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Abstract-Line spectral  frequencies  provide  an  alternate  parameter- 
ization of the  analysis  and  synthesis  filters  used  in  linear  predictive 
coding  (LPC) of speech. In  this  paper,  a new method of converting 
between  the  direct  form  predictor coefficients and line  spectral  fre- 
quencies is presented.  ,The  system  polynomial  for  the  analysis  filter  is 
converted  to  two  even-order  symmetric  polynomials  with  interlacing 
roots  on  the  unit  circle.  The  line  spectral  frequencies  are  given by the 
positions of the  roots of these  two  auxiliary  polynomials.  The  response 
of each of these  polynomials  on  the  unit  circle  is  expressed  as  a  series 
expansion  in  Chebyshev  polynomials.  The  line  spectral  frequencies are  
found  using an  iterative  root  finding  algorithm  which  searches  for  real 
roots of a  real  function.  The  algorithm  developed  is  simple  in  structure 
and is  designed  to  constrain  the  maximum  number of evaluations of 
the  series  expansions.  The  method  is  highly  accurate  and  can be used 
in  a  form  that  avoids  the  storage of trigonometric  tables  or  the  com- 
putation of trigonometric  functions.  The  reconversion of line  spectral 
frequencies  to  predictor coefficients  uses an efficient algorithm  derived 
by expressing  the  root  factors  as an expansion  in  Chebyshev  polyno- 
mials. 

I. INTRODUCTION 

I N many speech  coders, the parameters of the all-zero 
predictor filter or the corresponding all-pole synthesis 

filter are  coded  and  sent  as part of the information stream. 
Recently, there has  been  a  growing interest in the  use of 
line spectral frequencies (LSF’s) to code the filter param- 
eters for  linear predictive coding  (LPC) of speech [ 11-[4]. 
LSF’s are an  alternative  to  the direct form predictor coef- 
ficients or the lattice  form reflection coefficients for rep- 
resenting the filter response. 

The  direct  form coefficient representation of the  LPC 
filters is not conducive  to efficient quantization. Instead, 
nonlinear functions of the reflection coefficients (e.g., 
log-area ratio or inverse sine of the reflection coefficient) 
are often used as transmission parameters  [5].  These pa- 
rameters are preferable because they have  a relatively low 
spectral sensitivity. 

Line spectral frequencies are  an  alternate parameteri- 
zation of the filter with  a  one-to-one  correspondence  with 
the  direct  form predictor coefficients. The  concept of an 
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LSF  was introduced by Itakura [6].  LSF’s  encode  speech 
spectral information more efficiently than  other transmis- 
sion parameters  [2]-[4] , 171. This  can  be attributed to the 
intimate relationship between the LSF’s  and the formant 
frequencies. Accordingly,  LSF’s  can be quantized taking 
into  account spectral features known to be  important in 
perceiving speech  signals.  In  addition,  LSF’s lend them- 
selves to  frame-to-frame interpolation with  smooth spec- 
tral changes  because of their frequency  domain interpre- 
tation. 

The  emphasis of this work is on  the efficient computa- 
tion of line spectral frequencies. This will involve  an it- 
erative root finding algorithm  for  a series representation 
in Chebyshev polynomials.. The algorithm developed  is 
simple in structure  and constrains the maximum  number 
of function evaluations. These considerations are impor- 
tant if LSF’s  are  to  be  used in a real-time environment. 
The  reconversion of LSF’s  to  predictor coefficients is 
based  on reconstructing the  expansion in Chebyshev poly- 
nomials  from ‘the root factors. 

11. LINE SPECTRAL FREQUENCIES 

The starting point for deriving the LSF’s is the  response 
of the prediction error  filter  with P coefficients 

P 

A(z) = 1 - c a(k)z-! (1) 
k =  1 

The (a(k) }  are  the direct form  predictor coefficients. The 
corresponding all-pole synthesis filter is  l/A(z).  A mini- 
mum phase prediction error filter (i.e.,  one with  all its 
roots within the unit circle) has a  corresponding synthesis 
filter which  is  stable. 

A  symmetric  polynomial Fl(z) and  an  antisymmetric 
polynomial F2(z) related to A(z) are  formed by adding  and 
subtracting the time-reversed system function 

F,(z) = A(z) + z-(p+l) A(z-’) ,  

F&) = A(z) - z-(P+l) A(z-1). (2) 

The roots of these  two auxiliary polynomials  determine 
the line spectral frequencies.  The  two  polynomials  also 
have  the interpretation of‘being  the system  polynomials 
for a P + 1 coefficient .predictor derived from  a  lattice 
structure. The first P stages of the lattice have  the  same 

0096-3518/86/1200-1419$01.00 O 1986 IEEE 



1420 IEEE TRANSACTIONS  ON ACOUSTICS, SPEECH,  AND SIGNAL PROCESSING, VOL. ASSP-34,  NO. 6 ,  DECEMBER 1986 

response as  the  original P stage  predictor. An additional 
stage is added with reflection coefficients equal to + 1  or 
- 1 to give  the response Fl(z) or F2(z) ,  respectively [2]. 

Soong and Juang [2] have shown that if A(z)  is mini- 
mum phase,  then 1) the roots of Fl(z) and F2(z) are  on  the 
unit circle; and 2) the roots are simple and separate each 
other. In addition, any procedure which determines  an or- 
dered set of LSF’s can be used to construct  a minimum 
phase prediction error filter. 

The polynomials Fl(z) and F2(z) being symmetrical and 
antisymmetrical,  respectively,  have roots at z = + 1 and/ 
or z = - 1 which can be removed by polynomial division 

These polynomial divisions can be performed by addi- 
tions and subtractions of the coefficients of Fl(z)  and F2(z). 
The resulting G,(z) and G2(z) are  symmetric polynomials 
of even  order.  Since  the roots occur in complex conjugate 
pairs, it is o’nly necessary to  determine the roots located 
on the  upper  semicircle.  The roots of interest are  exp j w i  
f o r i  = 1, 2, - , P. The  line spectral frequencies are 
the angular positions of the roots 0 < wi < T .  

Fig. 1 shows the  arrangement of zeros of Fl(z) and F2(z) 
for both even and odd P. These plots show the actual root 
positions for  a voiced segment of speech (8 kHz sampling 
rate).  The polynomials Gl(z) and G2(z) have  the  same  ze- 
ros as Fl(z )  and F2(z),  respectively,  except  for  the zeros 
at z = f 1. It can be noted that  for any order,  the  lowest 
frequency LSF  corresponds  to  a root of G,(z) .  These plots 
show that for roots of A(z)  near  the unit circle,  a  pair of 
LSF’s tends to bracket  the  angular position of the root of 
A(z) .  However, it also  indicates  that  the difference be- 
tween pairs of LSF’s  is not necessarily a good indicator 
of how close  a  root of A(z) is to the unit circle.  Interpre- 
tation of the LSF’s in terms of formant resonances for P 
odd is more tenuous due  to  the influence of the real axis 
root of A @ ) .  

A stability theorem which uses a  form  similar  to  the 
LSF formulation  has  been formulated by Schussler [8]. 
The auxiliary symmetric and antisymmetric polynomials 
defined by Schussler  become  the  same  as Fl(z )  and F2(z) 
if A(z )  is  considered to be  a polynomial of degree P + 1 
with a(P + 1) = 0. The root locations of the auxiliary 
polynomials given by a  direct  application of Schussler’s 
theorem (i.e., without appending  a  zero valued coeffi- 
cient), and those given by an  LSF  formulation  are com- 
pared in Appendix A. This  examination provides addi- 
tional insight as  to  the  relationship of the  LSF’s  to  the 
roots of A(z) .  

The cases of an odd  number  and  an  even number of 
LSF’s differ in some  details.  Let  the  order of the poly- 

0 roots of FZ(z) 
0 roots of A ( z )  

@ “\ 
9 

1’ 
Fig. 1. Root locations. (a) P even (shown for P = 6 ) .  (b) P odd (shown 

for P = 7) .  

nomials Gl(z)  and G2(z) be 2M1 and 2M2, respectively, 

P P 
M1 = and M - -, 

2 - 2  
P even, 

Then explicitly showing the symmetry of the polynomial 
coefficients 

G,(z) = 1 + gI(1)z-l + * * + gl(MJz-M1 + * * * 

+ gl(l)z -(2M1- 1) + y 2 M 1 ,  

G ~ ( z )  = 1 + g2(l)z-’ + * * * + g2(M2)zPM2 + . * 

+ g2(l>z -(2M2-1) + y 2 M 2 .  ( 5 )  
Gl(z) contributes M1 pairs of conjugate zeros and G2(z) 
contributes M2 pairs of conjugate zeros (MI  + M2 = P ) .  
On the unit circle,  the  linear phase term can be removed 
to give  two  zero  phase  series  expansions in cosines 

Gl(ejo,) = e-jwMl G! 
7 
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where 

Gi(w) = 2 COS M ~ u  + 2g1(1) COS (MI - l ) ~  + * * 

+ 2g1(M1 - 1) cos w + g d M , ) ,  

G ~ ( w )  = 2 COS M ~ w  + 2g2(1) COS (M2 - 1) w + . * * 

+ 2g2(M, - 1) cos w + gz(M2). (7) 

Various methods to  locate  the roots of Gi(w) and G$(o) 
have been suggested.  The  procedure developed by Soong 
and Juang [2] evaluates (7) on  a fine grid by using a dis- 
crete  cosine  transform. Sign changes at  adjacent  grid 
points isolate  intervals  containing roots and  further bisec- 
tion of these  intervals gives an approximation  to  the  root 
positions. 

Kang and Fransen [7] have proposed two other methods 
for finding the LSF's. In  one  method,  the  autocorrelation 
functions of the coefficients of Gi(w) and G ~ ( w )  are used 
to calculate  power  spectra.  The  locations of the  local min- 
ima of the  power  spectra  give  the LSF's. The second 
method uses an all-pass  ratio filter 

The phase spectrum of the ratio filter is evaluated and 
whenever the  phase response takes on a  value which is  a 
multiple of ?r, the corresponding frequency is  an LSF. All 
of the  above  methods  require  the  evaluation of trigono- 
metric functions and may not be  appropriate  for  a real- 
time  environment. 

The method proposed in this paper requires no prior 
storage or calculation of trigonometric  functions. The 
method is introduced in two steps. In the next section,  the 
use of a Chebyshev polynomial expansion is discussed. 
Subsequently,  an efficient numerical algorithm to find the 
roots with this formulation is established. 

111. CHEBYSHEV SERIES .FORMULATION 

Consider  the frequency mapping x = cos w .  Then 

cos mw = T,(x), (9) 

where T,(x) is an mth-order Chebyshev polynomial in x .  
The Chebyshev polynomials satisfy the  order  recursion 

Tk(x) = 2xTk- l ( x )  - T k - 2 ( x ) ,  (10) 
with initial conditions, To(x) = 1 and Tl(x)  = x. The  se- 
ries expansions  in  cosines (7) can now be expressed in 
terms of Chebyshev polynomials 

G;(x) = 2Grr,(x) + 2g1(1)T,,- 1(x) ,+ - * 

+ 2glWl - 1)Tl(X) + gl (Ml) ,  

G$(x) = 2TM2(x) + 2g2(1) TM2- 1 ( ~ )  + * 

+ 2g2W2 - 1) Tl(4 + 82"- (11) 
Once  the roots {xi ] of Gi(x) and G$(x) are  determined, 
the corresponding LSF's are given by wi = arccos xi. The 

mapping x = cos w maps the  upper  semicircle  in  the z- 
plane  to  the real interval [ - 1, + 11. Therefore,  all  the 
roots xi lie between - 1 and + 1, with the root correspond- 
ing to the  lowest  frequency LSF being the  one  nearest 
+ l .  

The Chebyshev polynomial series  lends itself to  an  ef- 
ficient and accurate  evaluation which bypasses an expan- 
sion in powers of x. Let  the  series to be  evaluated  be rep- 
resented as 

N -  1 

Consider  the  backward  recurrence  relationship 

bk(X) = &bk+l(x) - bk+2(x) + ck? (13) 
with initial  conditions bN(x) = bN+ l(x) = 0. This recur- 
sion is used to  calculate bo@) and b2(x). Then Y(x) can be 
expressed in  terms of bo(x) and b2(x) 

N -  1 

y(x) = [bk(x) - 2xbk + 1(x) + bk + 2(x)1 &(x) 
k = O  

L 

The benefit of this  formulation is that  errors  in  the eval- 
uation of bo(x) and bz(x) tend to cancel [9]. This results 
in a numerically stable  evaluation of the  Chebyshev poly- 
nomial series.  Neglecting,the  factor of 2 which does not 
affect the root locations,  each  evaluation  can  be  computed 
with about N multiplies and 2N additions. 

IV. NUMERICAL SOLUTION FOR THE LINE SPECTRAL 
FREQUENCIES 

In this section,  a  numerical  algorithm  to find the roots 
corresponding to the  line  spectral  frequencies is devel- 
oped.  The  basic  task is to  isolate  the roots of Gi(x) by 
searching incrementally  for  intervals  in which the  sign 
changes. The search proceeds backwards from x = 1  since 
Gi(x) has the root nearest x = 1. The  location of the root 
in an interval containing  a  sign  change  is refined by suc- 
cessive bisection of the root interval.  The  function values 
are determined using the  backward  recursion  given in the 
previous section  to  compute  the  Chebyshev polynomials 
at  a given argument value.  In  this  way, only two  function 
values at a time need be  stored. Given the  interlacing 
property of the  roots,  the  search  for  a  root of G$(x) starts 
from the position of the 'root of Gi(x) just found. The al- 
gorithm continues as  before,  but interchanges the roles of 
the functions as each  root is found. 

Two different precisions  must  be specified for  the nu- 
merical algorithm. The initial  evaluation interval 6 must 
be sufficiently small so that two  or more roots of the  same 
function  do not occur  in  the  same  interval.  Let  the roots 
be denoted by {xi } for i = 1,  2, - - , P ,  and  let  them 
be ordered  such  that xi > xi - 1 .  The roots of G[(x)  (xi with 
i odd) interlace with the roots of G$(x) (xi with i even). 
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Fig. 2. Plots of G;(x) and G;(x) ( P  = 10). 

Then the initial evaluation interval must satisfy 

6 < min (xi - x i - 2 ) .  (15) 

A second increment E specifies the  acceptable  uncer- 
tainty in root position.  This  value must be small  enough 
so that in switching the search for roots from  one function 
to the  other,  a root is not missed or 1-oots are not inter- 
changed in  order. TO guarantee  this, E must be smaller 
than the minimum spacing between  pairs of roots,  one 
taken from each function, 

I 

E < min (xi - xi - (16) 

Experiments with speech data were conducted to  deter- 
mine reasonable values for 6 and E .  Five utterances com- 
prising 10 s of speech sampled at 8 kHz were used.  Three 
utterances were spoken by males and two by females. In 
all  cases,  a 20 ms Hamming window was used to perform 
a  10th-order  autocorrelation  analysis.  The  ensures  that  the 
predictor is minimum phase [lo]. The root locations  cor- 
responding to LSF's  were  determined to a high precision. 
A plot of G;(x) and G$(x) for a voiced segment of speech 
is shown in  Fig. 2. It shows  a tendency of roots to  pair 
which requires E to be significantly smaller than 6. 

Histograms of root differences are shown  in Fig. 3 .  The 
extreme values of the  root differences are summarized in 
Table 1. These results indicate  that 6 = 0.02 is suffi- 
ciently small to avoid missing sign changes.  Each interval 
of length 6 will be  bisected  to  further  resolve  the root lo- 
cation.  From  the  table, E should be chosen to be  less than 
0.0015,  implying  that 4 bisections will be sufficient (for 
6 = 0,02). While  the worst case uncertainty in the x-do- 
main is constant,  the uncertainty in the w-domain varies 
with w due  to the nonlinear  relationship between x and w .  
For  the  parameters  given  above  and assuming 8 kHz sam- 
pling,  the worst case uncertainty in the  LSF's varies be- 
tween 64 Hz at low and high frequencies down to l .6 Hz 
at  the middle frequencies.  However,  the uncertainty re- 
mains less  than 10 Hz for  the  frequencies between 200 
and 3800 Hz.  Xang  and  Fransen 1'71 suggest a 10 Hz res- 
olution in evaluating LSF's  and, furthermore, find that 

i 

. 6ot n 

bin width 0.01 
A. I 

c 0 . 2  0.4 0 . 6  0 . 8  1.0 1.2 

expanded first  bin 
0.005 0.01 

I bin width 0.01 

0 . 2  0 . 4  0 . 6  0.8 1 . 0  1.2 

(c) 
Fig. 3.  Histograms of root differences. (a) Differences for roots of G;(x). 
(b) Differences for roots of G;(x). (c) Differences between roots of G;(x) 

and G;(x). 

TABLE I 
ROOT DIFFERENCES 

Minimum Difference Maximum Difference 

G;(x)  only 0.0232 1.121 
G;(n) only 0.0564  1.195 
G;(x)  and G W  0.0015 0.946 

coarse quantization of LSF's below 300 Hz does not af- 
fect speech quality. 

As a last step,  the root position is estimated by linearly 
interpolating between the  function values determined in 
the  last bisection step.  This results in  an  average  error 
which is significantly smaller than the worst case value 
given by E .  The  given root finding algorithm has been for- 
mulated to limit  the number of  function  evaluations.  The 
initial search  for intervals containing roots uses approxi- 
mately 2/6 + P evaluations. Bisection then uses an ad- 
ditional ( [log2 (6l~)I ) P evaluations.  For  the values of 6 
and E given above,  the number of function evaluations for 
a 10th-order LPC system is less than 150. The actual 
number is somewhat smaller than this value,  since  the 
search for roots can be terminated when all roots are 
found. 

The algorithm to find the LSF's is extremely simple  in 
structure and keeps the number of function evaluations 
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relatively constant.  The numerical analysis  literature 
abounds with more  sophisticated root finding algorithms. 
These will tend to find the roots with fewer  function eval- 
uations 6n  the average.  However, most of these algo- 
rithms are  inappropriate  in  a real-time environment since 
the maximum number of function  evaluations  is indeter- 
minate. 

A slightly more complex  root finding algorithm which 
combines  bisection with inverse  parabolic interpolation 
[ 111 merits consideration  for some applications.  It  can  be 
used to refine the  root position when an interval contain- 
ing a root has  been identified. The worst case number of 
function evaluations  for  this algorithm is two or three 
times that for  simple  bisection, but the  average  number  is 
smaller. 

V. CONVERSION OF LSF’s TO PREDICTOR 
COEFFICIENTS 

The  conversion of LSF’s to predictor coefficients is  less 
computationally intensive  than  deriving  LSF’s  from pre- 
dictor coefficients. Each  LSF oi gives rise to  a  second- 
order polynomial factor of the  form 1 - 2 cos q z - l  + 
zP2. These can be multiplied together to form the  auxil- 
iary polynomials directly. In this  section, an alternate re- 
construction process using the Chebyshev series represen- 
tation will be  formulated.  This  leads to an efficient 
reconstruction process  which takes symmetries  in  the  aux- 
iliary polynomials into  account. 

The polynomials Gf (x) and Gi(x) are reconstructed from 
their roots by successive polynomial multiplication of the 
appropriate first-order LSF polynomials 

MI 

Gi(X) = II 2(X - X 2 k - 1 ) ,  
k =  1 

M2 
Gi(X) = II 2(X - x 2 k ) .  ( 17) 

k =  1 

However,  it is not the coefficients of the powers of x that 
are  desired,  but  the coefficients of the Chebyshev poly- 
nomial terms.  Consider an Nth-order polynomial ex- 
pressed as  a  Chebyshev  series 

N 

&(X) = Ck T k ( X ) .  (18) 
k = O  

Adding one  more  root  factor  to form an N + 1st-order 
Chebyshev representation, 

Y N +  l(x) = 2(X - y N ( x )  

N +  1 

= [ c k - 1  - h r c k  + c k + 1 1   T k ( x ) .  (19) 
k =  - 1  

This  expression has been put in this form by applying  the 
relation 2xTk(x) = Tk - 1 ( ~ )  + Tk + 1 ( ~ )  and defining c k  to 
be zero fork < 0 and k > N. In addition,  note  that T- 1 ( ~ )  

= Tl(x), which means that  the  term  for k = - 1 should 
be combined with the  term  for k = 1. The bracketed  term 
in (19) is the coefficient of the kth Chebyshev polynomial 

in the representation of YN+ l(x). This equation defines one 
step  in  the  recursion  to  determine  the coefficients of the 
Chebyshev representation  from  the root factors. 

The coefficients for  Gl(z)  and G2(z) can  be  determined 
directly from Gi(x) and Gi(x). This  involves  applying  a 
factor of $ to  all  but  one of the coefficients. In fact, mul- 
tiplication by this  factor can be  avoided if the recursion is 
modified to directly produce  the coefficients of Gl(z) and 

As the  penultimate  step, Gl(z) and G2(z) must be mul- 
tiplied by the polynomial terms with roots at f l to  give 
Fl(z) and F2(z).  This  can  be  carried  out on half of the total 
number of coefficients in these  auxiliary polynomials 
(using symmetry) and involves only additions and sub- 
tractions.  Finally, the coefficients of the prediction error 
filter are  determined  from 

Gz(z). 

The reconstruction procedure described requires  about 
P2/4  - PI2 multiplications and P2/2  + 2P - 4 addi- 
tions. This  is  less  than a of the number of multiplications 
and additions cited for  the  reconstruction procedure sug- 
gested by  Kang and  Fransen [7]. 

A minimum phase  prediction  error filter results.  This 
follows directly from the fact  that  the reconstruction pro- 
cedure is the step-by-step inverse of the  procedure  to find 
the LSF’s. As long as  the  LSF’s  are  distinct and Fl(z) and 
F2(z) are formed from alternating  roots,  the minimum 
phase property of the reconstructed prediction  error filter 
is guaranteed. 

An alternative  to  converting  the  LSF’s to predictor  coef- 
ficients is  the use of filter structures that use  the  LSF’s 
directly as parameters.  This kind of structure  implements 
Fl(z) and F2(z) directly as  cascaded  second-order  sections 
and can be used as the  basis of both  the  analysis  (predic- 
tion error) filter and  the  corresponding synthesis filter [7]. 
However, this form of filter requires  more  arithmetic  op- 
erations per  sample than a  direct form filter using the  pre- 
dictor coefficients. The tradeoff is then between this  extra 
computation which occurs for each sample of data pro- 
cessed and  the  computation required to  convert  LSF’s  to 
predictor coefficients. Kang and  Fransen [7] show that for 
reasonable frame  sizes  in an LPC  coder,  conversion  to 
predictor coefficients and  the  use of a  direct form filter 
structure results in  a  lower  operations count than the use 
of an LSF based filter structure.  This  conclusion is 
strengthened by the  more efficient procedure  to  convert  to 
direct form coefficients described  here. 

The reconstruction procedure given in  this  section  starts 
with the roots in the x-domain and  thus ‘complements the 
algorithm to  derive  them from the  predictor coefficients. 
In any transmission system,  the LSF’s must be quantized 
and coded.  In  order to avoid conversion  to  the w-domain, 

‘These counts apply for P even.  For P odd, the number of operations  is 
slightly smaller than given by these  formulas. Note also  that  the counts 
do not include  P‘multiplications by the  factor and P multiplications by 
the factor 2. 
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the  quantization  procedure must be modified to work di- 
rectly on the xi values.  For  scalar  quantization in the w- 
domain,  an equivalent scheme in the  x-domain can be  for- 
mulated by simply applying the cosine nonlinearity to the 
quantizer boundaries and  output  values. Kang and  Fran- 
sen [7] describe  a  scheme to code  the  center frequency 
and difference frequency of a  pair of LSF's.  This proce- 
dure can be viewed in two  dimensions as a  quantizer with 
(rotated) rectangular  boundaries. In the  x-domain,  the 
equivalent quantizer boundaries are  curved, but locally, 
can be well approximated by straight  lines. With straight 
line  boundaries,  the x-domain quantizer can be imple- 
mented with only  a  small  increase in complexity and stor- 
age  over  the  o-domain  quantizer. Cawing out the  quan- 
tization in the  x-domain  eliminates  the need to evaluate 
transcendental functions in the  conversion  to  or from pre- 
dictor coefficients. 

VI.  SUMMARY AND CONCLUSIONS 
This  paper has reported a method for converting pre- 

dictor coefficients to a  set of line  spectral  frequencies 
which can be used for both even-  and  odd-order  LPC  sys- 
tems. The proposed method with the given interval pa- 
rameters is highly accurate. The accuracy can be further 
increased by performing more bisections within the root 
interval, of course  at  the  cost of more function  evalua- 
tions. The use of an expansion in Chebyshev polynomials 
obviates  the  calculation of trigonometric functions and/or 
the  storage of trigonometric  tables.  The  evaluation of 
these  expansions makes use of an  efficient and numeri- 
cally stable  algorithm.  The root finding algorithm which 
determines the LSF's has been structured to  limit the 
maximum number of function  evaluations  for  a  given  ac- 
curacy constraint. 

The reconversion of the  LSF's  to predictor coefficients 
is formulated  in  terms of a  recursive calculation of the 
coefficients of the Chebyshev expansion. This gives a 
computarionally efficient algorithm which takes  into ac- 
count inherent  symmetries  in  the auxiliary polynomials. 
If the  LSF's  are  expressed,  in  the  cosine  domain, trigo- 
nometric computations can be  avoided  altogether. 

As a test of the  overall  procedure,  LSF's were found 
using the procedure described in Section IV for  the speech 
data used previously. The analysis conditions are the same 
as specified earlier.  The 10 LSF's  for each frame of speech 
were reconverted to  predictor  coefficients by the proce- 
dure described in Section V. The maximum difference be- 
tween  a reevaluated predictor  coefficient and the original 
predictor  coefficient was 3.8 X lop5. 

APPENDIX  A 
RELATIONSHIP  BETWEEN LSF's AND THE PREDICTOR 

ROOTS 
The relationship between the  LSF's  and  the roots of the 

prediction error filter A(z)  is  explored in this  appendix.  In 
the main text,  examples  for real speech data have  shown 
that  there is indeed a tendency for  the LSF's to dusts 
around the angular positions corresponding to roots of A(z) 

when these are  close  to  the unit circle.  Some insight into 
the clustering phenomenon can be obtained by examining 
another formulation related to that  for  the LSF's. 

Schussler [8] has given a stability theorem for  a poly- 
nomial &). The stability condition is expressed in terms 
of two auxiliary polynomials 

E,(z) = A(z) + z - p  A(z-' ) ,  

&) = A(z) - z - p  A(z-' ) .  (A. 1) 

The polynomial A(z) has all its roots within the unit circle 
if and only i f  I) the roots of E,(z) and P2(z) are on the 
unit circle; 2) the roots are simple and separate each other; 
and 3) la(P)I < 1.2 These auxiliary polynomials differ 
from those used for  LSF's by being of order P instead of 
order P + 1. As a  result,  the roots of Schussler's poly- 
nomials cannot be used to uniquely reconstruct A(z) .  An 
additional quantity must be  specified.  This could be the 
coefficient a ( P ) ,  which in addition is known to  have mag- 
nitude less than unity. As will be  seen,  the formulation 
derived from  Schussler's theorem has drawbacks as  a 
pseudo-LSF representation. 

Consider  rewriting E,(z) and P2(z) as 

where the ratio filter R"(z) is defined as 

Note that the only difference between this ratio filter and 
that for  the  LSF  formulation  [see (8)] is an extra z-' delay 
term.  The auxiliary polynomials  have roots at  those  points 
on the unit circle at which the phase of  the all-pass ratio 
filter passes through multiples of a. 

A  simple  example will point out some of the ramifica- 
tions of the extra delay term associated with the LSF  for- 
mulation. Consider  an A(z )  which has conjugate pairs of 
roots near the unit circle.  The  LSF's  coalesce  as  the roots 
of A(z)  approach the unit circle. By contrast,  the formu- 
lation that arises from Schussler's stability theorem gives 
single roots at the  angular position of the roots of A(z) 
but,  in  addition, roots appear midway between these po- 
sitions, Fig. 4 shows a phase plot of both R(e'") (LSF 
formulation) and R"(eJ") (Schussler's formulation) for the 
case of an A(z)  which has 3 pairs of conjugate roots, each 
with magnitude 0.99. The angular positions of the roots 
correspond to o equal  to aI4, nf2,  and 3sl4. Symbols are 
used to mark the places where  the phase angle crosses a 
multiple of K .  In the vicinity of the roots of A(z ) ,  the phase 
undergoes an excursion through nearly 2a rad for both 
formulations.  However,  the phase offset due to the  linear 
phase component in the  LSF  formulation is enough to 
substantially change  the positions of the roots of  the  LSF 

'The  last condition was added by Gnanasekaran 1121. Conditions (1) and 
(2) by themselves also hold if A@.) has all its roots  outside  the unit circle. 
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Fig.  4. Phase responses  of R(ej“) and 8(eJw)-A(z)  has  roots at 0.99eti’”’4, 

0.99esTn, and 0.99es3”’4. 

auxiliary polynomials from  those for Schussler’s formu- 
lation. 

Kang and  Fransen [4] point out that  the group delay of 
R(z)  increases in the neighborhood of a  root of A(z) .  This 
clearly also  applies  to @). However,  the previous ex- 
ample  has shown that peaking of the  group  delay or  the 
equivalent rapid change  in phase angle is not sufficient in 
itself for  a  pair of LSF’s  to  occur  close  together. 

The previous example can be explored further.  For  this 
discussion, only the  LSF  formulation will be  considered. 
Consider changing the radial position of the first pair of 
roots of A(z) (at angular position w = a/4) while keeping 
the  other root positions  constant. As the radius of this pair 
of roots is reduced to 0.8, the  phase  change  occurs more 
gently.  The lowest frequency  LSF’s are now spread  apart 
(see Fig. 5) .  When the radius is reduced to 0.5, the  phase 
change is even more  gradual  and effects the  overall phase 
in the vicinity of w = n/2. There  are now three closely 
spaced LSF’s near w = n/2. As the radius is further re- 
duced to 0.2, the  LSF’s  take  on  a different Configuration. 
The lowest LSF has moved to  just above w = a/4, the 
second and third  LSF’s  occur  close  together near w = 
7r/2, and  the fourth LSF  lies midway between these  LSF’s 
and the  two paired LSF’s  near w = 3n/4. This root con- 
figuration shows that  the  sharp  resonance at w = n/2 is 
signaled by a  close  spacing between the second and third 
LSF’s.  In  the coding scheme proposed by Kang and Fran- 
sen [7 ] ,  LSF’s are coded  in  pairs specified by a  center 
frequency and an offset frequency. In this  case,  the coding 
would be applied to two  pairs of LSF’s, each of which 
has a relatively large offset. After  quantization of the off- 
set, this coding scheme may not adequately represent the 
fact  that  the  upper  LSF from one  pair  and  the  lower  LSF 
from another pair are closely spaced. 

This  appendix  has  shown  examples  that point out  that 
the relationship between the  positions of the roots of A(z)  
and the  LSF configuration is  more  fragile  than  the  litera- 
ture would lead  one to believe.  Nonetheless,  this  does  not 
invalidate the use of LSF’s in speech  coding.  Clearly,  the 
extensive  perceptual testing carried out by Kang and 

Fig. 5. Phase response ofR(ej”)-A(z) has roots  at r,etiia’4, 0.99etiUa,  and 
0.99efi3“‘4. 

Fransen shows that in  spite of hurdles in the  interpretation 
of the  LSF’s in terms of the  spectral  features or roots of 
A(z ) ,  LSF’s do efficiently represent the perceptually im- 
portant features of speech  spectra. 
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