a bus as a single generator at 

that bus.  Next, we associate grid data with the power grid. The reconstructed 

one-line diagram includes data for bus nominal voltages, line resistances, 

reactances and thermal limits (line capacities), aggregated generating capacities, 

etc.  Then, we incorporate active power output for each generating unit and 

active load met at each bus from DCOPF as system data for PWS’s ACPF.  
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Finally, we run ACPF to compute actual power flows, phase angles and adjusted 

generation at the swing bus.   The resulting power flows on the lines are 

compared to those provided by DCOPF.      

The one-line diagram in Figure 5 represents a case without interdiction, 

which we call “scenario 0,” because it is equivalent to a case with zero 

interdiction resource.  Section C analyzes cases with interdiction.       

 
Figure 5.   IEEE RTS One Area case one-line diagram without interdiction.  This 

representation is constructed using the PWS software (PowerWorld 2003).  
It depicts flow directions, fractions of line capacities used, generation 

outputs and loads.   

A side-by-side comparison of the resulting flows is shown in Table 1.  We 

analyze absolute deviations for all lines and transformers.  The column headed 



28

“Line” displays the line name.  The “From Bus” and “To Bus” columns indicate 

the two buses connected by the line.  The “Transformer” column indicates if we 

are using a line to represent a transformer.  The “PWS flow” and “PWS loss” 

columns show active power flows and losses, respectively, obtained with PWS, 

while the “DCOPF flow” column displays active power flows obtained with 

DCOPF.  The last column shows the percentage absolute deviation between the 

PWS and DCOPF flows.  The results show a maximum deviation of 5.29%.  

Mean deviation is 1.18% with a percentage standard deviation of 0.012 %.   

The example above indicates that DCOPF yields a good approximation for 

the true AC power flow in this RTS case, in the absence of interdiction.  In the 

following section, we analyze what happens when critical elements of the grid are 

removed through interdiction. 

 

Line 
From 
Bus To Bus Transformer

PWS 
flow 

(MW) 

PWS 
loss 

(MW) 
DCOPF 

flow(MW) 
Abs. 

deviation 
A1 101 102 No 16.70 0.01 17.00 1.80% 
A2 101 103 No -26.50 0.42 -26.73 0.87% 
A3 101 105 No 54.00 0.68 53.73 0.50% 
A4 102 104 No 28.60 0.29 28.42 0.63% 
A5 102 106 No 44.00 1.01 43.58 0.95% 
A6 103 109 No 40.10 0.53 39.85 0.62% 
A7 103 124 Yes -244.30 1.21 -246.58 0.93% 
A8 104 109 No -45.30 0.60 -45.58 0.62% 
A9 105 110 No -17.20 0.07 -17.27 0.41% 
A10 106 110 No -96.80 0.28 -92.42 4.52% 
A11 107 108 No -123.50 2.67 -125.00 1.21% 
A12-1 108 109 No -151.90 11.66 -159.94 5.29% 
A13-2 108 110 No -130.50 8.45 -136.06 4.26% 
A14 109 111 Yes -153.80 0.48 -154.38 0.38% 
A15 109 112 Yes -185.20 0.69 -186.28 0.58% 
A16 110 111 Yes -203.10 0.84 -204.43 0.65% 
A17 110 112 Yes -234.20 1.11 -236.33 0.91% 
A18 111 113 No -223.90 3.11 -226.01 0.94% 
A19 111 114 No -132.20 0.89 -132.81 0.46% 
A20 112 113 No -170.00 1.78 -171.01 0.59% 
A21 112 123 No -245.20 7.68 -251.60 2.61% 
A22 113 123 No -183.20 3.86 -186.01 1.53% 
A23 114 116 No -322.20 5.36 -326.81 1.43% 
A24 115 116 No 45.60 0.04 45.90 0.66% 
A25-1 115 121 No -225.00 3.14 -227.24 1.00% 
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Line 
From 
Bus To Bus Transformer

PWS 
flow 

(MW) 

PWS 
loss 

(MW) 
DCOPF 

flow(MW) 
Abs. 

deviation 
A26 115 124 No 248.10 4.33 246.50 0.64% 
A27 116 117 No -310.20 2.96 -312.52 0.75% 
A28 116 119 No 87.40 0.23 86.81 0.68% 
A29 117 118 No -173.20 0.61 -172.69 0.29% 
A30 117 122 No -137.90 2.78 -139.82 1.39% 
A31-1 118 121 No -52.30 0.08 -52.85 1.05% 
A32-1 119 120 No -47.20 0.11 -47.19 0.02% 
A33-1 120 123 No -111.20 0.38 -111.19 0.01% 
A34 121 122 No -158.70 2.35 -160.18 0.93% 

Table 1.   ACPF versus DCOPF: IEEE RTS One Area case (no interdiction).  For 
each line and transformer, we show the PWS’s ACPF power flow and 
losses.  We compare power flow absolute deviations from those of our 
DCOPF model.  The maximum percentage deviation is 5.29% for the 

transmission line connecting buses 108 and 109.  The average deviation 
is 1.18%.  

 

C. DCOPF VS. ACPF AFTER INTERDICTION 
In order to further validate DCOPF, we also compare flows after 

interdiction.  The main effect of interdiction is, normally, load shedding.  We 

conduct the analysis for a number of possible scenarios; recall that “scenario” 

corresponds to the amount of interdiction resource available.  The flow-

comparison procedure is repeated for the RTS One Area case for scenarios 

 = 2, 4, and 6M , in I-DCOPF shown in Appendix A.1. 

Although overall results are presented for all cases, we will illustrate the 

one-line diagram and comparison table for scenario = 6M :  We open the 

interdicted lines (found for the optimal interdiction plan which corresponds to this 

scenario) by opening the circuit breakers, at the ends of the lines, which are 

represented by green open squares in Figure 6.  Then, we run PWS to realize 

that the flow in a number of lines greatly exceeds the lines’ capacities (red circles 

in Figure 6).  While a line can exceed its nominal capacity temporarily, the long-

term emergency rating on a line is typically 20% of its nominal rated capacity, 

and a line can handle this excess flow only for 24 hours (IEEE 1999-I). 
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Figure 6.   Effects of interdiction to IEEE RTS One Area case.  Some lines become 
overloaded, which is unacceptable but for a few hours and up to certain 
limits.  Note:  All loads are kept at their original values to illustrate the 

infeasibility of the problem after interdiction. 

Having determined that ACPF shows the situation to be infeasible after 

interdiction, we reduce the loads in ACPF to match those provided by DCOPF 

and run PWS.  We then carry out a comparison of the flows across the non-

interdicted elements of the grid with those provided by DCOPF; see Table 2.  

 Note that, again, all the DCOPF flows are relatively close to those 

produced by ACPF.  The average absolute deviation is 3.67% with a standard 

deviation of 0.0075%.   
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Line From Bus To Bus Status Transformer
PWS 

flow(MW)
PWS 

loss(MW)
DCOPF 

flow(MW) 
Abs. 

deviation
A1 101 102 Closed No -3.60 0.41 -3.23 10.28% 
A2 101 103 Closed No 68.30 0.02 66.01 3.35% 
A3 101 105 Closed No 136.20 1.18 129.22 5.12% 
A4 102 104 Closed No 104.80 1.93 99.95 4.63% 
A5 102 106 Closed No 92.60 9.82 88.82 4.08% 
A6 103 109 Closed No 76.70 0.00 76.52 0.23% 
A7 103 124 Closed Yes -10.40 0.00 -10.51 1.05% 
A8 104 109 Closed No 95.70 0.00 99.95 4.25% 
A9 105 110 Closed No 124.90 0.00 129.22 3.34% 
A10 106 110 Closed No 82.80 0.00 88.82 6.78% 
A11 107 108 Open   No 0.00 5.00 0 0.00% 
A12-1 108 109 Closed No -33.70 0.00 -35.42 4.86% 
A13-2 108 110 Closed No -36.80 0.00 -39.58 7.02% 
A14 109 111 Closed Yes -27.80 0.00 -29.6 6.08% 
A15 109 112 Closed Yes -3.90 0.00 -4.35 10.34% 
A16 110 111 Closed Yes -19.80 0.00 -20.89 5.22% 
A17 110 112 Closed Yes 3.90 0.00 4.35 10.34% 
A18 111 113 Open   No 0.00 0.00 0 0.00% 
A19 111 114 Closed No -56.60 0.00 -50.49 10.80% 
A20 112 113 Open   No 0.00 0.00 0 0.00% 
A21 112 123 Open   No 0.00 0.00 0 0.00% 
A22 113 123 Closed No -258.70 7.81 -265 2.38% 
A23 114 116 Closed No -50.40 1.89 -50.49 0.18% 
A24 115 116 Closed No 204.90 0.00 204.49 0.20% 
A25-1 115 121 Open   No 0.00 0.00 0 0.00% 
A26 115 124 Closed No 13.00 0.00 10.51 19.15% 
A27 116 117 Open   No 0.00 7.59 0 0.00% 
A28 116 119 Closed No 313.50 1.29 309 1.46% 
A29 117 118 Closed No 122.20 2.29 123.55 1.09% 
A30 117 122 Closed No -122.20 0.00 -123.55 1.09% 
A31-1 118 121 Closed No -104.50 0.54 -104.73 0.22% 
A32-1 119 120 Closed No 64.30 0.01 64 0.47% 
A33-1 120 123 Open   No 0.00 0.08 0 0.00% 
A34 121 122 Closed No -174.70 0.00 -176.45 0.99% 

Table 2.   PWS’s ACPF  versus DCOPF:  IEEE RTS One Area case, scenario M=6.  
All columns are as explained in Table 1 with the exception of the “Status” 

column which shows which lines are open.  Note that the largest 
percentage deviations occur across lines whose flow is small.    

Results for scenarios 2 and 4, summarized in table 3, are similar.  

Differences in line power flows are negligible either because of their small 

relative (percentage) values, or because of the low power flowing across lines. 
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Statistics for "Absolute Deviation" 

Scenario 
Max. (MW) Max. (%) Average (MW)  Average (%) Std. dev. 

(MW) 
Std. dev. 

(%) 
0  8.04   5.29  1.70 1.18 1.96 1.22 
2  2.37 13.04  0.44 0.92 0.50 2.28 
4 10.37    4.84  1.24 0.83 2.10 0.96 
6 6.98 19.15  1.95 3.68 2.21 0.96 

    
Table 3.   Overall comparison of power flows provided by DCOPF and PWS.  The 

average deviation across the four scenarios is less than 5%.   

Overall, the differences found are probably acceptable in the context of 

solving interdiction problems.  This concurs with the generally accepted notion 

that DCPF renders acceptable results in the context of contingency analysis 

(e.g., Wood and Wollenberg 1996).  We assume that the differences will remain 

small in all our analyses. 
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IV. BENDERS DECOMPOSITION FOR THE PROBLEM 
WITHOUT SYSTEM RESTORATION 

This chapter describes Benders decomposition applied to the MIP 

interdiction model LDI-DCOPF without system restoration presented in Chapter 

II, Section B.  The chapter begins with the application of the BDA described in 

Chapter II, Section D to a three-bus test case with interdictable elements limited 

to lines.  The general case is then addressed. 

 

A. SMALL TEST CASE PROBLEM DERIVATION 
1. Description 
This section illustrates Benders decomposition applied to a small, three-

bus test grid.  This is intended to familiarize the reader with the mathematical 

derivation for the general case that will be described later in this chapter.  Even 

for this small example, the mathematical derivation is somewhat tedious.  In 

order to simplify the exposition, we restrict the interdictable components to lines 

only.  Figure 7 gives the one-line diagram for the example grid. 

 

1 2
LP 23

LP

1 3
LP

1
GP

3L

B u s 1  B u s 3  

B us 2

2
GP

1θ

2θ

3θ

 
Figure 7.   Three-bus (and three-line) example.  Buses 1 and 2 are connected to one 

generator each.  Bus 3 is connected to a load of 3L  MW.  All the other 
symbols in the figure represent decision variables:  1 2,G GP P  are generator 

outputs; 1 2 3, ,θ θ θ  are phase angles at the buses; 12 13 23, ,L L LP P P  are power 
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flows on the lines. 

2. Mathematical Formulation 
In this example, generating costs are disregarded, so we seek to minimize 

the load shed at bus 3.  The problem development starting at the DCOPF level 

follows. 

Decision variables(units): 

 
3

, Generator  output at bus , for  = 1, 2 (MW)

,           Power flow on line ( , ) , for ( , ) = (1,2), (1,3), (2,3) (MW)

,            Load shed at bus 3 (MW)
,             Phase angle at bus

G
i

L
ij

i

P i i

P i j i j

S
θ  , for = 1, 2, 3 (radians)i i

 

Problem data (units):  
          

3

2 2

,         Demand at bus 3 (MW)
, , Line resistanceand reactance, respectively, for ( , ) = (1,2), (1,3), (2,3) ( )

,        Series susceptance of line ( , ),  =  , 

for ( , ) = (1,2), (

ij ij

ij
ij ij

ij ij

L
r x i j

x
B i j B

r x

i j

Ω

+

1,3), (2,3)    (1/ )
, Maximum generating capacity at bus  , for = 1,2 (MW)

,       Line ( , ) transmission capacity, for ( , ) = (1,2), (1,3), (2,3) (MW)

G
i
L

ij

P i i

P i j i j

Ω

 
 (Recall that all our units are converted to p.u. values as described in 

Chapter II, Section A). 

In this small DCOPF example, we seek to minimize load shed at bus 3, 

that is:  

3min  S  

Subject to: 

Power balance constraints:   

1 12 13

2 12 23

13 23 3 3

0

0

G L L

G L L

L L

P P P

P P P

P P S L

− − =

+ + =

+ + =
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Admittance constraints:   

12 12 1 12 2

13 13 1 13 3

23 23 2 23 3

0

 0

0

L

L

L

P B B

P B B

P B B

θ θ
θ θ
θ θ

− + =

− + =

− + =

 

Power Generation bound constraints: 

1 1

2 2

G G

G G

P P

P P

≤

≤
 

Line capacity constraints: 

12 12

12 12

13 13

13 13

23 23

23 23

    

L L

L L

L L

L L

L L

L L

P P

P P

P P

P P

P P

P P

≤

≥ −

≤

≥ −

≤

≥ −

 

Upper bound on load-shedding constraint: 

3 3   S L≤  

Variable sign constraints:  

3

1 2

12 13 23

1 2 3

0

,  0

, ,  unrestricted
, ,      unrestricted

G G

L L L

S

P P

P P P
θ θ θ

≥

≥
 

We can now extend this formulation to account for potential interdiction by 

introducing three variables to represent interdiction of the lines.  Note that the 

interdiction variables must turn off or turn on the power flow on the lines (i.e., 

open or close the lines, respectively).  When 1L
ijδ = , the line ( ,i j ) is interdicted, 

and when 0L
ijδ = , the line ( ,i j ) is left intact.    
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Letting L
ij ij ij ijM P B θ= + , where ijθ  bounds the maximum difference 

between phase angles at buses i  and j , the interdiction problem for given 

interdictions variables 12 13, ,L Lδ δ  and 23
Lδ , can be written as follows: (Note: The 

variables π  represent the dual variables of the balance and bound constraints.)  

3, , ,

L S
1 12 13 1

L
2 12 23 2

S
13 23 3 3 3

(I-DCOPF) :max min   

s.t.:
0  ( )

0  ( )

   ( )

G LP P S

G L

G L S

L L

S

P P P

P P P

P P S L

θδ

π
π
π

∈∆

− − =

+ + =

+ + =
-

-

-

12 12 1 12 2 12 12 12

12 12 1 12 2 12 12 12

13 13 1 13 3 13 13 13

13 13 1 13 3 13 13 13

23 23 2 23 3 23 23 23

23 23 2 23 3 23 23 23

 ( )

( )

( )

( )

( )

( )

L L L

L L L

L L L

L L L

L L L

L L L

P B B M

P B B M

P B B M

P B B M

P B B M

P B B M

θ θ δ π

θ θ δ π

θ θ δ π

θ θ δ π

θ θ δ π

θ θ δ π

+

+

+

− + ≤

− + ≥ −

− + ≤

− + ≥ −

− + ≤

− + ≥ −

 

1 1 1

2 2 2

( )

( )

G G G

G G G

P P

P P

π
π

≤

≤
 

-

-

-

L
12 12 12 12

12 12 12 12

13 13 13 13

13 13 13 13

23 23 23 23

23 23 23 23

(1- ) ( ) 

(1- ) ( )

(1 ) ( )

(1 ) ( )     

(1 ) ( )

(1 ) ( )   

L L LCap

L L L LCap

L L L LCap

L L L LCap

L L L LCap

L L L LCap

P P

P P

P P

P P

P P

P P

δ π

δ π

δ π

δ π

δ π

δ π

+

+

+

≤

≥ −

≤ −

≥ − −

≤ −

≥ − −
Load

3 3 3   ( )S L π≤  

3

1 2

12 13 23

1 2 3

0

, 0

, ,  unrestricted
, , unrestricted

G G

L L L

S

P P

P P P
θ θ θ

≥

≥
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where: 

{ }{ }12 13 23 12 13 23 12 13 23, , 1, , , 0,1L L L L L L L L Lδ δ δ δ δ δ δ δ δ∆ = + + ≤ ∈  

because we assume one unit of interdiction resource is available. 

Notice that every admittance equation has been split into two inequalities.  

This is done in accordance with equation (2.9) (see Chapter II, Section B), to 

linearize the multivariable product that results from introducing the interdiction 

variables into the model.  When 0L
ijδ = , every pair of inequalities enforces 

0L
ij ij i ij jP B Bθ θ− + = .  When 1L

ijδ =  (line ( ,i j ) is interdicted), these constraints do 

not bind because ijM  is large.  However, in this case L
ijP  will still be forced to be 

zero by constraints  (1 )L L L
ij ij ijP P δ≤ −  and (1 )L L L

ij ij ijP P δ≥ − − . 

The optimal interdiction problem consists of maximizing, by choice of 

interdiction variables L
ijδ , the amount of power that must be shed in the system.  

As shown in Chapter II, Section B, this max-min problem can be easily 

reformulated as a max-max problem by taking the dual of the inner problem, I-

DCOPF, listed above.  This yields:   

- -

- -

-

3 3 12 12 12 12 13 13 13 13

23 23 23 23 1 1 2 2 12 12 12 12

13 13 13 13 23 23 23 23

(DI-DCOPF): max max ( ) ( )

( ) ( ) ( ) (1 )( )

(1 )( ) (1 )(

S L L L L L L

L L L G G G G L L LCap LCap

L L LCap LCap L L LCap LCap

L M M

M P P P

P P

δ π
π δ π π δ π π

δ π π π π δ π π

δ π π δ π π

+ +

+ +

+ − +

+ − + −

+ − + + + − −

+ − − + − − Load
3 3) L ( )π+
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The resulting model, DI-DCOPF, contains a number of cross-products of 

the form δπ  in the objective function, which we can linearize as described in 

Chapter II, Section B.  This linearization yields the following MIP: 
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where: 
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The linearization of constraints ( , )v V δ π∈  is specified in detail in Appendix 

C, but as an example, consider the constraint L L L
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The procedure delineated above adheres to the formulation developed by 

Salmeron et al. (2004).  This formulation allows us to use any general-purpose 

MIP solution technique to solve LDI-DCOPF, and therefore, I-DCOPF.  The 

remainder of this section is devoted to demonstrating the application of Benders 

decomposition to LDI-DCOPF in our three-bus network, following the steps in 

Chapter II, Section D. 

We first construct the subproblem for a given vector of complicating 

variables k̂δ  at iteration k: 
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 ˆ( , )kv V δ π∈  

Constraints ˆ( , )kv V δ π∈  are linearized as in Appendix C with δ  replaced 

by k̂δ . 

The master problem at iteration k becomes:   
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 In the above formulation, the subscript k for any variable (e.g., 121, '
L

kγ
+

) refers 

to the optimal value of the incumbent variable provided by the solution to 

' '
ˆ(SP ( ))k kδ  at iteration ' | 'k k k≤ . 

Having developed our master problem and subproblem, we implement the 

BDA in Chapter II, Section D, and test the three-bus case for convergence.  We 

use the following values for the test case: 
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The algorithm converges successfully to the same optimal interdiction 

plan: 12 13 23
ˆ ˆ ˆ( 0, 1, 0)δ δ δ= = =  as that of the MIP formulation in LDI-DCOPF.  The 

following graph illustrates how upper and lower bounds converge after four 

iterations of the algorithm. 
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Figure 8.   Convergence of Benders decomposition for the three-bus case.  The 
optimal interdiction plan, which consists of interdicting line (1,3) in Figure 

7, sheds a load of one p.u.. 

This section has illustrated Benders decomposition using a small example.  

This foundation should help the reader understand the generalization of the 

procedure to any power grid in which buses, generators, substations and lines 

can be interdicted.  The extension to incorporate the effect of system restoration 

over time will be addressed in Chapter V. 
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B. BENDERS DECOMPOSITION: GENERAL INTERDICTION PROBLEM 
WITHOUT SYSTEM RESTORATION 
The general interdiction problem should be scalable to let us analyze an 

arbitrary power system.  We will not discuss the derivation of the BDA for I-

DCOPF as done in the previous section, however.  Appendix A provides a 

complete derivation of the Benders decomposition procedure for I-DCOPF.  The 

derivation is broken down into these steps:   

A.1 shows the interdiction model, I-DCOPF. 

A.2 shows the dual of the interdiction model, DI-DCOPF. 

A.3. shows the dual of the interdiction model after linearization of δπ  

products, LDI-DCOPF. 

A.4 shows the BDA master problem.   

The subproblem at iteration k  is LDI-DCOPF with all δ ’s replaced by 

fixed k̂δ ’s (given by the user at iteration k = 0 and by (MPk) at iteration k > 0), 

where ˆ ,k kδ ∈∆ ∀ .  

Once the subproblem is solved for a given interdiction plan, we retrieve 

the dual values for each subproblem constraint and use them as coefficients for 

the master problem.  The master problem at iteration k is displayed in Appendix 

A.4.   

 

C. RESULTS 
The BDA is implemented in GAMS (GAMS 2003) and solved with CPLEX 

version 8.1 (GAMS-CPLEX 2003) as the underlying solver, and run on a Pentium 

4 laptop computer at 3.0 GHz and with 512 Mbytes RAM.  We turn off the 

“presolve” option in CPLEX because it leads us to erroneous duals from the 

subproblem.   

Figure 9 shows the sequence of lower and upper bounds generated by 

BDA for the IEEE RTS One Area case (1999-I), with interdiction resource M = 6  
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and the assumptions made in Salmeron et al. (2003).  The optimal interdiction 

plan for this case matches the solution obtained by solving the MIP LDI-DCOPF 

directly.  
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Figure 9.   IEEE RTS One Area case without system restoration: Convergence.  Note 

the significant improvement of the lower and upper bound at early 
iterations.  As the number of iterations increases the effectiveness of the 

cuts (given by the upper bound from the master problem) decreases.  
Initial upper bound is 140,000, but the vertical axis on the graph is 

truncated for display purposes. 

The results for this problem show that, by iteration 375, the lower bound is 

already within 7.6% of the optimal solution, while the upper bound is within 12%. 

(For this comparison we use the optimal solution obtained with LDI-DCOPF.)  We 

achieve these bounds in approximately 10 minutes; however, it takes 1 hour and 

20 minutes to reach the optimal solution which is 14,048 $/hr.  This result shows 

Benders decomposition may obtain sensible bounds in a relatively small number 

of iterations, and an acceptable time.  However, reaching optimality takes 

considerable effort.  This difficulty will be addressed in Chapter VI.   
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Figure 10 shows how the time required to solve the master problem and 

subproblem change as the algorithm proceeds.  This figure reveals the 

increasing difficulty of the master problem as more cuts are added with 

subsequent iterations.  While the time to solve each succeeding master problem 

of the decomposition process significantly increases, the relative efficiency of the 

new cuts are less significant as shown by Figure 9.   
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Figure 10.   IEEE RTS One Area case without system restoration: Time versus 
Iteration .  The time to solve each master problem in the algorithm 

significantly increases with subsequent iteration.  The maximum time to 
solve any subproblem is less than 0.2 seconds while master-problem 

solution times are as high as 18 seconds.   
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V. BENDERS DECOMPOSITION FOR THE PROBLEM WITH 
SYSTEM RESTORATION  

This chapter extends Benders decomposition to the interdiction problem 

with system restoration.  We describe the models involved in the new 

decomposition, and show preliminary results.  (Chapter VI will show improved 

results through some refinements in BDA.) 

 

A. FORMULATION 
This section illustrates the application of Benders decomposition to the 

interdiction problem with system restoration, I-DCOPF-R.  The derivation of I-

DCOPF-R is included in Appendices B.1 and B.2.  We will not discuss the 

complete derivation of the Benders decomposition procedure for the system 

restoration case, which is included in Appendix B.  Specifically:  

B.1 shows time-period constructs. 

B.2 shows the interdiction model I-DCOPF-R. 

B.3 shows DI-DCOPF-R, which is the interdiction model with the inner 

power flow model replaced by its dual. 

B.4 shows DI-DCOPF-R after linearization of cross-products.  We denote 

this model LDI-DCOPF-R. 

Finally, B.5 shows the BDA master problem.   

We start the description after the linearization of the δπ  cross-products.  

That is, assuming we have LDI-DCOPF-R as the MIP to which we will apply 

Benders decomposition. 

Again, the subproblem at iteration k  is the LDI-DCOPF-R with all δ ’s 

replaced by fixed k̂δ ’s (given by the user at iteration 0k =  and by the (MPk) at 

iteration 0k > ), where ˆ ,k kδ ∈∆ ∀ , and the dual values for each subproblem 

constraint are used as coefficients for the master problem.  



46

The BDA master problem is shown in Appendix B.5.  At each iteration k, a 

new cut is added to the master problem.  This provides a (monotonically 

decreasing) upper bound ˆkz , and an interdiction plan that will be used in the 

subproblem ˆ(SP ( ))k kδ  to calculate a lower bound.    

 

B. RESULTS 
 Figure 11 shows the convergence of BDA for the IEEE RTS One Area 

case with system restoration. Note the significant improvement in the bounds 

during the early iterations of the decomposition process when compared to the 

last iterations.   

 
Figure 11.   IEEE RTS One Area case with system restoration: Convergence.  The 

upper and lower bounds of this problem converge quickly in early 
iterations.  Convergence is reached in 120 iterations and takes 33 

seconds.  Also note that the optimal objective value (circled in graph) is 
reached in early iterations, but it takes the algorithm a relatively long time 

to prove it has obtained an optimal solution. 
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Although the case with system restoration is intuitively more difficult to 

solve than the case without system restoration (because of the number of time 

periods, and the related number of additional variables), the former actually 

solves faster in the IEEE RTS One Area case.  This could be attributed to the 

fact that, for the problem with restoration, some candidate components, such as 

those with the largest repair times, are more obviously attractive than others to 

become part of the optimal solution.  This might allow the BDA to target solutions 

that include those components at early stages, which in turn provides accurate 

bounds sooner than in the case without system restoration (in which the 

attractiveness of all components is more balanced).  Our results support this 

conjecture.  While it takes over 700 iterations and 1 hour and 20 minutes to solve 

the IEEE RTS One Area case without system restoration problem, the problem 

with system restoration solves in only 120 iterations and 33 seconds.  We find 

similar behavior in the RTS Two Area case. 

Figure 12 shows that master problem time by iteration remains almost the 

same for the IEEE RTS One Area case with system restoration.  We will show 

that this is not the case when we apply the BDA to the IEEE RTS Two Area case. 
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Figure 12.   IEEE RTS One Area case with system restoration: Cumulative time.  Time 

is shown for the subproblem and for the master problem separately.  Note 
that the time to solve the master problem appears to remain stable by 

iteration, despite the increasing number of constraints.  
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To illustrate the potential difficulty in solving the master problem as the 

number of iterations increases, we analyze the results for interdiction scenario 

12M =  for the IEEE RTS Two Area case.  Figure 13 shows the results for a 

2,000-iteration run of this problem. 

BOUNDS VERSUS ITERATION

0.00E+00
1.00E+07
2.00E+07
3.00E+07
4.00E+07
5.00E+07
6.00E+07

0 500 1000 1500 2000
Iteration

Bo
un

d UB LB

CUMULATIVE TIME PER ITERATION

0
50000

100000
150000
200000
250000
300000

0 500 1000 1500 2000
Iteration

Ti
m

e 
(s

ec
)  SP Time MP Time

GAP VERSUS TIME

0
2
4
6
8

10
12

0 20 40 60 80

Time (hrs)

G
A

P
 (x

10
0%

)

 

GAP VERSUS TIME

0
1

2
3
4

5
6

0 0.1 0.2 0.3 0.4 0.5

Time (hrs)

G
AP

 (x
10

0%
) 

 

Figure 13.   IEEE RTS Two Area case with system restoration:  Solution trajectory.  In 
2,000 iterations, taking 75 hours, a gap of 16% is achieved.  The top left 

graph shows that a near-optimal solution is found at the early stages, but it 
takes many iterations to prove it.  The top right graph shows the 
cumulative solution time, by iteration, for the master problem and 

subproblem. Note how the master-problem solution times increase 
substantially as the algorithm proceeds.  The bottom left plot shows how 
the optimality gap changes with time.  Note the large decrease in the gap 
in the early iterations.  The bottom right picture is an expanded view of the 
first 30 minutes of the “GAP VERSUS TIME” plot.  The gap is reduced to 
50% in the first 30 minutes.  The problem’s lower bound is, in actuality, 

only 2% from the optimal solution value at this time, although the algorithm 
cannot prove this within the first 75 hours. 

Clearly, BDA is impractically slow for this problem.  This suggests the 

need for strategies to accelerate BDA’s convergence.  The next chapter 

describes and demonstrates techniques we have developed to do this.  
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VI. ALGORITHM REFINEMENTS AND RESULTS 

As seen in Chapter V, long master-problem solution times are a major 

factor in the overall efficiency (or inefficiency) of BDA.  This prompts us to focus 

on the master problem and reduce its solution times to accelerate overall 

convergence of BDA. 

 

A. INTRODUCTION 
This chapter explores the following techniques to reduced master-problem 

solution times: 

1. Solving a relaxed master problem in some iterations rather than the 

standard master problem,  

2. Dropping certain Benders cuts as iterations proceed, and 

3. Not solving the master problem to optimality in all iterations (Sub-

optimal integer solutions).  

The modified BDA which includes the above strategies 1, 2 and 3 is 

shown in Figure 14.   

The various techniques and associated results are discussed in Sections 

B through D below.  A combined strategy is reviewed in Section E. 
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Figure 14.   Benders Decomposition Algorithm (with refinements) flowchart.  This 

diagram depicts the steps of our enhanced BDA, incorporating the 
proposed strategies to speed up convergence.  RMP refers to the linear 

relaxation of the BDA master problem.  The flowchart includes the 
refinement techniques that are explained in Sections B through D of this 

Chapter.  
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B.  RELAXING THE MASTER PROBLEM 
The first technique we try solves a relaxed master problem (RMPk) in most 

iterations k, and only solves the true (mixed-integer) master problem periodically.  

A relaxed master problem should be much faster to solve, and its use may lead 

to an overall reduction in solution time.  We refer to this technique as the 

“relaxed-MP strategy.”   

RMPk is formed by treating any discrete variables as continuous (while the 

rest of the problem remains the same).  The optimal value of a relaxed 

maximizing  model yields an upper bound on the optimal value of the full model.  

However, the solution to the relaxed master problem is not a feasible interdiction 

plan (unless it happens to be an integer solution).  For this reason, the relaxed 

master problem solution cannot be used in the subproblem to obtain a valid lower 

bound; however, the Benders cut generated by the subproblem at that solution is 

valid.  In order to improve the lower bound, we must solve the actual master 

problem, and we do this at a specified interval (for example, every ten iterations).  

Unless specified otherwise, in the test cases that follow, our relaxed-MP strategy 

consists of solving the true master problem once every ten iterations and 

otherwise solving RMPk.  

To show the benefits of using the relaxed-MP strategy, we first consider 

BDA applied to the IEEE RTS One Area case without system restoration.  The 

original algorithm’s solution trajectory for this problem is presented graphically in 

Chapter IV,  Figure 9.  Recall that it originally takes about 1 hour and 20 minutes 

to solve this case.  The relaxed-MP strategy solves the problem in only 26 

minutes, a 67% improvement over the original algorithm.  Figure 15 shows how 

the problem converges. 

The reduction in overall solution time cannot be attributed solely to faster 

solutions of the master problem, however, since the modified algorithm solves in 

only 281 iterations compared to the original 768.  It appears that cuts generated 

from non-integer solutions may be more effective than standard cuts generated 
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at integer solutions.  We are unsure why this occurs in this case, and in fact, we 

will see later that this behavior cannot be generalized to all our cases.   
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Figure 15.   Relaxed master problem strategy:  Convergence (I).  IEEE RTS One Area 

case without system restoration.  We solve the full master problem every 
10th iteration and otherwise solve that problem’s continuous relaxation.  
This problem solves 67% faster using this technique compared to the 
original BDA which solves the (mixed-integer) master problem in each 

iteration.   

Figure 16 shows the solution times by iteration, for the master problem 

and for the subproblem.   
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Figure 16.   Relaxed master problem strategy:  Time versus iteration (I).  IEEE RTS 

One Area case without system restoration.  We depict computational 
times when using the relaxed-MP strategy.  The top figure shows the 

subproblem solution time by iteration (which averages under 0.15 
seconds).  The full master problem is solved every 10th  iteration (these 
are easily distinguished in the bottom plot due to their longer solution 
times).  The average time required to complete each master problem 

iteration is reduced to less than one second in contrast to the original BDA 
whose iteration average is  9.5 seconds.     

Figure 16 shows that subproblem solution times are approximately the 

same as in the original BDA (see Chapter IV, Figure 10), whereas the master 

problem solution times have been reduced considerably.  The apparently 

exponential increase in master-problem solution times (exhibited by the original 

BDA as iterations progressed) does not appear now: The new master-problem 

solution times appear to increase only linearly by iteration.  The average time per 

iteration using the relaxed-MP strategy is 0.15 seconds, much less than the 

average of 9.5 seconds per iteration for the original BDA. 

The results above are for the problem without system restoration.  Figure 

17 depicts the solution trajectory for the IEEE RTS One Area case with system 

restoration, using the relaxed-MP strategy.  
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Figure 17.   Relaxed master problem strategy:  Convergence (II).  IEEE RTS One Area 

case with system restoration.  The algorithm closes the gap rapidly in 
early iterations but takes many iterations to prove optimality.  Detailed 
solving time from the algorithm, not shown, reveals that a 10% gap is 
reached in 12 seconds, but optimality is not reached until 60 seconds. 

Note, however, that this problem takes longer to reach optimality using the 

relaxed-MP strategy than the original BDA.  This fact can be attributed to the 

number of relaxed master problems (nine in this run) that are solved before we 

solve the standard master problem in order to update the lower bound.  If we 

reduce the interval for solving the standard master problem, for example, every 

3rd iteration, we would be able to solve this problem to optimality in only 23 

seconds, a reduction of 8 seconds (25%) over the original BDA.  

Figure 18 shows the cumulative solution time for the master problem for 

both the original BDA and the relaxed-MP strategy.  Note the reduced solution 

time for the master problem when compared to the original BDA.   
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Figure 18.   Relaxed master problem strategy:  Time versus iteration (II).  IEEE RTS 
One Area case with system restoration.  We show cumulative time to 

solve the master problem.  The average time per iteration for the master 
problem in the relaxed-MP algorithm is 0.03 seconds (including iterations 
where the master problem is solved exactly), a substantial improvement 

from the original BDA, which is 0.15 seconds.  Cumulative time is reduced 
accordingly. 

The advantages of the relaxed-MP algorithm are more significant as 

problems become more dificult.  This algorithm helps close the optimality gap 

faster because (1) every relaxed Benders cut is valid and can therefore 

contribute to the reduction of the upper bound, and (2) the relaxed master 

problem is so much faster to solve.  Figure 19 shows the effect of this algorithmic 

strategy for the IEEE RTS Two Area case with system restoration. 
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Figure 19.   Relaxed master problem strategy:  Convergence and Time versus 
Iteration (III).  IEEE RTS Two Area case with system restoration.  The top 
graph illustrates that the relaxed-MP algorithm closes the optimality gap 

more in earlier iterations.  The bottom graph illustrates the master 
problem’s reduced cumulative solution time when we use the relaxed-MP 

algorithm.  Note that a logarithmic scale on the time axis is used for clarity. 

In the IEEE RTS Two Area case we can appreciate the impact of the 

relaxed-MP strategy on overall solution time.  The original BDA takes over 75 

hours to complete 2,000 iterations, reaching a 16% gap.  By solving the relaxed 

master problem for nine of ten iterations, and solving the standard master 

problem every 10th iteration, we reduce the total solution time to a mere 26 

minutes for 2,000 iterations, and reach a 19% gap.  The original algorithm 

reaches a 20% gap at iteration 1,683 in approximately 37 hours; in contrast, the 

relaxed-MP algorithm achieves the same gap in 1,762 iterations but only in 20 

minutes.  The average time per iteration for this test case using the original 
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algorithm is two minutes and 15 seconds; using the relaxed-MP algorithm, we 

reduce the average time per iteration to 0.78 seconds.  The original BDA, of 

course, takes much more time to achieve such gap.   

 

C. CUT-DROPPING STRATEGIES 
The relaxed-MP algorithm helps solve certain problems, but larger 

problems need additional techniques like “cut-dropping” if they are to be solved 

efficiently.  The goal of cut-dropping is to limit the number of Benders cuts in the 

problem so that the master problem remains efficiently solvable.  Of course, 

convergence of BDA may be lost unless care is taken. 

We explore the following cut-dropping techniques: 

- Drop (delete) all “sufficiently slack cuts,” 

- Drop all “non-LP-active cuts,” 

- Dropping the first slack cut, 

- Keep a minimum number of cuts plus all active cuts, and  

- Keep the n-most active cuts.   

The following subsections explain and demonstrate each technique in 

detail.    

1. Dropping All Non-active Cuts 
This strategy attempts to keep only binding cuts (the cuts that remain 

“active” between iterations) in the master problem.  In a linear problem, an 

inequality constraint is deemed “active” (or binding) at a given feasible solution if 

the exact equality holds at that solution.  A non-active constraint is said to be 

slack.  The concept of slackness is important here because though basic 

sensitivity analysis one can show that, at the optimal solution to a linear problem, 

slack constraints can be dropped without changing the optimal solution to the 

problem.  Moreover, it is well known that, for linear problems solved through 

Benders decomposition, one may eliminate non-active cuts in the master 

problem at a given iteration without losing convergence to an optimal solution. 
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For a mixed-integer master problem, the above property is also true, but 

checking for active cuts is a more complicated task because a cut might be (in 

fact, will be in most cases) slack at the optimal integer solution, yet removing it 

could cause a (strict) relaxation of the master problem.  Checking for active cuts 

in a MIP requires removing the cut and solving the new MIP (in order to assess if 

the optimal objective function value has changed).  Doing this for every cut is not 

likely to yield an efficient algorithm, of course.  Instead, our approach consists of 

dropping cuts that are “estimated” to be non-active.  We accomplish this by 

removing all cuts at any iteration that have a slack greater than a percentage of 

the optimal value of the current MP.  The slack for a cut of the form  tz c δ≤ ⋅  

(where z ∈ , , nc δ ∈ ) at a given feasible solution ˆˆ( , )z δ  is given by 

ˆ ˆ 0ts c zδ= ⋅ − ≥ .   Then, s  is compared with the master-problem objective function 

value ẑ .  Ideally, we would use * *ˆ ˆˆ ˆ( , ) ( , )z zδ δ=  (optimal solution to the master 

problem) to evaluate the (relative) cut slackness.  However, sometimes we must 

rely on relaxed-MP solutions (see Section B) or even on sub-optimal solutions 

(see Section D) to carry out this comparison.  

We use the RTS One Area case for basic tests and perform several runs 

with various “slackness criteria.”  In particular, we eliminate any cut whose slack  

s  is greater than 0.1%, 1%, 5%, 10% and 20%, respectively of the current ẑ .  

The results for all these cases are similar and unsatisfactory:  It appears that this 

technique eliminates some cuts that are necessary for the convergence of the 

problem.  For example, if we use ˆ0.20s z≥  (20%), the master problem bound 

does not improve after the 85th iteration, impeding this variant of BDA from 

converging (see Figure 20). 
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Figure 20.   Dropping non-active cuts: Convergence.  IEEE RTS Two Area case 

without system restoration.  Lower and Upper Bounds versus number of 
iterations.  We only use estimated active cuts in the master problem.  

These cuts cannot close the optimality gap.   

2. Dropping Non-LP Active Cuts  
This strategy estimates the active cuts in the master problem by using the 

active cuts in the relaxed master problem.  We keep only LP-active cuts in the 

master problem.  We consider a cut to be LP-active if it is active in the relaxed 

master problem.  This technique showed no significant improvement over the 

previous cut dropping technique because it also appears to remove too many 

cuts from the master problem.  For example, in the IEEE RTS One Area case 

with system restoration, only four LP-active cuts remain in iteration 566, yielding 

a weak upper bound.  

3. Dropping the First Slack Cut 
We check all incumbent cuts at any given iteration until we find one whose 

slack exceeds a pre-specified threshold, for example, being 20% above the 

master problem objective function value.  If none of the cuts satisfies this 

criterion, none is dropped.  In addition, a cut that is removed is no longer 

considered in the master problem.   
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This strategy still removes cuts that are needed for convergence.  In the 

IEEE RTS One Area case with system restoration and a slackness threshold of 

20%, only nine cuts remain in the master problem by iteration 300 and the 

optimality gap is 597%.  When we increase the criterion to 80%, 52 cuts remain 

at iteration 300, but the optimality gap is still unacceptable at 180%.   

A variant of this strategy consists of selecting the first cut whose dual 

variable (at the optimal branch-and-bound node for the master problem solution) 

is zero for elimination.  Again, this alternative does not provide us with the 

necessary set of cuts to close the optimality gap. 

4. Keeping the n-Most Active Cuts 
The results in the previous subsections show that we must sustain an 

elevated number of cuts in order to avoid destroying convergence.  Additionally, 

we can see from those strategies that if we eliminate cuts based on a pre-set 

slackness criterion we may be eliminating cuts needed for convergence.   

Here we try a new strategy where we limit the number of cuts to a pre-

specified value, n.  We assume the master problem with n cuts is solvable in a 

reasonable amount of time.  At every iteration, we replace the cut with largest 

slack by the cut generated at the incumbent iteration.  This strategy guarantees 

that the “best” n-1 cuts are always used, keeping the problem to a manageable 

size that will solve relatively quickly.   

Testing indicates that being too restrictive in the value given to n can 

prevent the algorithm from converging.  For example, Figure 21 shows that for 

the IEEE RTS One Area case with system restoration, restricting the number of 

cuts to n = 30 is not efficient, whereas the algorithm converges successfully for n 

= 110.  
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Figure 21.   Keeping the n most active cuts:  Convergence.  IEEE RTS One Area case 

with system restoration. Gap versus iteration plot.  Limiting the number of 
cuts makes the problem simpler to solve.  However, as illustrated in this 
figure, too few cuts will prevent the problem from closing the optimality 

gap.  

Specifically for n = 30 cuts, we can only close the gap to 60% after 180 

iterations (in 45 seconds), and cannot improve after then.  For n = 60 cuts, we 

can achieve a 34% gap in 62 iterations (19 seconds).  For n = 90 cuts, a gap of 

4% is achieved in 99 iterations (30 seconds).  Finally, for any n = 110 cuts or 

more, the problem solves to optimality in 117 iterations (35 seconds).   

 

D.  SUB-OPTIMAL INTEGER SOLUTIONS 
In this section we consider a strategy that is similar to the master-problem 

relaxation described in Section B.  This extension involves establishing a 

termination criterion for the (full, mixed-integer) master problem before it is 

solved to optimality.  Typical termination criteria are based on limiting any of the 

following:  the number of integer solutions found during the branch-and-bound 

process, the number of nodes explored in the branch-and-bound tree, the 

computational time spent, or combinations of the above, such as: “Stop after a 

maximum number of seconds, if at least one integer solution has been found.”    
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If the integer solution found is not integer-optimal (due to the early 

termination according to pre-specified criteria) then the upper bound cannot be 

updated.   However, it is still a candidate solution for improving the lower bound, 

which will be obtained after solving the subproblem for that candidate solution. 

To ensure that the upper bound eventually improves, at least every m 

iterations (e.g., m = 50) the full master problem needs to be solved to optimality.  

(Recall that the upper bound can also be updated whenever we solve a relaxed 

master problem).  Figure 22, shows the bound trajectory graph for the RTS Two 

Area case where (a) the master problem is solved to optimality every 50th 

iteration, (b) the master problem is solved to a sub-optimal integer solution every 

10th iteration that is not a 50th iteration, and where (c) RMPk is solved otherwise. 
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Figure 22.   Master problem sub-optimal solution strategy:  Convergence.  RTS Two 
Area case without system restoration. This strategy uses relaxed-MP nine 
of every ten iterations, sub-optimal integer solutions to the master problem 

at every 10th iteration except every 50th iteration when the full master 
problem is solved to optimality.  After 2,000 iterations, we achieve a 65% 

gap in 26 minutes.  In comparison, the relaxed-MP algorithm alone (where 
master problems are solved to optimality every 10th iteration) achieves a 

62% gap in 1 hour and 42 minutes in the same number of iterations.    
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This strategy performs better than the original BDA at early 

iterations (gap and time per iteration are reduced).  However, it reaches a point 

where the convergence stalls. 

 

E.  COMBINED STRATEGY 
Here, we present the relaxed-MP strategy combined with the cut dropping 

strategy that keeps the n most-active cuts.  This combined strategy proves to be 

the best among all possible combinations.   We show this combined strategy 

applied to the RTS Two Area case with system restoration.   

Table 4 compares results for 2,000 iterations using the different strategies.  

We take 500 n = most active cuts, and then combine it with the relaxed-MP 

strategy where the full MPk is solved at every 10th iteration only. 

 

Technique Original BDA Relaxed MP Best 500 cuts Combined 

Final GAP 16.8% 19.1% 48.6% 8.3% 

CPU time 75h 12 m 26m  1h 45m 16m 

Table 4.   Combined strategies: n-most active cuts with relaxed-MP.  RTS Two Area 
case with system restoration. This table shows the Gap and Time 

comparisons for the most effective strategies.  The results show over 99% 
improvement in time and a 50% improvement in the gap achieved when 

using the combined strategy in lieu of the original BDA. 

In fact, we can even obtain better solutions for this case by increasing the 

number of cuts allowed in the solution strategy.  For example, if we increase the 

number of most active cuts to keep to 700, at the end of 2,000 iterations, a gap of 

only 4% remains, but the time to complete this process increases to 20 minutes.  

We can also increase the number of iterations to decrease the gap.  Figure 23 

illustrates results for the combined strategy with n = 700 when applied to the RTS 

Two Area case. 
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Figure 23.   Combined strategy, n-most active cuts with relaxed-MP.  IEEE RTS Two 

Area case without system restoration.  700-most active cuts are used, and 
the full MP is solved every 10th iteration.  The problem reaches a 5% gap 

within 20 minutes and proves optimality in 45 minutes.   

The solution obtained through this combined strategy represents a 

99.12% improvement over the time required by the original BDA.  (Comparison is 

made for a 16% gap, which is the gap achieved by the original BDA.)  

Additionally, this combined technique allowed us to prove optimality through 

complete convergence.   
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VII. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER 
RESEARCH 

This chapter summarizes the most important findings of the thesis, and 

proposes areas for future research. 

 

A. CONCLUSIONS 
This thesis has expanded upon the models and solution methods of 

Salmeron et al. (2003, 2004) for optimal interdiction (by terrorists) of electric 

power grids, using limited offensive resources.  

Our first task was to validate the DC power-flow model that forms the core 

of our interdiction models.  We compare power flows computed through the full 

AC power-flow model provided by the PowerWorld Simulator (PowerWorld 2003) 

to those computed by our own DC model, DCOPF.  The IEEE One Area 

Reliability Test Case (IEEE 1999-I), with several versions representing different 

interdiction scenarios, make up the set of test problems. The average deviation in 

power flows across all scenarios is less than 5%, and all lines showing deviations 

over 10%  carry a negligible fraction of the system’s total power.  These results 

indicate that the DC power-flow model is acceptable for interdiction analysis. 

After consolidating the mixed-integer formulations of the interdiction 

models (with and without system restoration) developed by Salmeron et al., we 

have demonstrated that Benders decomposition—this involves iterating between 

a mixed-integer master problem and a linear-programming subproblem—is a 

viable technique for solving these problems.  We use interdiction decisions as 

“complicating variables” and develop the decomposition methodology through a 

small example first.  We then extend the procedure to a generic power grid, apply 

it to larger test problems, and find that convergence is too slow for practical use.  

For example, an instance of the IEEE Two  Area Reliability Test Case (IEEE 

1999-I), which has 48 buses, requires two-thousand iterations to close the gap to 

16%; and that takes 75 hours on a 3.0 GHz personal computer.  
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Not only is the number of iterations large, but each one requires us to 

solve a mixed-integer master problem that becomes more difficult to solve as the 

iterations proceed, i.e., as more Benders cuts are added to it.  For example, in 

the problem mentioned above, initial master problems solve in less than one 

second, but by iteration 1,900 they are taking up to up to 600 seconds to solve.  

(Subproblem solution times remains stable and short throughout for this problem 

and all others tested.)   

In order to improve the efficiency of the original decomposition algorithm, 

we propose some refinements to the way the master problem is solved.  Among 

the techniques investigated, this combination works best: (a) Solve the full 

master problem only periodically, say, every 10th iteration, and otherwise solve 

the master-problem’s linear-programming relaxation, and (b) drop certain 

“unimportant” Benders cuts to limit the size of the master problem (we keep at 

most n cuts, those that are estimated in some way to be “the most important.)  

Computational times drop dramatically with this strategy.  For example, a 4.7% 

gap is reached in 2,000 iterations for the previously mentioned problem, but this 

is accomplished in a mere 20 minutes.  Thus, our improved techniques represent 

important steps toward solving large-scale, real-world interdiction problems.  

 

B. RECOMMENDATIONS FOR FURTHER RESEARCH 
We identify the following areas of research from which the existing work 

could greatly benefit: 

1. Further reductions of the computational burden imposed by the 

master problem.  Further research is required in the areas of 

valid inequalities and cut-dropping techniques, among others. 

2. Enhancements to speed solutions of the Benders subproblems.  

The current implementation does not take advantage of the 

decomposable structure of these problems, which arises when 

the goal of the interdictor is to maximize total unmet demand for 

energy (unmet demand for power, integrated over the time) and 
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when repair times for interdicted components can vary.  This 

enhancement is not important for small test problems, but it 

should not be disregarded for larger, real-word problems.  

3. Testing on real-world problems. 

4. Embedding of our bi-level model into a tri-level “system-

protection model.”  The ultimate goal of the study of electric-grid 

interdiction is to help analysts develop plans that minimize the 

potential for system disruption.  Formulation of a tri-level 

system-protection model, and provision of solutions through 

exact and heuristic methods are thus required.  The system-

defense model introduced by Israeli (1999) can serve as the 

foundation for such work. 
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APPENDICES  

APPENDIX A: MIP MODEL WITHOUT SYSTEM RESTORATION 
 
A.1 The Interdiction Model (I-DCOPF) 
 

This interdiction model, I-DCOPF, attempts to maximize the interdiction 

cost (that is, the sum of generating costs plus load-shedding penalties provided 

by DCOPF) by choosing an optimal set of components to be interdicted.  The 

following notation is required in addition to that specified for DCOPF: 

Additional sets: 

**

**

:Interdictable lines (directly or indirectly)
: Interdictable generators (directly or indirectly)

L
G

 

Additional model data: 

0

0

*

*

**

**

1 if 
0 otherwise

1 if 
 

0 otherwise

1 if 
 

0 otherwise

1 if 
0 otherwise

( ) Bus for generator  
Substation for bus , if any

( )
0, otherwise

Remark: ( (

L
l

G
g

L
l

G
g

l L

g G

l L

g G

i g g
i

s i

s i g

λ

λ

λ

λ

 ∈
= 

 ∈

= 

 ∈

= 

 ∈

= 


=

= 


substation for bus  that generator  is connected to, if any
))

0,otherwise                                      
i g

= 
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I-DCOPF:  

,
, , ,

max min ( ) ( )
Gen Line

i

Gen
i g ic

P P S i g G i c
h P f S

δ θ∈∆ ∈

+∑∑ ∑∑    

s.t. 

Admittance constraints, prior to linearization:  

* **
( ) ( )

| |

( )(1 ) (1 ) (1 ) (1 )    
Sub ParBus
s li

Line Line Line Bus Sub Line
l l o l d l l l i s ll

s S l L ll L ll Li I l L

P B lθ θ λ δ δ δ δ
∈ ∈ ∈ ∈∈ ∈

− − − − − − ∀∏ ∏ ∏  

which are re-written below after linearization of the δθ  products:  

-

* **

**

( ) ( )
| |

( ) ( )
|

( ) (  )  ( )

( ) (  )

Sub ParBus
s li

SubBus
si

Line Line Line Bus Sub Line A
l l o l d l l l l i s ll l

s S l L ll L ll Li I l L

Line Line Line Bus Sub Line
l l o l d l l l l i s ll

s S l L ll Li I l L

P B M l

P B M

θ θ λ δ δ δ δ π

θ θ λ δ δ δ δ

∈ ∈ ∈ ∈∈ ∈

∈ ∈ ∈∈ ∈

− − ≤ + + + ∀

− − ≥ − + + +

∑ ∑ ∑

∑ ∑
*|

( )
Par
l

A
l

ll L

l π
+

∈

∀∑
Power balance constraints: 

( ) ( )

( )
i

Gen Line Line Bal
g l l ic ic i

g G l o l i l d l i c c

P P P S d i π
∈ = =

− + + = ∀∑ ∑ ∑ ∑ ∑  

 Line capacity constraints: 

0

-

-

**

*

*
,

                            ( )             

(1- )              ( )

(1- )              , , ( )

(1-

LLine Line
l l l

Line Line Line LCap
l l l l

Line Line Bus Bus LB
l l i i l i

Line Line Su
l l s

P P l L

P P l L

P P l i i I l L

P P

π

δ π

δ π

δ

−

≤ ∀ ∉

≤ ∀ ∈

≤ ∀ ∈ ∈

≤
-

-

*
,

*
,

)              , , ( )

(1- )             , ,   ( )

b Sub LS
s l s

Line Line Line Par LL
l l ll l l ll

l s s S l L

P P l ll ll L ll L

π

δ π

∀ ∈ ∈

≤ ∀ ∈ ∈
0**

*

                                                                          ( )  

(1- )                                                  ( )

LLine Line
l l l

Line Line Line LCap
l l l l

Line
l

P P l L

P P l L

P

π

δ π

+

+

≥ − ∀ ∉

≥ − ∀ ∈

≥ *
,

*
,

(1- )            , ,                                    ( )

(1- )            , ,                                   ( )

(1-

Line Bus Bus LB
l i i l i

Line Line Sub Sub LS
l l s s l s

Line Line
l l

P l i i I l L

P P l s s S l L

P P

δ π

δ π

+

+

− ∀ ∈ ∈

≥ − ∀ ∈ ∈

≥ − *
,)            , ,                      ( )Line Par LL

ll l l lll ll ll L ll Lδ π
+

∀ ∈ ∈
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Power generation constraints: 

0**

*

                                                                                ( )

(1- )                                                                    (

GGen Gen
g g g

Gen Gen Gen G
g g g g

P P g G

P P g G

π

δ π

≤ ∀ ∉

≤ ∀ ∈
*

( )

*
( ( ))

)

(1- )               | ( )                                              ( )

(1- )            | ( ( )) 0, ( ( ))                         ( )

Gen Gen Bus GB
g g i g g

Gen Gen Sub GS
g g s i g g

P P g i g I

P P g s i g s i g S

δ π

δ π

≤ ∀ ∈

≤ ∀ ≠ ∈

 

Upper bounds on the load shedding: 

,                                   ,                                                             ( )Load
ic ic i cS d i c π≤ ∀

 

Variable sign constraints: 

0                                  ,

                                
0                                     ,

                                     

Gen
g i

Line
l

ic

i

P i g g G

P URS l
S i c

URS iθ

≥ ∀ ∈

∀
≥ ∀

∀

 

where  

{ }

* * * *

, , , , , , ,
, ,

, , , 0,1

i

Line Bus Sub Gen
l i s g

Gen Gen t Line t Line t Bus t Bus t Sub t Sub t
i g i g l l i i s s

i I g G l L i I s S

M M M M M

δ δ δ δ

δ δ δ δ
∈ ∈ ∈ ∈ ∈

 ∈
 ∆ =  + + + ≤ 
 
∑ ∑ ∑ ∑ ∑  

 
A.2 The Dual Interdiction Model, DI-DCOPF  
 

Taking the dual of the inner model presented in section A.1 yields the dual 

interdiction model shown below. 
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DI-DCOPF: 

- -

*

- -

* *

0

**

, | ,

, | , , | ,

  ( )   ( )

max
  ( )   ( )

( ) (1 )

Bus
i

Sub Par
s l

i

L Line A A Bus A A
l l l l i l l

l i i I l L
l Sub A A Line A Al s l l ll l l

l s s S l L l ll ll L ll L

GBal G G Gen
ic g g g g

i c g G

M

d P P

π

λ δ π π δ π π

δ π π δ π π

π π δ

+ +

+ +

∈ ∈

∈ ∈ ∈ ∈

∉

 − + −
  
 
+ − + − 
  

+ ⋅ + + −

∑
∑

∑ ∑

∑ ∑ ∑
* *

-
0 0

* ** *

-

*

( )
| ( )

( ( ))
| ( ( ))

, , ( (
, | ,

(1 )

(1 ) ( ) (1 ) ( )

(1 ) ( ) (1
Bus
i

G G Bus GB
g g i g g

g G g i g I

L LG Sub GS Line Line Line L L
g s i g g l l l l l l l

g s i g S l L l L

Line Bus LB LB Line
l i l i l i l s i

l i i I l L

P

P P P

P P

π δ π

δ π π π δ π π

δ π π δ

− + +

+

∈ ∈

∈ ∉ ∈

∈ ∈

+ −

+ − + − + − −

+ − − + −

∑ ∑

∑ ∑ ∑

∑
-
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*

)) , ,
, | ,

, ,
,, | ,

) ( )
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Sub
s

Par
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Sub LS LS
g l s l s

l s s S l L

Line Line LL LL Load
l ll l ll l ll ic ic

i cl ll ll L ll L

P d

π π

δ π π π

+

+

∈ ∈

∈ ∈

−

+ − − +

∑

∑ ∑

 

s.t.  

Power-generation dual constraints: 

0 0
( ) ( ) ( ( ))(1 )          G GBal G G I GB S GS

i g g g g g i g g s i g g gh gπ λ π λ π λ π λ π+ − + + + ≤ ∀  

Line-flow dual constraints: 

( )
( ) ( )

- - -
0 0 0

*

- -

* *

, ,
, ,

, , , , ( ) ( )
, , , ,

(1 )( )

0      

i

Par
s l

L L LA A L L L L LB LB
l l l l l l l l l l i l i

l i i I l L

LS LS LL LL Bal Bal
l s l s l ll l ll o l d l

l s s S l L l ll ll L ll L

l

π π λ π π λ π λ π π π

π π π π π π

− ++ + +

+ +

∈ ∈

∈ ∈ ∈ ∈

+ + − + + + + +

+ + + + − + = ∀

∑

∑ ∑
 

Power-shedding dual constraints: 

,          ,Bal Load
i i c icf i cπ π+ ≤ ∀  

Phase-angle dual constraints: 

( ) ( )- -

( ) ( )
0     A A A A

l l l l l l
l i o l l i d l

B B iπ π π π
+ +

= =

− + + + = ∀∑ ∑  

Signs on dual variables: 
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0

0

0

 

  unrestricted

0                           

 

0   

, , ,  , ,

, , ,  , , 0

, , ,  0

Bal

L LB LS LL

L LB LS LL

GB GS

LA
l

LA
l
GG

Load

π

π π π π π

π π π π π

π π π

π

π

π
π

−− − − − −

++ + + + +

≤

≤

≥

≤

 

Bounds on the dual variables: 

0

0

0

, , , : Max. shedding cost Max. Generating cost

, , , , : Max. shedding cost Max. Generating cost

, , , , : Max. shedding cost Max. Generating cost

:  

G G GB GS G

L L LB LS LL L

L L LB LS LL L

A

π π π π π

π π π π π π

π π π π π π

π π

− − − − −

+ + + + +

−

− = − −

− = − −

= +

−

:  
where we take 1 radian.

A Line
l l

A A Line
l l

P B

P B

θ

π π θ
θ

+

= − −

= +

=

 

 
A.3  Linearization of DI-DCOPF 
 

Linearizing the δπ  products in DI-DCOPF yields: 

 

LDI-DCOPF: 
- - - -

* * *

0

** * *

, , , ,,
, | , , | , , | ,

| ( )

max   ( ) ( ) ( ) ( )

( ) ( )
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i s l

L A A BA BA SA SA LA LA
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π π π
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∑ ∑ ∑
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-
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s s i g S

L LLine Line L L L L
l l l l l l l l

l L l L

Line LB LB LB LB Line LS LS LS LS
l l i l i l i l i l l s l s l s l s

l i i I l L
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P P v v
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π π π π

π π π π
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∈ ∈

−

 + − + − − 
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∑ ∑

∑
*

-

*

, | ,

, , , ,
, | ,

( ) ( )   ( )
Sub
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i
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l s s S l L

Line LL LL LL LL Bal Load
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i c i cl ll ll L ll L

P v v d dπ π π π
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∈ ∈

∈ ∈




 + − − − + ⋅ + 

∑

∑ ∑ ∑ ∑∑
 
s.t. 

0 0
( ) ( ) ( ( ))(1 )              ( )G GBal G G I GB S GS G

i g g g g g i g g s i g g g gh g Pπ λ π λ π λ π λ π+ − + + + ≤ ∀  



76

 

( )
( ) ( )
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0 0 0
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Linearizing constraints are: 
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A.4 The Master Problem 
 

The master problem for Benders decomposition derives from the dual of 

LDI-DCOPF.  At iteration k, the master problem has the form: 

,
(MP ) : maxk z

z
δ∈∆ ∈
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APPENDIX B: MIP MODEL WITH SYSTEM RESTORATION 
 

B.1 Constructing Time Periods, and Additional Notation 
 

The notation below and time period construct algorithm are extracted from 

Salmeron et al. (2004). 

Required notation: 

T = set of periods, for t T∈  

* * * *L G B Sξ = ∪ ∪ ∪ , set of all (directly) interdictable elements 

( )Dur e =  Duration (hours) of outage for element e ξ∈ , if attacked 

tD = Duration (hours) of time period t, for t T∈  

,

1,  if component  remains unrepaired in time period  after being attacked

0,  if component  is repaired before time period  after being attacked
t e

e t

e t
β


= 


,  

for t T∈ , e ξ∈ . 

 

Remark:  In the above notation Line
,t lβ , Bus

,t iβ , Gen
,t gβ , and Sub

,t sβ  denote ,t eβ  

when e=l is a line, or e=i is a bus, or e=g is a generator, or e=s is a substation, 

respectively. 

 

The following algorithm constructs the set of time periods, T, based on the 

different outage durations for all interdictable elements.  In the course of the 

algorithm, tD  and ,t eη  are also constructed: 
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Algorithm “Construct Time Periods”: 

{ }

{ }
{ }

0

,

1

Initialization: ,  ,  0, 0;

While :
           1
           

1,  if           
0,  otherwise

           min ( )

           ( )

           

t e

t

t t

t t t

T t m

t t
T T t

e

m Dur e e

e e Dur e m

D m m

ξ ξ
ξ

ξβ

ξ

ξ ξ

ξ
−

← ← ∅ ← ←

≠ ∅
← +
← ∪

 ∈
← 



← ∈

← ∈ ∧ =

← −

← \
End While

tξ ξ

 

 

Additional notation for interdiction model: 

** Set of lines  that can be directly or indirectly interdicted in period .
Note :

tL l t=     

**

Line
t,l

Bus
t,i

Sub
t,s

Line
t,ll

 if either:

                1,  or 

1 for some | ,  or

    1 for some | , or

 1 for some |

t
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i

Sub
s
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l L

i l L

s l L
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β
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β

β
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=

= ∈

= ∈

= ∈
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B.2 The Interdiction Model, I-DCOPF-R 

 

I-DCOPF-R: 
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B.3 The Dual Interdiction Model, DI-DCOPF-R 
 

Taking the dual of the above primal problem yields: 

DI-DCOPF-R: 
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B.4  Linearization of DI-DCOPF-R 
 

Linearizing the products δπ  yields: 

LDI-DCOPF-R: 
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B.5 The Master Problem 
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APPENDIX C: LINEARIZATION OF CROSS-PRODUCTS 

 

This is an explicit list of constraints for the three-bus example in Chapter 

IV.  ,γ η  represent the dual variables for the linearizing constraints. 
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