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Applying Pure Mathematics 

Anthony Peressinitl 
Marquette University 

Much of the current thought concerning mathematical ontology and epistemology fol- 
lows Quine and Putnam in looking to the indispensable application of mathematics in 
science. A standard assumption of the indispensability approach is some version of 
confirmational holism, i.e., that only "sufficiently large" sets of beliefs "face the tribunal 
of experience." In this paper I develop and defend a distinction between a pure math- 
ematical theory and a mathematized scientific theory in which it is applied. This dis- 
tinction allows for the possibility that pure mathematical theories are systematically 
insulated from such confirmation in virtue of their being distinct from the "sufficiently 
large" blocks of scientific theory that are empirically confirmed. 

1. Introduction. Much of the current thought concerning mathematical 
ontology and epistemology follows Quine and Putnam in looking to 
the indispensable application of mathematics in science. In particular, 
the Quine/Putnam indispensability approach is the inevitable staging 
point for virtually all contemporary discussions of mathematical on- 
tology. Just recently serious challenges to the indispensability approach 
have begun appearing (Maddy 1992, Sober 1993, Vineberg 1996, Per- 
essini 1997). At the heart of this debate is the notion of an indispensable 
application of (pure) mathematics in scientific theory. To date the dis- 
cussion has focused on indispensability, while little has been said about 
the process of application itself.' In this paper I focus on the process of 
applying (pure) mathematical theory in physical theory. 

Attention to this process makes evident a distinction, which I defend 
here, between pure mathematical theory and its application in mathe- 

tDepartment of Philosophy, Marquette University, Milwaukee, WI 53201-1881; e-mail: 
peressinia@marquette.edu 

1I thank Mike Byrd, Malcolm Forster, Penelope Maddy, Michael Resnik, Elliott Sober, 
and Mark Steiner for comments and discussion. 
1. Some discussion of the process of application can be found in Resnik 1992, Steiner 
1995, and Peressini 1997. 
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S2 ANTHONY PERESSINI 

matized scientific theories. I take such a distinction to be especially 
germane to the indispensability approach via Quine's well-known con- 
firmational holism, which underwrites the notion that mathematical 
theory, as part of the whole of our (scientific) theory of the world, is 
confirmed along with the scientific theory. Quine later reigned in his 
holism to the more defensible position that "largish" blocks of theory 
are confirmed as wholes-not necessarily the totality of our beliefs. If 
the distinction between pure mathematical theory and mathematized 
scientific theory can be maintained, then pure mathematical theory 
may indeed be systematically insulated from the confirmation of the 
"largish" scientific theory in which it is applied. 

2. Applying Pure Mathematics. There is an obvious and natural dis- 
tinction between mathematical theories and mathematical scientific 
theories. A mathematical theory is a theory whose (apparent) subject 
matter is some sort of mathematical object; for example, number the- 
ory, real analysis, functional analysis, group theory, set theory, etc. 
These are the theories that occupy mathematicians; I will refer to them 
as pure mathematical theories. On the other hand there are scientific 
theories which, to varying degrees, make use of pure mathematical 
theories, i.e., mathematical (or mathematized) scientific theories. 
Prominent examples of mathematical scientific theories are found in 
quantum mechanics, population genetics, and general relativity.2 

More precisely, the distinction between pure mathematical theories 
and mathematical scientific theories is underwritten by the latter's de- 
ployment of a physical interpretation of part of the mathematical vo- 
cabulary that mathematical theories lack.3 At least some of the sets, 
numbers, functions, vectors, groups, and manifolds of scientific theo- 
ries have an associated (operationally defined) physical interpretation; 
in this sense the mathematics present in the theory is applied. Mathe- 
matical theories, on the other hand, are pure in that they lack this 
physical interpretation. Consider the scientific theory of quantum me- 

2. Notice that the applications of mathematics mentioned so far have been physical 
applications. This sort of application of mathematics should not be confused with a 
another sort that will come up below; namely, an application of pure mathematics to 
other pure mathematics. I will indicate this specialized sense of an "application" of pure 
mathematics when it arises. 
3. Attempts have been made to blur the distinction between the physical and abstract 
(Shelton 1980, Resnik 1990). My purposes here, however, require not that this distinction 
be sharp, but only that it be the case that some of the mathematically characterizedentities 
in the scientific theory are interpreted as something that fits into the "causal nexus." I 
consider the specifics of Resnik's (1990) critique of the physical/abstract distinction be- 
low. 
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chanics which makes use of pure mathematical theories for example, 
group theory.4 How are we to understand the distinction between pure 
and applied group theory in this context? It is clear enough that pure 
mathematical group theory is not the same theory as the applied theory 
of groups present in the theory of the spin of quantum particles: they 
are about different things. The groups/members that appear in quan- 
tum theory are taken to be specific groups/members that are interpreted 
as the physical properties (spin) of physical objects (particles); the prop- 
ositions of pure group theory, on the other hand, lack any such physical 
interpretation. This physical interpretation is often far from trivial, as 
is illustrated by the details of how the pure theory is applied. 

Consider first how the pure mathematical theory may be applied 
within the realm of pure mathematics. From pure group theory we 
have: 

(GT) (V a E G)(3 b E G)[a * b = e, 

where G is a group. The equation states that for any element in a group, 
there is another element in the group such that the group product of 
the elements is the identity element. As such, this proposition has im- 
plications for particular pure groups, e.g., 4 integers modulo 4; or P3, 
the permutation group for 3 elements; or SU(2), the group of 2 x 2 
unitary matrices with determinant equal to 1. In particular, the general 
pure proposition (GT) gives rise to the particular pure proposition 
(GTSU(2)) in which the free variable G is replaced by the particular pure 
group SU(2). Formally speaking, (GTSU(2)) follows from (GT) and the 
additional premise 

(AP) SU(2) is a group. 

The relationship between (GT) and (GTSu(,)) is purely mathematical in 
that (AP) is purely mathematical; this is true of pure applications in 
general and is in marked contrast to physical applications of pure math- 
ematics. 

As an example of a physical application, consider again quantum 
mechanics and group (representation) theory. The pure group SU(2) 
is used along with (some of) the pure propositions concerning it which 
follow from the general pure theory in the sense just described. In the 
physical application, however, the members of SU(2) are further inter- 

4. Actually, it is the mathematical theory of group representations that is applied in 
quantum mechanics (group theory itself is of course made use of by group represen- 
tation theory). In the interest of clarity and brevity I simplify the details of how group 
theory works in quantum theory. See Sudberry 1986, 138 for a discussion of the details 
by a physicist; Steiner 1989, 460 contains a detailed discussion in a philosophical setting. 
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preted as (components of) the physical property of spin, and the group 
operation is taken to correspond to the composition of spin states, thus 
allowing the mathematical terminology to fall under the physical prin- 
ciples that relate the property of spin to the rest of the physical theory. 
This physical interpretation of (part of) the pure theory is such that 
the resulting applied mathematical propositions of the physical theory 
imply claims about the physical world. Let the applied quantum group 
be denoted by SU(2). The crucial point here is that even though the 
physical theory propositions concerning SU(2) constitute an applica- 
tion of the pure theory, it is a qualitatively different kind from the pure 
application. 

Let p be a proposition of the pure theory p and p5 the corresponding 
proposition in the physical theory. Proposition does not follow fromp 
(and its attendant theory) conjoined with a pure mathematical premise 
like (AP); this is because the physical application requires empirical 
bridge principles to underwrite the physical interpretation. These prin- 
ciples distinguish pure mathematics from mathematized physical the- 
ory and enable claims about the physical world to be deduced from 
the latter. That the composition of two particular elements, a and b E 
SU(2), yields the identity element is not related in any obvious way to 
the empirical fact that inducing two particular rotations on a particle 
will leave the particle in the same spin state. The latter is not merely a 
special case of the former; it is not merely a case of going from the 
universal to the particular. Any relationship between the two propo- 
sitions involves substantive empirical bridge principles linking the pure 
mathematical vocabulary to the physical object/property vocabulary. 
It is only within the physical theory itself, which contains propositions 
corresponding to at least some of those of the pure theory, that certain 
of its propositions imply that spin components a and b E SU(2) in- 
duced on a particle will leave its spin unchanged. 

Another way of characterizing the difference between mathematical 
and physical applications of pure mathematics focuses on the "imme- 
diacy" of the application. Pure mathematical propositions apply "im- 
mediately" to other pure mathematical settings. The implicit range of 
the free variable(s) in the propositions like (GT) include particular pure 
groups like P3, Z4, and SU(2); in this sense the application is immediate 
relative to physical applications. Physical applications are (qualita- 
tively) less immediate in that they require substantive auxiliary prem- 
ises which take the form of empirical bridge principles between the 
language of pure mathematics and the language of physical theory; it 
is only by way of such auxiliary premises that the mathematics of the 
physical theory says anything about the physical world. 

It is possible to render formal treatments of applications in such a 
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way that both pure and physical applications will include premises of 
the form "Xis a group," where the "only" difference is that in physical 
applications this premise is a physical claim rather than a mathematical 
claim. While this formal similarity allows for a succinct abbreviation 
of the details of an application, it may also be misleading. In the case 
of pure applications, this "premise" is little more than a "formality" 
since the free variables of the pure theory range over the appropriate 
pure mathematical "objects." In physical applications, however, this 
"premise" is much more complicated; at the very least it encodes the 
substantive (empirical) bridge premises required for the pure theory to 
have physical implications. This abbreviated way of presenting things 
may misleadingly suggest that physical applications of mathematics are 
essentially the same as pure applications-that is, that they involve 
nothing more than replacing some mathematical terminology with 
physical terminology. As I think is clear, this does not characterize 
genuine physical application; rather, it describes a trivial change in 
notation.5 

3. The Pure/Applied Relationship. Suppose that theories s and m bear 
the "applied" relationship to one another-that is, that s is an applied 
version of m. One naturally wonders whether, in general, it is necessary 
that a pure theory m be worked out before we can have an applied 
theory s. If one were to form a naive opinion based on only pure math- 
ematics texts, then it would appear that pure mathematical theories are 
worked out by elegantly deducing consequences from various mathe- 
matical postulates. Then, only after the pure theory has been worked 
out, would it be applied to real problems. But this picture is seriously 
distorted. Historically this is rarely how theories develop, and even 
today, mathematics texts offer little insight into how pure mathemat- 
ical research proceeds. Nor would it be right to suppose that progress 
in pure mathematics is always due to developments in the scientific use 
of mathematics. As it turns out, neither the pure theory nor the applied 
theory are in all cases epistemically prior. I illustrate this below by 
considering several historical episodes in the development of science 
and mathematics. Before doing this, however, consider further the for- 
mal character of the applied relationship. 

5. If space were not limited, another example would be useful to illustrate more involved 
bridge principles. In arithmetic (number of apples on the table) and algebraic appli- 
cations, (the possible permutations of players in a bridge tournament) the bridge prin- 
ciples are generally more simple, immediate, and involve less idealization than other 
sorts of applications. It is easier in such settings to miss the significance of the auxiliary 
bridge premises. Steiner (1978, 24) explicitly fleshes out such auxiliary bridge premises 
for the application of simple arithmetic. 
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As stated above, sRm is a two-place relationship, where m is a pure 
mathematical theory and s is an applied mathematical theory or math- 
ematized scientific theory. Until now, I have been taking "applied 
mathematical theories" and "mathematized scientific theories" to be 
the same thing; however, they must be distinguished from one another. 
This is because not every mathematized scientific theory is also an ap- 
plication of a (pure) mathematical theory. There are mathematized sci- 
entific theories that do not bear the "applied" relationship to any pure 
mathematical theory, and so, strictly speaking, should not be consid- 
ered applied mathematical theories. In these examples a scientist de- 
velops a formal technique in order to solve certain physical problems 
by what appear to be mathematical methods (e.g., evaluating a certain 
type of integral, multiplying an integrand by a certain "function," di- 
viding by a certain mysteriously small quantity, etc.). But in fact the 
new "mathematical" method makes no sense mathematically, and 
hence is not a physically interpreted version of a pure theory.6 

In such cases in which the mathematized scientific theory is worked 
out first, and then only later, if ever, a pure mathematical theory is 
worked out, we have the inverse of the operation of application-call 
it abstraction. The history of science and mathematics abounds with 
examples going in each direction, as we will see in the next section. 

Notice that until now the discussion has focused on physical appli- 
cations of pure mathematical theories: the applications considered in- 
volved only physical interpretations of the pure theory. Pure mathe- 
matical theories, however, can be applied in settings other than the 
usual scientific/physical setting. One such setting is linguistics. In the 
modern study of linguistics, mathematics plays a conspicuous role (e.g., 
Gross 1972, Wall 1972, Gladkii 1983, and Partee 1990). Pure mathe- 
matical theories may be applied in linguistic theory in essentially the 
same way as they are in physical theory. In this case, however, some 
of the pure mathematical vocabulary is given a linguistic interpretation 
rather than a physical interpretation. For example, a class of gram- 
matical properties might be represented by the elements of a finite 
group, with the group operation being a certain grammatical transfor- 
mation. 

As discussed above, pure mathematical theory is often applied 
within pure mathematics itself. Analytic number theory is a prominent 

6. For example, the calculus had no genuine grounding in pure mathematics until Cau- 
chy's work in the 19th century. Dirac's delta function is another such example. And to 
this day, Feynman path integrals in quantum field theory are without a pure mathe- 
matical foundation. See Peressini 1997, 914-916 for discussion and additional refer- 
ences. 
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example. Number theory deals with integers, while analysis deals with 
continuous sets of numbers such as the reals or their extension, the 
complex numbers. In pure analytic number theory, methods and results 
from the pure theory of complex analysis are used to express and prove 
facts about the integers. The area of mathematics known as numerical 
analysis provides a wealth of other such examples. Numerical analysis 
deals with computation; it focuses on computational means of obtain- 
ing numerical results for mathematical expressions. For a mundane 
example, the methods by which a hand-held calculator computes its 
square roots, sines, and cosines are not what one might expect; the 
highly theoretical tools of the theory of numerical analysis have been 
employed to design accurate and efficient algorithms to compute these 
functions. Numerical methods ingeniously and indirectly arrive at the 
actual numbers implied by the formal solution of a physical problem. 
Although this (pure) application of pure mathematics is rarely seen in 
text books or classrooms, it is essential to prediction and confirmation. 

4. Some Historical Illustrations. The following examples of applied 
mathematical theories can be loosely categorized by whether they are 
(primarily) examples of (1) moving from a mathematized scientific the- 
ory to a pure mathematical theory (abstraction), or conversely, (2) mov- 
ing from a pure mathematical theory to a mathematized scientific 
theory (application). Of course these "directions" are only approxi- 
mations; history, as usual, resists such neat categorization. 

Only relatively late in the history of mathematics do we begin to see 
clear examples of the application of pure theories; this is because it was 
late in the history of mathematics that mathematical theories reached 
the level of abstraction that we have today. Early mathematical break- 
throughs often took place in theoretical environments in which the 
mathematics was not clearly divorced from the physical problem it was 
developed to solve. The case of Euclidean geometry is a well-known 
example of the transition from mathematized scientific theory to pure 
mathematical theory. Initially (Euclidean) geometry was taken to be 
about physical space itself; proving geometrical theorems amounted to 
deducing facts about physical space. The development of non-Euclidean 
geometries, however, forced people to revise these views. These inter- 
nally consistent alternatives to Euclidean geometry were considered to 
be on the same mathematical footing as Euclid's geometry. If Euclidean 
geometry is in some sense "more true," it would have to be so in a 
non-mathematical sense, i.e., true of the physical world. 

Newton's work on the calculus is another example. In his second 
and preferred presentation of the Methodus Fluxionum et Serierum In- 
finitarum, Newton presents his version of the derivative (fluxion) in 
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dynamical terms-based on the idea of rate of change with respect to 
time. In response to Berkeley's criticism of infinitesimal quantities, 
Maclaurin's authoritative presentation of Newton's calculus sought to 
base this calculus on our intuitions of space, motion, velocity, and time. 
As Newton himself wrote, the theorems of the calculus do not deal 
with "fictions" or "ghosts of departed quantities," but rather with 
things that have an "existence in nature" (Guicciardini 1989, 51). 

Finally, Mark Steiner (1992) gives examples of mathematical devices 
used by present-day physicists that still lack a consistent pure mathe- 
matical underpinning. Quantum field theory makes use of an integral 
called the Feynman integral, which unlike any integral in pure math- 
ematics, is taken over an infinite dimensional space. As Steiner dem- 
onstrates, a general pure theory of such an integral has not yet been 
worked out. Another such device used in quantum electrodynamics is 
called "renormalization"; see Steiner 1992, 164 for details. In these 
examples, the mathematics-like devices employed by the scientific the- 
ory are motivated by physical considerations they make sense given 
the physical interpretation. Equally important, these techniques accu- 
rately describe and predict the physical phenomena. What is lacking, 
however, is a corresponding pure theory in which the techniques make 
sense. In the context of pure mathematical theories, these techniques 
make as much sense as "dividing by zero." If and when these tech- 
niques are given a pure mathematical foundation, the move from math- 
ematized scientific theory to pure mathematical theory will be com- 
plete. 

Consider now the opposite direction, moving from pure mathemat- 
ical theory to mathematized scientific theory. Recently, striking ex- 
amples have arisen of scientists making use of previously developed 
pure mathematical theories to formulate their scientific theories. As 
Steven Weinberg puts it: 

The mathematical structures that arise in the laws of nature ... 
are often mathematical structures that were provided for us by 
mathematicians long before any thought of physical application 
arose. It is positively spooky how the physicist finds the mathe- 
matician has been there before him or her. (Weinberg 1986, 725) 

The development of Einstein's general theory of relativity is a case in 
point. His theory identifies the effects of gravity with structural features 
of a curved spacetime (Riemannian geometry). Einstein, however, un- 
like Newton, did not need to invent the mathematics to go along with 
his physical insight. The calculus of four-dimensional Riemannian 
manifolds requires a special calculus of tensors (tensor analysis), which 
had been developed years earlier by Ricci and Levi-Civita, but which 
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had not yet been noticed by physicists. Einstein studied these results 
and used them as a basis for formulating his general theory of relativity. 
In just about the same way, the pure mathematical theory of Lie al- 
gebras was discovered by the physicist Murray Gell-Mann as just what 
he needed to describe the unitary spin properties of elementary parti- 
cles. Yet another example can be found in abstract algebra. Abstract 
group theory grew out of the work of Evariste Galois on the solution 
of polynomial equations by radicals. Much later, physicists discovered 
it as the mathematics needed for describing the symmetries of elemen- 
tary particles and incorporated it into the physical theory of symme- 
tries. 

It must be stressed that the distinction between pure and applied 
mathematics is a logical distinction; we should not expect to be able to 
definitively place work done in the actual development of mathematics 
and science precisely into one of these two categories. I offered the 
development of the calculus from Newton to the present as an example 
of the epistemic process of moving from mathematized science to pure 
mathematics. Does this mean that Newton was doing only applied 
mathematics? Not exactly. The theory of the calculus, as Newton left 
it, certainly was not a pure theory since it was still conceptually tied to 
physical concepts like motion, velocity, time, and space. At the same 
time, however, Newton's techniques and insights were instrumental in 
the development of the calculus as a pure theory and in this sense, were 
works of pure mathematics as well. 

5. An Objection and Reply. Michael Resnik's (1990) objection to the 
pure/applied distinction has to do with the distinction between the 
mathematical and the physical. He questions the clarity of the math- 
ematical/physical distinction by considering the ontology of theoretical 
physics. He argues that quantum particles are neither physical nor 
mathematical, but rather something in between. Resnik starts with the 
observation that from the standpoint of just about all theoretical re- 
alists (including nominalists), "quantum particles count as real and 
clearly physical." Resnik attempts to show that these physical quantum 
particles are also mathematical. 

Resnik offers two arguments for the claim that quantum particles 
are mathematical, a suggestive but inconclusive first effort and a (pu- 
tatively) conclusive second effort. The basic line of the first argument 
shows that quantum particles cannot be characterized as "tiny object[s] 
located in spacetime." 

Most quantum particles do not have definite locations, masses, 
velocities, spin or other physical properties most of the time. Quan- 
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tum mechanics allows us to calculate the probability that a particle 
of a given type has a given "observable" property. But that does 
not even imply that if we, say, detect a photon in a given region of 
spacetime then the photon occupied that position prior to our at- 
tempts to detect it or that the photon would have been in that 
region even if we had not attempted to detect it. Prior to its detec- 
tion a photon is typically in a state that is a superposition of definite 
(or pure) states, and quantum theory contains no explanation of 
how a photon or any other quantum system goes from a super- 
position into a definite state. (Resnik 1990, 370) 

We are urged to conclude that quantum particles are too peculiar to 
be "tiny objects located in spacetime." It is not clear how, even if this 
were right, it would entail that these physical objects were also math- 
ematical objects. At most it might lead us to rethink our characteriza- 
tion of quantum particles as "tiny objects located in spacetime." 

Resnik is aware of this problem; thus, he offers his second argument. 
As he states, one could still maintain that quantum particles are "tiny 
bits of matter with very weird properties ones that are only partially 
analogous to classical physical properties." His second argument 
makes use of the fact that "sophisticated" forms of quantum theory 
are stated in terms of fields, not particles. Resnik begins by pointing 
out more "weird" properties of quantum particles; he uses these to 
motivate his claim that 

it is better to think of particles as features of spacetime more like 
fields-rather than as bodies traveling through spacetime. (Resnik 
1990, 371) 

He quotes a physicist who agrees that the way to think of particles is 
as fields. Next Resnik tells us what a quantum field is not: 

quantum fields are not distributions of physical entities, rather they 
are roughly distributions of probabilities. (Resnik 1990, 371) 

Finally, we are told how to think of quantum fields: 

How, then, are we to think of quantum particles and fields? My 
proposal is that we take the mathematics as descriptive rather than 
as ''merely representational." Fields and particles are functions 
from spacetime points to probabilities. (Resnik 1990, 371) 

At bottom, the argument looks something like the following: 

(1) quantum particles are (manifestations of properties of?) quan- 
tum fields, and 
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(2) quantum fields are functions from spacetime points to proba- 
bilities, hence 

(3) quantum particles are (manifestations of properties of?) func- 
tions (from spacetime points to probabilities). 

The main problem I find in this account concerns the identification of 
quantum fields with mathematical functions. Why think that fields are 
functions? Recall that this is a "proposal" by Resnik. After making his 
proposal he gives one advantage to his proposal and one disadvantage. 
I will not attempt to sort out these advantages and disadvantages; in- 
stead I will argue that the proposal itself is a mistake, regardless of its 
advantages. 

First, confusion exists surrounding the conception of a field. Resnik 
conflates two uses of "field," the mathematical and the physical. A 
mathematical field, e.g., a vector field, is a function from the domain 
space to a vector space: if F is a field from DR x DR to a vector in 3-space, 
then it would map ordered pairs of real numbers (x,y) to vectors in 
3-space: F(x,y) = v := f1(x,y)i + f2(x,y)j + f3(x,y)k. Thus, mathemat- 
ical fields are indeed defined in terms of mathematical functions.7 There 
are also physical fields such as electromagnetic and gravitational force 
fields which are arrays of forces across a region of space. Any physical 
thing located in or sufficiently near this region of space will be acted 
upon by the component forces of the field corresponding to each point 
in space in which the field is non-zero. Physicists describe or represent 
electromagnetic fields using mathematical fields. They do not, however, 
identify or define electromagnetic fields as mathematical fields. It is 
a mistake to think that our physical theory entails that the electro- 
magnetic field surrounding an x-ray machine is literally a mathematical 
function. Physical theory no more asserts the identity of physical fields 
and their mathematical representations than it asserts the identity 
of an object's velocity and the mathematical function used to repre- 
sent it. 

So what is different about quantum fields? Nothing, really. The 
mathematical fields used by quantum theory are functions from R4 into 
a function space. The functions in the function space are the probability 
density functions for the particle. A quantum field itself is (roughly) an 
arrangement of probabilities of interacting in certain ways with the field 
in that region of space. Any physical thing (usually a measurement 
arrangement) located in or sufficiently near this region of space will 
have a certainly probability of being affected in a certain way corre- 

7. The mathematical fields of the quantum theory are really no more exotic (mathe- 
matically) than vector fields. These fields are maps from 4 into a function space com- 
posed of probability density functions. 
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sponding to each point in space in which the field is non-zero. Admit- 
tedly these quantum fields are harder to get a feel for than electromag- 
netic fields, but they are still physical we can physically interact with 
them in essentially the same way. 

Resnik proposes to take the mathematics as descriptive rather than 
as "merely representational." His use of this dichotomy, however, is 
nonstandard. The dichotomy is typically understood to mean that the 
mathematical conceptualization of a physical situation may either ac- 
tually describe, in some sense, the physics of the situation, or else merely 
model or represent the observables in a way that enables us to make 
successful predictions. As a simple example of the first kind, consider 
celestial mechanics. Our mathematical model of the solar system, in 
which the planets are in motion relative to the sun due to the force of 
gravity, is understood to actually describe the physics of planetary mo- 
tion. It is not merely a device for predicting where we will see bright 
spots in the night sky; the various components of the model (planets, 
motion, gravity, etc.) are taken to correspond to some real component 
of the physical situation. In contrast, consider "probability flow" in 
quantum mechanics. The idea of a probability flow is used to model 
and solve certain problems in quantum mechanics; it is based on the 
analogous idea of the flow of electrical current. However, unlike in the 
case of electrical current, probability flow is not taken to correspond 
to a real component of the actual physical process (see Morrison 1990, 
216 for discussion). 

Normally when someone asserts that a scientific theory (including 
its mathematics) actually describes a physical situation, s/he does not 
mean that the physical objects or properties are literally the mathe- 
matical objects used to described them. This is not a case of taking the 
mathematics to be "descriptive" of the physics, but rather as being 
literally constitutive of the physics. For example, the motion of a pro- 
jectile may be described by Newton's laws (expressed mathematically 
as functions). We understood (prior to relativity theory) Newton's laws 
and the associated mathematics as actually describing a fundamental 
law of nature. But by this we did not mean that the motion of the 
projectile is actually identical with the mathematical function used to 
describe it. 

In light of these problems in the second argument, reconsider Res- 
nik's remarks concerning his first argument. His claim that quantum 
particles are "tiny bits of matter whose properties are only partially 
analogous to classical physical properties" seems right. This, however, 
is no cause for alarm, since classical physical properties are themselves 
often only partially analogous to the properties of everyday experience. 
The characteristic of quantum particles or fields that unifies them with 
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other more familiar physical things is that they have effects or mani- 
festations that participate in the causal nexus. 

6. Concluding Remark. While the distinction between pure and applied 
mathematics is an intuitive one, its philosophical significance has been 
largely neglected. I have here attempted to flesh out and defend this dis- 
tinction. Given its coherence, this distinction would seem to leave the 
indispensability theorist with the further burden of establishing why we 
should believe that the pure mathematical theory is confirmed by sci- 
ence, and not merely the mathematized physical theory. 
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