
Computational Statistics
DOI 10.1007/s00180-007-0021-8

O R I G I NA L PA P E R

Using a VOM model for reconstructing potential
coding regions in EST sequences

Armin Shmilovici · Irad Ben-Gal

© Springer-Verlag 2007

Abstract This paper presents a method for annotating coding and noncoding
DNA regions by using variable order Markov (VOM) models. A main advan-
tage in using VOM models is that their order may vary for different sequences,
depending on the sequences’ statistics. As a result, VOM models are more flex-
ible with respect to model parameterization and can be trained on relatively
short sequences and on low-quality datasets, such as expressed sequence tags
(ESTs). The paper presents a modified VOM model for detecting and correct-
ing insertion and deletion sequencing errors that are commonly found in ESTs.
In a series of experiments the proposed method is found to be robust to random
errors in these sequences.

Keywords Variable order Markov model · Coding and noncoding DNA ·
Context tree · Gene annotation · Sequencing error detection and correction

1 Motivation and introduction

In order to reveal complex biological processes, many research projects now-
adays focus on whole-genome analyses. A main analysis task is to find the
coding sequences that provide templates for a protein production. Interest in
protein-coding DNA has dramatically grown with the exposure of microarray

A. Shmilovici (B)
Department of Information Systems Engineering, Ben-Gurion University, P.O. Box 653,
Beer-Sheva, Israel
e-mail: armin@bgumail.bgu.ac.il

I. Ben-Gal
Department of Industrial Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel

A. Shmilovici, I. Ben-Gal

gene-expression data. Microarray analysis heralds an important advance in the
determination of genes functionality under various conditions and in the iden-
tification of co-expressed genes (Delcher et al. 1999; Hanisch et al. 2002). For
these purposes, automated sequencing techniques have become a vital scien-
tific tool for producing a large amount of relatively reliable DNA data. Current
gene-banks contain more than 3 billions bases of human DNA sequences and
complete DNA sequences for dozens of other species. New genomes are being
published in public databases and an increased number of gene-finding pro-
grams are now available for predicting protein-coding genes (Majoros et al.
2004; Brejova et al. 2005).

Given the genome data, many problems in computational biology can be
reduced to optimal genome annotation, which is the process of attaching bio-
logical information to sequences (Cawley and Pachter 2003). Gene-finder pro-
grams (Fickett 1996; Larsen and Krogh 2003) are often used for annotating
DNA sequences into segments of various suspected functionalities. The actual
functionality of a segment may be validated by biologists using in-vivo
(wet-laboratories) experiments.

The identification of protein-coding regions by computational techniques is
challenging from several reasons. First, it is estimated that less than 3% of the
human genome contains protein-coding sequences. Such a ratio introduces a
combinatorial complexity to the search. Second, more than 60% of all the data-
base entries today consist of expressed sequence tags (ESTs)1 (Hatzigorgiou
et al. 2001; Iseli et al. 1999; Lottaz et al. 2003). ESTs are sub-sequence of a tran-
scribed protein-coding or non-protein coding DNA sequences. They represent a
snapshot of genes that are expressed in certain tissues at a certain developmen-
tal stages. An EST is produced by a single-pass sequencing of a cloned mRNA
taken from a cDNA library. The resulting sequence, whose length is limited
to several hundreds nucleotides, has a relatively low quality and often con-
tains sequencing errors such as insertion, substitution and deletion. Most EST
extraction projects result in a large numbers of sequences. These are usually
submitted to public databases, such as GenBank and dbEST, as batches of doz-
ens to thousands of entries with a great deal of redundancy and errors. Hence,
there is a vital need for efficient tools that can search within EST databases for
protein-coding sequences which merit further investigation.

Since the computational identification of protein-coding DNA regions in the
genome is a difficult problem, there is not a single standard solution for it,
but rather a wealth of different approaches. Gene finding approaches can be
roughly divided into several categories which are sometimes combined into a
unified computational procedure (Fickett 1996; Brejova et al. 2005):
• Extrinsic approaches use a reverse translation of the genetic code to search

the target genome for sequences that are similar to known mRNA sequences
or proteins products. The advantage of this method is that once such a
similarity is found, it yields good clues regarding the functionality of the

1 dbEST release 042905 contains 26,773,945 public entries. 6,057,770 sequences are of human origin
(http://www.ncbi.nlm.nih.gov/dbEST/dbEST_summary.html).

Using a VOM model for reconstructing potential coding regions in EST sequences

potentially new gene. The disadvantage is that when no homologue is found
to the genomic sequence, one cannot conclude that the sequence is noncod-
ing. The continuous growth of protein databases increases both the predic-
tion ability and the required computational efforts of these approaches.

• Comparative Genomics approaches take advantage of the fact that genes
and other functional elements undergo mutation at a slower rate then the
rest of the genome. Genes can thus be detected by comparing genomes of
related species. It is assumed that comparative genomics approaches will
gain more attention as new genomes will be sequenced.

• Ab Inito approaches search systematically within the target genome for
signals or contents of protein-coding genes, such as Pribnow box and tran-
scription factor binding sites (Kel et al. 20003). Pattern-based statistical anal-
ysis is often used to reveal the different statistical properties of coding and
noncoding regions. This approach is problematic as many patterns are not
yet recognized and their identification often requires complex probabilistic
models (e.g., Bernaola-Galvan et al. 2000; Nicorici et al. 2003; Ben-Gal et al.
2005). The hexanucleotide bias, which was formalized as an inhomogenous
three-periodic fifth-order Markov chain [hereafter denoted as Markov(5)],
is an example of a known model that was incorporated in genefinders such as
GENSCAN (Burge and Karlin 1998). Hidden Markov models (HMM) are
another popular model used to combine different statistical models (Cawley
and Pachter 2003).

The implementation of variable order Markov (VOM) model to identify
DNA sequences (e.g., Herzel and Grosse 1995; Ohler et al. 1999; Orlov et al.
2002; Shmilovici and Ben-Gal 2004) belongs to the last category of approaches.
The VOM model can be seen as a generalization of the conventional (fixed-
order) Markov model. In VOM models, unlike the Markov models, the depen-
dence order is not fixed but rather depends on the sequence of observed nucle-
otides (called context). The flexibility in the selection of the model order per
each context guarantees an efficient model parameterization, and in general, is
found to balance well the bias-variance effects (Ben-Gal et al. 2005). Accord-
ingly, the model can be better adapted to low quality data, such as EST, or to
small datasets, such as an initially sequenced genome.

The contribution of this work is twofold. The first contribution is the use of the
VOM model for supervised identification of coding and noncoding sequences, as
proposed in Shmilovici and Ben-Gal (2004). The underlying idea is to construct
two VOM models based on two given training sets: one VOM model represent-
ing the coding sequences, and the other VOM model representing noncoding
sequences. Then, at the classification stage, the sequence type is determined
by the VOM model which obtains a higher likelihood score or equivalently a
higher compression rate. In Sect. 3, we experimentally demonstrate that such a
VOM-based classifier is fairly robust to random substitution errors in the DNA
sequence.

The second and main contribution of this work is the implementation of the
constructed VOM models for detecting and ‘correcting’ insertion and deletion

A. Shmilovici, I. Ben-Gal

sequencing errors that are often found in EST sequences. The goal here is
to propose an algorithm that can automatically ‘correct’ low quality sequence
data. Our preliminary sequence annotation program shows the usefulness of
the suggested algorithm when used for this purpose.

The rest of this paper is organized as follows. Section 2, describes the VOM
model and its use for compression. Section 3 presents sequence-annotation
experiments that focuse primarily on error-correction ability of the proposed
VOM model. Section 4 concludes the paper.

2 Introduction to VOM models

The VOM model was first suggested by Rissanen (1983) that called it the con-
text tree and used it for data compression purpose. Later variants of the model
were used in various applications, including genetic text modeling (Orlov et al.
2002), classification of protein families (Bejerano 2001), and classification of
transcription factor binding sites (Bilu et al. 2002). Ziv (2001) proves that in
contrast to other models the convergence of the context tree model to the ‘true
distribution’ model is fast and does not require an infinite sequence length. The
VOM algorithm we used here can be considered as a variant of the prediction
by partial match (PPM) tree (with a different smoothing procedure), which
was found in Begleiter et al. (2004) to outperform other VOM models vari-
ants. Yet, note that the used VOM model is different in its parameterization,
growth, and pruning stages from the previous versions of the model. These
differences become vital when comparing the algorithms on small datasets (Ziv
2001; Ben-Gal et al. 2005; Begleiter et al. 2004).

Next, we shortly present the VOM model that we used in our experiments.
We follow the explanations and style in Begleiter et al. (2004) and Ben-Gal
et al. (2005) that contain further details on the model and its construction.

Let
∑

be a finite alphabet of size |
∑

|. In case of the DNA sequences
∑ =

a, c, g, t and |∑ | = 4. Consider a sequence xn
1 = x1x2 · · · xn where xi ∈ ∑

is the symbol at position i, with 1 ≤ i ≤ n in the sequence and xixi+1 is the con-
catenation of xi and xi+1. Based on a training set xn

1, the construction algorithm
learns a model P̂ that provides a probability assignment for any future symbol
given its past (previously observed symbols). Specifically, the learner generates
a conditional probability distribution P̂(x|s) for a symbol x ∈ � given a context
s ∈ �∗, where the * sign represents a context of any length, including the empty
context. VOM models attempt to estimate conditional distributions of the form
P̂(x|s) where the context length |s| ≤ D varies depending on the available
statistics. In contrast, conventional Markov models attempt to estimate these
conditional distributions by assuming a fixed contexts’ length |s| = D and,
hence, can be considered as special cases of the VOM models. Effectively, for
a given training sequence, the VOM models are found to obtain better model
parameterization than the fixed-order Markov models (Ben-Gal et al. 2005).

As indicated in Begleiter et al. (2004), most learning algorithms include three
phases: counting, smoothing, and context selection. In the counting phase, the

Using a VOM model for reconstructing potential coding regions in EST sequences

algorithm constructs an initial context tree T of maximal depth D, which defines
an upper bound on the dependence order2 (i.e., the contexts’ length). The tree
has a root node, from which the branches are developed. A branch from the
root to a node represents a context that appears in the training set in a reversed
order. Thus, an extension of a branch by adding a node represents an extension
of a context by an earlier observed symbol. Each node has at most |

∑
| children.

The tree is not necessarily balanced (i.e., not all the branches need to be of
the same length) nor complete (i.e., not all the nodes need to have |

∑
| chil-

dren). The algorithm constructs the tree as follows. It incrementally parses the
sequence, one symbol at a time. Each parsed symbol xi and its D-sized context,
xi−1

i−D, define a potential path in T, which is constructed if it does not yet exist.
Note that after parsing the first D symbols, each newly constructed path is of
length D. Each node contains |

∑
| counters of symbols given the context. The

algorithm updates the contexts by the following rule: traverse the tree along
the path defined by the context xi−1

i−D and increment the count of the symbol
xi in all the nodes until the deepest node is reached. The count Nx(s) denotes
the number of occurrences where symbol x follows context s in the training
sequence. These counts are used to calculate the probability estimates of the
predictive model.

We illustrate the VOM learning algorithm with the following toy example:
consider � ≡ {a, c, g, t}, and a training sequence x180

1 , which is composed of 30
consecutive repetitions of the pattern “aaacgt”. Figure 1 presents the resulting
context tree for D = 3. Only nodes that were traversed at leased once (having
at least one non-zero counts) are presented. Each node is labeled by the con-
text which leads to it. The first line of numbers below the node label presents
the four counts Nx(s). For example, in the node labeled as “aa”, the counts are
Na(aa) = 30, Nc(aa) = 30, Ng(aa) = 0, and Nt(aa) = 0. That is, from a total of 60
training sequence that contained the subsequence “aa”, 30 sequences preceded
by the symbol ‘a’ and 30 sequences preceded by the symbol ‘b’.

The purpose of the second phase of the construction algorithm is to use the
counts as a basis for generating the predictor P̂(x|s). An important question
is how to handle unobserved events with zero value counts. Most variants of
the VOM algorithm use some pseudo-counts to smooth the probability of zero
frequency events. We used the following estimation rule for the conditional
probability:

P̂(x|s) =
1
2 +Nx(s)

|�|
2 + ∑

x′∈�

Nx′ (s)

The last line in each extended node in Fig. 1 presents the respective four esti-
mators P̂(x|s). For example, in the same node

2 We use D ≤ log (n + 1)
/

log (|�|), where n denotes the lengths of the training sequences. In our
experiments D = 8.

A. Shmilovici, I. Ben-Gal

root

 90 30 30 30
.50 .17 .17 .17

'a'

 60 30 0 0
.66 .33 .01 .01

'c'

 0 0 30 0
.02 .02 .95 .02

't'

 29 0 0 0
.95 .02 .02 .02

'g'

 0 0 0 30
.02 .02 .02 .95

'gt'

29 0 0 0
'cgt'

29 0 0 0

'acg'

0 0 0 30

'aac'

0 0 30 0

'aaa'

 0 30 0 0
.02 .95 .02 .02

'taa'

 29 0 0 0
.95 .02 .02 .02

'gta'

29 0 0 0

'cg'

0 0 0 30

'ac'

0 0 30 0

'ta'

 29 0 0 0
.95 .02 .02 .02

'aa'

 30 30 0 0
.49 .49 .01 .01

Fig. 1 The VOM model generated from 30 consecutive repetitions of the sequence “aaacgt”.
The first line of numbers below each node label present the four counts ordered with respect to
nucleotides a, c, g, t. The second line of numbers below each node label presents the four conditional
probabilities estimates. Truncated nodes are dark shaded

P̂(a|aa) =
1
2 +30
4
2 +60

∼= 0.49.

The purpose of the third phase of the algorithm is to select only the signifi-
cant contexts, thus reducing the number of parameters. Such reduction avoids
over-fitting to the training data, and reduces both the memory usage and the
computation time. We prune any leaf (external node) that does not contribute
additional information relative to its “parent” node in predicting the symbol x.
In particular, we compute the Kullback–Leibler divergence (KL) of the condi-
tional probabilities of symbols between all leaves at depth k and their parent
node at depth k − 1:

KL(leaf(s)) = ∑
x∈� P̂(x|s) log2

(
P̂(x|s)
P̂(x|s_)

)
, where s = xkxk−1xk−2 · · · denotes

the context represented by the leaf, and s− = xk−1xk−2 · · · denotes the sub-
context represented by parent node.

A leaf is pruned if its symbols’ distribution is insufficiently different from the
symbols’ distribution in its parent node, thus, if it complies with KL(leaf(s)) ≤
2(|�| + 1) log2(n + 1) . The pruning process continues recursively to deeper
nodes in the tree. In Fig. 1, the truncated nodes are smaller and dark shaded.
For example, the leaf labeled “aac” has exactly the same counts distribution

Using a VOM model for reconstructing potential coding regions in EST sequences

as its parent node “ac”, i.e., effectively, KL(leaf(aac)) = 0. Thus, the longer
context “aac” does not change the predictor P̂(x|aac) over P̂(x|ac) and, there-
fore, is truncated from the VOM tree. The truncation process is repeated recur-
sively, and the node labeled “ac” is truncated too at a later iteration, as seen in
Fig. 1.

Once the VOM tree is constructed it can be used to derive the likelihood
scores of test sequences P̂(xT

1) = ∏T
i=1 P̂(xi|x1 · · · xi−1). Consider for exam-

ple the VOM model in Fig. 1 and a test sequence x5
1 = gtaac. The likeli-

hood of this sequence is computed as follows: P(gtaac) = P(g) × P(t|g) ×
P(a|gt) × P(a|gta) × P(c|gtaa) ∼= P(g) × P(t|g) × P(a|t) × P(a|ta) × P(c|taa) =
0.17 × 0.95 × 0.95 × 0.95 × 0.02 = 0.002915 (respectively, by nodes “root”, “g”,
“t”, “ta”, and “taa” in Fig. 1).

Sequences with similar statistical properties to sequences from the training
set (i.e., sequences that belong to the same class of the training dataset) are
expected to obtain a higher likelihood score. The log of the inverse likelihood,
− log P̂(xi|x1 · · · xi−1), is called the log-loss and known to be the ideal compres-
sion or “code length” of xi, in bits per symbol, with respect to the conditional
distribution P̂(X|x1 · · · xi−1) (Begleiter et al. 2004). That is, a good compression
model that minimizes the log-loss can be used as a good prediction model that
maximizes the likelihood and vice-versa (Feder and Merhav 1994). For exam-
ple, the number of bits required to represent the previous x5

1 is approximately
− log2 (0.002915) ∼= 8.42 bits. Simple binary coding of 2 bits per symbol would
require 10 bits to code this sequence of length five. Thus, the VOM succeeded to
compress x5

1. Moreover, the longer the sequence, the higher is the probability to
obtain a lower compression rate. These known properties are used in the next
section when identifying the test sequences by the model that provides the best
compression ratio.

3 Annotating coding and noncoding DNA

Sequence annotation, such as the identification of protein-coding sequences, is
a multi-step process (Fickett 1996; Brejova et al. 2005). In coding sequences,
the nucleotides operate in triplets, called codons, where each codon encodes
one amino-acid. The coding sequences are scanned in three alternative codon
reading frames (sliding windows), since even for an error-free sequence, the first
complete codon can start from the first, second or the third nucleotide in the
sequence. The three reading frames are monitored simultaneously to indicate
which of them represents the ‘correct’ encoding frame. After detecting a stop
codon, the program scans the sequence backward, searching for a start codon.
Sequence boundaries are also scanned for similarities with other known motifs,
such as transcription factor binding sites and splice signals (Ohler and Niemann
2001). Here, however, we focus only on certain modules of the genefinder pro-
grams, without relying on additional biological information. Namely, by using
the sequences’ compression scores, which are based on the likelihood obtained
by the VOM models, we classify sequences to “coding” or “noncoding” regions,

A. Shmilovici, I. Ben-Gal

and for the latter we detect the correct reading frames. The classification scheme
is applied to given sequences of fixed length, without using the ability of the
VOM models to detect known motifs as shown in Ben-Gal et al. (2005).

3.1 Datasets and VOM-based classifiers

For completeness reason we now outline the construction process of the VOM
classifier that was used in our experiments. For further details on the VOM
classifier see Shmilovici and Ben-Gal (2004).

As our training dataset we rely on the GENIE dataset (GENIE 1998) that
contains 462 coding sequences (called exons) and 2,381 noncoding sequences
(called introns, when present within a gene). These sequences are represen-
tative segments of the human genome with less than 80% homology between
sequences. We extracted a special dataset in which the sequences were chopped
into segments of size 54 base pairs (bp), with the first nucleotide taking always
the first position in the codon triplet. The training set that was used for train-
ing the VOM classifier contains 4,079 coding sequences and 25,333 noncoding
sequences. An equally sized non-overlapping testing dataset was used to mea-
sure the accuracy of the VOM classifier.

To imitate the effect of short EST sequences,3 we extracted a set of sequences
of length 486 nucleotides each: 300 sequences (having a total of 145,800 nucle-
otides) were extracted from coding sequences, and 1,000 sequences (having a
total of 486,000 nucleotides) were extracted from noncoding sequences. Once
again, all the coding test sequences start from frame position 1. Recall that the
number of sequences has a potential effect on the size of the truncated context
tree as a result of the pruning algorithm. The used dataset is available from the
authors.

It is well known that the distribution of the nucleotides depends on whether
they belong to a coding sequence and if so, on their position in the codon (first,
second, or third position). Accordingly, we constructed four VOM models from
the training dataset. One VOM tree was constructed from noncoding segments
and denoted by TNC. Three inhomogeneous VOM trees—one for each position
in the codon—were constructed from the phased coding segments and denoted
respectively by TCi , i = 1, 2, 3. Thus, each inhomogeneous (position-dependent)
VOM model was constructed based on a third of the coding sequence. All the
VOM models were used simultaneously to score each test sequence: scoring the
sequence by TNC, then by a combination of VOM models TC1 , TC2 , TC3 depend-
ing on the nucleotide position in the codon. The likelihood score of each nucle-
otide in the testing set was obtained from the respective VOM tree, where the
coding length of a nucleotide is given by − log2(likelhood_of_nucleotide). The
coding length of a sequence is the sum of the coding lengths of the nucleotides

3 EST sequences have about one error in 100 nucleotides and contain redundancies (Lottaz et al.
2003).

Using a VOM model for reconstructing potential coding regions in EST sequences

in that sequence. The following classification rule was applied to each test
sequence:

If length(coding by TCi , i = 1, 2, 3) < length(coding by TNC) then classify as
“coding DNA;”

Otherwise, classify as “noncoding DNA”
The obtained accuracy of the classification rule was 86.1%. It was computed

as the average of the correct classification ratios on the true coding and the
true noncoding testing subsets (i.e., the average of the true positive and the true
negative rates). In comparison, the accuracy for a Markov model of order 5
[Markov(5) model] was 86.3%. The Markov(5) model was considered as the
best model in Fickett and Tung (1992), Iseli et al. (1999) and Lottaz et al. (2003)
for both the non-phased and the phased sequences. The 95% confidence inter-
val for the accuracy mean of the testing set was estimated to be approximately4

±0.6%.
Although the obtained accuracy of the VOM model is equivalent to that of

the Markov(5) model, its number of parameters (2,563) is much smaller than
that of the Markov(5) model (15,149).5 Further improvement in the accuracy
of the VOM model (88.9%) was obtained via the method of boosting the train-
ing set6 (Shmilovici and Ben-Gal 2004). The boosted VOM was used in the
experiments in the following sub-sections.

3.2 EST annotation via VOM classifier

As noted by Iseli et al. (1999), tuning the parameters of a gene-finding program
is sometimes a subjective process that is motivated by the desire to maximize
the percentage of true positive discoveries subject to an acceptable level of false
negative discoveries. Yet, the main purpose of the following set of experiments,
which is described in Table 1, is to demonstrate the viability of the VOM classi-
fier for gene-finding programs. Therefore, these experiments are not exhaustive,
and no attempt was made to fully optimize the performance of the VOM-based
classifier to the used datasets.

For a preliminary annotation of raw sequence, a sliding window of size 54
nucleotides (starting 26 nucleotides upstream the annotated nucleotide) was
compressed by each one of four VOM models: the three phased coding VOM

4 Based on the normal approximation to the Binomial distribution and on the worst (least accurate)

obtained case with p = 0.861 we use: 1.96 × 0.5

√
p(1−p)

n1
+ p(1−p)

n2
, with n1 = 4, 079, n2 = 25, 333.

5 There are four parameters (all needed for the smoothing proceadure) in each node of the four tree
models (one non-coding tree and three coding trees). Thus, the number of parameters in each of the
four Markov(5) trees is 45+1 = 4, 096, leading to a total of 16,384 parameters. The actual obtained
number (15,149) was smaller than that, since some contexts with specific biological functions (such
as contexts that include the “stop” codons) are excluded from the learning dataset.
6 Boosting is a conventional machine-learning technique that attempts to improve the efficiency
of a weak classifier via re-weighting of the training set. We followed the conventional boosting
procedure as described in Freund and Schapira (1997).

A. Shmilovici, I. Ben-Gal

Table 1 Description of key sequences used in our experiments

Exp. No. Description of sequences (size 486)

1 Compression of sliding windows of length 54 by the four VOM models
2 Classification of the nucleotides of sequence#1, based on the minimum compression

rate—raw annotation
3 A penalized re-annotation of series#2 eliminating short jitter in annotation
4 As#3, only that each sequence was contaminated with 3 indel errors.
5 As#4, only that the indels in the sequence were corrected before re-annotation
6 As#3, only with 1/40 random substitution error
7 As#6, only with 1/12 random substitution error
8 As#6, only with 1/16 random substitution error
9 As#5, only that the correction and annotation performed with ESTScan

trees (denoted respectively by ‘1’, ‘2’, ‘3’) and the noncoding VOM tree (de-
noted by ‘4’). The annotation was defined by the model that obtained the highest
compression rate, i.e., obtaining the minimum number of bits per a sequence
window of size 54. The first line in Table 2 (series#1) presents the mean com-
pression rate (in bits) as obtained by the above four VOM models for both
coding and noncoding sequences (the standard deviation was approximately
fixed in all cases to 11 bits). As expected, the ‘phase 1’ VOM model (alterna-
tively, the ‘noncoding’ VOM model) obtained the highest compression for the
‘coding’ dataset (alternatively, for the ‘noncoding’ dataset). Figure 2a plots the
four compression rates (in bits per windows in the ordinate) for an exemplified
coding sequence aligned in the abscissa. The bottom graph in Fig. 2a is used
to identify the best model for annotation. Figure 2b presents a raw annotation
resulting from Fig. 2a. As depicted, the graph of the phase 1 coding rate is the
lowest graph for most of the aligned nucleotides. Thus, most of the nucleotides
are correctly classified as coding with a phase 1 window. Series#2 in Table 2
presents the statistics of the annotated symbols. The classification for the coding
(noncoding) dataset is correct for 79.67% (71.85%) of the annotated nucle-
otides. We speculate that such a reduction in the accuracy might be partially
related to edge effects (e.g., the sliding windows are shorter at the edges).

Figure 2b presents a jittery and an unrealistic annotation. It is well known
that both coding DNA sequences, as well as noncoding sequences, have certain
minimal lengths. One can conjecture that small scale jittery behavior is the result
of a-typical local characteristic of the DNA sequence, rather than an indication
of a transition in the annotated model (transitions resulting from sequencing
errors are handled in the following subsection). The longer the sequence, the
higher is the probability of the occurrence of an a-typical local characteristic.
Accordingly, one can apply an algorithmic solution to reduce the local jittery
behavior of the annotation, while retaining the large-scale minimal cost of the
annotation.

One standard method to reduce the jittering occurrences is by introducing
a penalty term associated with each transition in the annotation. The optimal
annotation for each sequence is defined by an annotation path that minimizes

Using a VOM model for reconstructing potential coding regions in EST sequences

Table 2 Nucleotide classification statistics for experiments (described in Table 1)

Series/Experiment No. Nucleotide classification Nucleotide classification
statistics for 300 statistics for 1,000
coding sequences noncoding sequences
The following VOM classifiers The following VOM classifiers
Phase1 Phase2 Phase3 Non-cod Phase1 Phase2 Phase3 Non-cod

1 (mean bits) (Std_dev.∼11) 98.22 106.12 107.02 104.93 106.72 106.63 106.63 99.66
2 79.67% 4.26% 4.77% 11.29% 9.32% 9.44% 9.39% 71.85%
3 88.69% 2.75% 2.59% 5.97% 8.27% 9.87% 9.62% 72.24%
4 43.07% 23.90% 23.33% 9.70% 8.90% 9.73% 9.11% 72.27%
5 72.78% 12.33% 6.00% 8.90% N/A N/A N/A N/A
6 87.46% 2.96% 3.07% 6.50% N/A N/A N/A N/A
7 86.78% 2.86% 3.28% 7.09% N/A N/A N/A N/A
8 86.58% 3.21% 3.22% 6.99% N/A N/A N/A N/A
9 74.67% combined 25.33% N/A N/A N/A N/A

Fig. 2 a The four compression rates for the fifth coding sequence of experiment#1 (top); b raw
annotation of top sequence from experiment#2 (middle); c experiment#3, penalized re-annotation
of middle sequence (bottom). 1 denotes the correct coding phase; 2, 3 denotes incorrect coding
phase and 4 denotes the incorrect noncoding

the sum of the compression rate (the sum of the number of bits accumulated
from all the models chosen by the annotation program) and the penalty term
multiplied by the number of model transitions in this path. Finding the optimal
algorithm (summing over all possible paths) is NP-hard for long sequences,
yet, it is computationally tractable for short sequences with a Viterbi like

A. Shmilovici, I. Ben-Gal

dynamic-programming method (corresponding to finding the most likely path),
as implemented for annotation of DNA sequences by Xu et al. (1995).

Following the main concept of the algorithm in Hatzigorgiou et al. (2001), we
assume that a simpler algorithm that has at most one backtrack of the solution
path (unlike the dynamic-programming algorithm) could generate a sufficiently
good annotation. The outline of the algorithm is presented as follows:

1. Scan the raw annotation along the sequence from left to right until the next
transition in the annotation is detected (e.g., nucleotide#216 in Fig. 2c).
Terminate if the end of the sequence was located.

2. Continue the scan until another transition in the raw annotation is detected
(e.g., nucleotide#274 in Fig. 2c), or the end of the sequence is detected as
the next transition.

3. For the current window between the two transition points (or the transition
point and the sequence ending), compute sum1 as the sum of the compres-
sion measures by the annotation before the transition window, and sum2 as
the sum of the compression measures by the annotation within the transi-
tion window (e.g., in Fig. 2c there is a transition window in the annotation
from phase 1 to phase 2).

4. If sum1<(sum2+ penalty term) then eliminate the transition window by
extending the annotation previous to the transition window. Otherwise,
keep the annotation in the current transition window.

5. Goto 1

Note that such a simple algorithm can reliably eliminate short jitters, yet for
wide transition windows it is incapable to optimize the exact position of the
transition point. This deficiency of the algorithm has only a small impact when
it is applied as a part of a full gene-finding program, since other algorithmic
procedures and additional biological information can be used to re-annotate the
edges of the transition window. When the algorithm is used for error-detection
and error-correction in sequences, as exemplified in the next subsection, such
deficiency of the algorithm may introduce a bias in the location of the exact
position of the sequencing errors. A high penalty will result in the elimination
(as opposed to frame correction) of out-of-frame regions. As noted by Iseli et al.
(1999), the optimal penalty value often depends on the quality of the sequence.

The current algorithm, with penalty = 100 was used to remove the jitters
from the previously annotated sequence. Figure 2c introduces the re-annotation
of the sequence that was annotated in Fig. 2b. As can be seen, the jitter was
removed, except for one (erroneous) transition window of width 56. This penalty
value eliminates transition windows shorter than (roughly) 40 nucleotides, in
comparison to a minimum window length of 60 in Hatzigorgiou et al. (2001)
and a default window length of 33 in ESTScan (http://www.ch.embnet.org/
software/ESTScan.html). Series no. 3 in Table 2 presents the statistics of the
re-annotated sequence. As seen, the accuracy increased significantly for the
re-annotation of the coding sequences (88.69%). Note, however, that there is
only a modest increase in the annotation accuracy for the noncoding sequences
(72.24%). This result could be explained by the random nature of noncoding

Using a VOM model for reconstructing potential coding regions in EST sequences

Ta
bl

e
3

E
nt

ir
e

se
qu

en
ce

-b
as

ed
st

at
is

ti
cs

fo
r

se
ri

es
of

Ta
bl

e
2

Se
ri

es
no

.
P

er
ce

nt
ag

e
of

co
m

pl
et

e
se

qu
en

ce
s

en
ti

re
ly

cl
as

si
fie

d
as

To
ta

ln
o.

tr
an

si
ti

on
s

N
o.

of
se

qu
en

ce
s

w
it

h
th

e
fo

llo
w

in
g

no
.o

ft
ra

ns
it

io
ns

P
ha

se
1

(%
)

P
ha

se
2

(%
)

P
ha

se
3

(%
)

N
on

-c
od

(%
)

0
1

2
3

4
5

6
7

2
co

di
ng

8.
67

0.
0

0.
0

0.
0

2
no

n-
co

di
ng

0.
5

0.
4

0.
6

4.
5

3
co

di
ng

59
.0

0.
33

0.
0

0.
67

19
9

17
9

64
41

11
5

0
0

0
3

no
n-

co
di

ng
0.

0
0.

1
0.

0
41

.6
11

97
43

0
20

8
18

5
10

9
49

18
1

0
4

co
di

ng
0.

0
0.

67
0

1.
67

99
2

5
4

39
18

2
59

9
1

1
4

no
n-

co
di

ng
0.

1
0.

2
0.

6
42

.1
11

64
42

8
21

2
20

1
10

3
40

15
1

0
5

co
di

ng
59

.6
7

7.
67

2.
0

0.
0

15
6

20
7

42
41

8
2

0
0

0
6

co
di

ng
55

.3
3

0.
0

0.
0

1.
0

23
2

16
9

62
48

12
7

2
0

0
7

co
di

ng
56

.0
0.

0
0.

0
1.

0
24

5
17

1
53

46
20

10
0

0
0

8
co

di
ng

50
.6

7
0.

0
0.

0
1.

0
25

6
15

5
68

50
21

5
1

0
0

9
co

di
ng

18
.6

7%
co

m
bi

ne
d

22
.6

7
–

–
–

–
–

–
–

–
–

A. Shmilovici, I. Ben-Gal

sequences, as indicated by the number of false transitions in experiment#3 in
Table 3. The left side of Table 3 introduces the entire sequence-based statistics
for series/experiment of Tables 1, 2 (rather than the nucleotide-based statistics
in Table 2), such as the classification of an entire sequences to one class. The right
side of Table 3 introduces the distribution of the number of transitions in the
dataset in each experiment (for examples, there were a total of 199 transitions in
the 300 coding sequences in experiment 3. Only 179 sequences—59.0%—were
transition free, while five sequences contained four transitions each etc.) The
average accuracy for the prediction of both coding and noncoding nucleotides
is 80.47% (88.69/2 + 72.24/2 as seen in Table 2). In comparison, Hatzigorgiou
et al. (2001) also used a sliding windows of length 54, to which they applied
a neural network corrected by a dynamic programming algorithm as well as
an identification of the start and end motifs of each gene. They obtained an
accuracy of 84% on their test set (using only the neural network coding mod-
ule) and an overall accuracy of 89.7% for the prediction of both coding and
noncoding nucleotides in EST sequences. Since 86% of the sequences in their
dataset contained coding sequences, the accuracy in our experiments is roughly
equivalent to theirs. Note, that their program was subject to an optimization
procedure, unlike the proposed one-pass algorithm that was implemented here.

The ultimate test for the quality of the annotation program is often selected
as the number of coding sequences that were correctly identified as “pure”
phase 1 coding. The jitter reduction algorithm increased this number from 8.67
to 59.67% for the coding sequences, and from 4.5 to 41.6% for the noncoding
segments (Table 3, series no. 2 and 3). Thus, the jitter reduction algorithm is
sufficiently effective for gene annotation purposes, although the values of the
penalty term and the sliding window length could be the subject of further
optimization. In addition, a coding region was detected in 99.3% of the coding
sequences. In comparison, Hatzigorgiou et al. (2001) detected correctly 92.7%
of their coding sequences as having coding regions, yet only 38.9% of their
noncoding sequences were predicted as “pure” noncoding. Iseli et al. (1999)
managed to extract about 95% of true coding sequences, while obtaining a 10%
false positive rate.

3.3 Annotation of sequences with errors

As indicated above, EST sequences are relatively short, containing only sev-
eral hundred nucleotides, and are prone to sequencing errors such as insertion,
substitution and deletion (Hatzigorgiou et al. 2001; Iseli et al. 1999; Lottaz
et al. 2003). Sequencing errors generates false signals and sharp deterioration
in the performance of most gene-finding algorithms (Brown et al. 1998). The
purpose of the following set of experiments is to demonstrate the robustness of
VOM-based annotation to sequencing error, and to observe its error correction
performance.

Two categories of errors are considered: (1) substitution errors; and (2) inser-
tion and deletion errors (indels). Substitution errors may cause a local reduction

Using a VOM model for reconstructing potential coding regions in EST sequences

in the coding potential, which might results in a relatively gradual deteriora-
tion of the accuracy due to the window weighting. Indels, on the other hand, are
potentially more severe errors as they change the frame of the coding sequence.
Due to the implemented window weighting procedure, a frame change might
be detected only several nucleotides away from its actual location.

Error correction methods via VOM-like methods have been applied before
in the context of text correction (Vert 2001). In particular, the VOM model can
be used in a predictive mode as follows: given a sequence s, one aims to predict
the next nucleotide x̂ in the series. The predicted value would be the nucleotide
that maximize the likelihood x̂ = arg maxx′ {P̂D(x′|s)}, where P̂D denotes the
probabilities estimated from a VOM model constructed with a depth limit D.
For illustration, consider the VOM model in Fig. 1 and the prediction of the next
nucleotide in the sequence “aaca”. Given this VOM tree, the longest context
from this sequence is ‘a’ (node ‘a’), with the nucleotide ‘a’ obtaining the max-
imal likelihood, P(a|a) = 0.66. Therefore, the nucleotide ‘a’ is selected as the
most probable prediction. Note that for prediction within the coding regions,
one has to use the VOM model of the appropriate frame.

The first step in the correction of indel errors is the detection of the position
of the frame shift (as detected by the previous annotation algorithm). A frame
shift of one position implies that there was a deletion error that can be cor-
rected by the insertion of one nucleotide. The inserted nucleotide can be either
an “unspecified” one (marked by N, or X), or the most probable nucleotide
according to the suffix context to the error. A frame shift of two phases implies
that there was an insertion error (or a deletion of two nucleotides). Removing
one nucleotide (or adding two) will correct the frame-shift error. Note that due
to the annotation “lag”, the insertion (deletion) position can be several nucleo-
tides away from the true position of the indel transition. The current correction
point is determined by the identification of the transition point. An improved
correction algorithm might search the neighborhood of the transition point for
the best position to introduce the error correction. Any application of a cor-
rection algorithm should avoid the generation of a stop codon by accident. As
noted by Iseli et al. (1999), error correction may be unrealistic, but this aspect
is often less relevant from a practical point, since it is used as a mathematical
artifact to annotate low quality ESTs. If a sequence is considered sufficiently
important, then it will be re-sequenced again to remove the errors.

The previous dataset of 300 coding sequences of length 486 bp was contam-
inated with sequencing errors to simulate the effect of sequencing errors on
the annotation of EST sequences. The sequencing errors were introduced as
follows (the errors were generated sufficiently far apart—twice the window
width—to reduce interaction effects): nucleotides 121 and 242 were removed
(deletion error) to introduce frame shifts in positions 121 and 241, respec-
tively. Nucleotides 362,363 were duplicated (an insertion error) to introduce a
two-phase frame shift in position 363. Hereafter, the term “annotation” is used
as a reference to the penalized annotation algorithm presented in the previ-
ous subsection. Figure 3a presents the annotation of the error-contaminated

A. Shmilovici, I. Ben-Gal

Fig. 3 a The fifth coding sequence of experiment#4, sequence contaminated with three indel errors
(top); b the positions of the four detected indels compared to the positions of the true indels (mid-
dle); c experiment#5, penalized re-annotation of the indel corrected sequence (bottom). 1 denotes
the correct coding phase; 2, 3 denotes incorrect coding phase and 4 denotes noncoding

sequence of Fig. 2. Line no. 4 in Table 2 presents the statistics of the resulting
annotation. Comparing it with line no. 3, note that the generation of the above
three errors was sufficient to reduce the correct frame coding annotation from
88.69 to 43.07%.

The error correction was performed as follows: the annotated coding
sequences were scanned, right to left, to detect frame shifts. Any single-phase
frame transition (deletion error) was corrected by inserting the predicted nucle-
otide (left to right) from the appropriate VOM-phased model into the position
of the transition. Any two-phase frame transition (insertion error) was cor-
rected by deleting the nucleotide at the phase transition. The resulting sequence
was adjusted to length 486 (by truncation of excess nucleotides or by repeated
duplication of the last nucleotide). Figure 3b presents the four indels (identified
in positions 140, 212, 314, 409 compared to the actual (true) indels of posi-
tions 121, 241 and 362. Figure 3c presents the annotation of the indel-corrected
sequence. As can be seen, all the phase errors, including the false one de-
tected in Fig. 2c are indicated and removed. The average position of the indels
with respect to all the sequences in the coding dataset is found to be 124.04,
247.84, 367.88, which introduce, respectively, an average error detection “lag”
of 3.04, 6.84, 5.88 nucleotides (measured only for those indels which were cor-
rected, while matching is performed left to right), a median “lag” of 2, 3, 2.5

Using a VOM model for reconstructing potential coding regions in EST sequences

nucleotides, respectively, and standard deviations of 29.8, 29.07, 27.95
nucleotides, respectively.

Table 2 presents the statistics of the annotated nucleotides in the corrected
sequences: as seen from series no. 5, correct frame coding annotation increased
from 43.07% before the error correction to 72.78% after the error correction.
Note from Table 3 that 59.67% of the sequences were detected as “pure” phase
1 coding sequences after the correction, which is equivalent to the annotation
quality before the error contamination process.7 The error detection and cor-
rection statistics is also presented in Table 3: the annotation before the indel
contamination (series no. 3) contained 199 (apparently false) annotated region
transitions concentrated in 40.33% of the sequences, of which 125 are phase
transitions, such as the one in Fig. 2c. The error contaminated coding sequences
(series no. 4) had 922 region transitions in 98.33% of the sequences. During the
error-correction process, 720 deletion errors were detected and corrected (com-
pared to the actual 600 deletion errors) and 82 insertion errors were corrected
(compared to the actual 300 insertion errors). The re-annotation of the error-
corrected sequences detected 156 region transitions concentrated in 31.0% of
the sequences. Comparing coding series no. 3 to coding series no. 5 we see that
the error correction restored the annotation accuracy its quality level before
the contamination (59.0% vs. 59.67%).

Computing the accuracy of the error correction algorithm is a difficult task in
general, since it seems to correct also some of the spurious “annotation noise”.
The error correction rate can be estimated either by the proportion of correc-
tions of the total artificially inserted errors, (720+82)/900 = 89%, or by the pro-
portion of transitions before and after the correction, (992 − 156)/992 = 84%.
This result indicates that VOM based correction outperforms8 the dynamic
programming error-correction algorithm presented in Xu et al. (1995). The
algorithm there detected and corrected 76% of the indels, with an average
distance of 9.4 nucleotides between the position of an indel and the predicted
position.

Note that the performance of an error-correcting algorithm depends on the
error rate in the data. Therefore, in general, different correction algorithms
should be compared with the same dataset. ESTScan of Iseli et al. (1999) use a
Markov(5) model to detect sequencing errors and suggest a correction. Lottaz
et al. (2003) improve ESTScan with the inclusion of models for the un-translated
regions as well as the start and stop sites). In experiment no. 9 the same 300 error
contaminated coding sequences used in experiment no. 5 were processed with
the ESTScan program (the 300 sequences were transferred manually one by
one, using the program’s defaults). Comparing experiments 5 and 9 in Table 3,
the ESTScan erroneously detected 22.67% of the error corrected sequences
as noncoding (compared with 0% for the VOM program). The percentage of
nucleotides detected as noncoding (Table 2) is even higher and equals 25.33%

7 The 95% confidence interval is approximately equal to: 1.96 ·
√

0.59(1−0.59)
300

∼= 4.8%.

8 The 95% confidence interval is approximately equal to: 1.96 ·
√

0.84(1−0.84)
992

∼= 2.3%.

A. Shmilovici, I. Ben-Gal

Table 4 The EST datasets

Starting No. of Average N Nucleot. No. Cod. longer No. Cod. No. Corrected
GenBanka sequences length nucleot. identified as than 50 longer indels
sequence no. seq. (%) coding (%) than 100

62639482 150 556 0 79.44 144 136 311
62727861 345 726 1.07 61.06 324 300 827

a http://www.ncbi.nlm.nih.gov/blast/db/FASTA/est_human.gz

(compared with 8.90% for the VOM based program). Similar to the discussion
in Lottaz et al. (2003), the VOM model cannot correct indel errors with prox-
imity shorter than the context length. However, these situations lead to very
few misinterpreted nucleotides and just two or three wrong amino acids.

The purpose of the last set of experiments was to test the sensitivity of the
VOM-based classifier to random substitution error. Nucleotides in the dataset
were substituted with a random probability of 1/40, 1/24 and 1/16, respectively.
Comparing experiments no. 6, 7 and 8 to the noiseless experiment no. 3, we
see a degradation in the performance rate. Yet, as seen from Table 3 the VOM
classifier is found robust to substitution errors even for these lower quality
sequences.

3.4 Annotation of real EST sequences

The dataset used in the previous section is in a sense “too ideal” as EST
sequences. In practice, an EST sequence might contain both coding and non-
coding sequences. The purpose of this set of experiments was to demonstrate
the VOM-based annotation of real EST sequences in the presence of sequenc-
ing error, and to test it for error correction. Table 4 presents the annotation
statistics of two different datasets of human ESTs. The first dataset contained
relatively shorter sequences compared to the second dataset and of higher qual-
ity (0% nucleotides of unspecified type N). Based on the human VOM model
as considered in the previous sub-section, 79.44% (respectively 61.06%) of the
nucleotides in the first (second) dataset were detected as coding. Note that 144
of the sequences (respectively 324) contain coding regions longer than 50 nu-
cleotides, thus, are of interest for further analysis. Considering the fact that both
EST datasets originated from mRNA (thus, most of their sequences contain a
coding region, possibly corrupted by sequencing errors), the VOM model cor-
rectly detected over 93% of the ESTs as sequences that contain coding regions.

The last column in Table 4 presents the number of indel errors that were
corrected by the VOM based program. Note that the indel correction did not
change the number of ESTs that contained significant coding regions. Yet,
here, unlike in the previous section, the correct phase of the coding regions in
unknown.

Using a VOM model for reconstructing potential coding regions in EST sequences

4 Discussion

Recognition of coding DNA regions is an important phase of any gene-finder
procedure. In general, current gene-recognition approaches are exceedingly
multifaceted, implementing a variety of well-established algorithms. Yet, we
believe that there exist niche datasets with specific characteristics that are not
entirely addressed by conventionally used algorithms. Two examples to where
such niche sets can be found are:

(a) Datasets from newly sequenced genomes that share little homology with
known datasets. Often, in such cases it is difficult to tune properly the
gene-finders, e.g., due to over-parameterization which is not well under-
stood.

(b) Short and relatively low-quality sequences (such as ESTs) that contain
sequencing errors. In this case, the performance of homology-based meth-
ods such as in Brown et al. (1998), or HMM such as in Iseli et al. (1999),
could result in a relatively poor performance, as seen in experiment 9 in
Table 3.

In this paper, we introduce the VOM-based method to sequence annotation
and error-correction. The VOM model was originally introduced in the field of
information theory (Rissanen 1983) and since then has been implemented suc-
cessfully in various research areas, such as statistical process control (Ben-Gal
et al. 2003), analysis of financial series (Shmilovici et al. 2003) and Bioinformat-
ics (Bejerano 2001; Ben-Gal et al. 2005).

In our experiments the prototype sequence-annotation program was dem-
onstrated to be of either equivalent or superior accuracy compared to other
methods from the literature (such as dynamic programming, neural networks
and HMM) that were used for classifying EST sequences, while potentially
being computationally more simple (Begleiter et al. 2004). The proposed model
turned out to be robust to sequencing errors, and effective for error prediction
and error-correction.

The initial encouraging results make it tempting to conjecture that elements
of the proposed method could be integrated into other gene-finding procedures.
Preliminary experiments (Zaidenraise et al. 2004) indicate that the VOM model
is more reliable in detecting short genes in comparison to Markov(5) based
gene-finders. In a current research, we are integrating the VOM algorithm into
the Glimmer open source gene-finder (Delcher et al. 1999). This integration
might enhance the Glimmer performance on short coding fragments taken
from relatively low-quality sequenced data. Finally, note that human datasets,
as those considered here, are of a huge size and are relatively error-free. This is
a-typical in datasets of other organisms that are of interest. The VOM model,
due to its efficient parameterization, is expected to be effective in these anal-
yses when data is scarce, or when the quality of the sequence annotation is
poor.

A. Shmilovici, I. Ben-Gal

References

Begleiter R, El-Yaniv R, Yona G (2004) On prediction using variable order markov models. J Artif
Intell 22:385–421

Bejerano G (2001) Variations on probabilistic suffix trees: statistical modeling and prediction of
protein families. Bioinformatics 17(1):23–43

Ben-Gal I, Shmilovici A, Morag G (2003) CSPC: a monitoring procedure for state dependent
processes. Technometrics 45(4):293–311

Ben-Gal I, Shani A et al. (2005) Identification of transcription factor binding sites with variable-
order Bayesian networks. Bioinformatics 21(11):2657–2666

Bernaola-Galvan P, Grosse I et al. (2000) Finding borders between coding and noncoding DNA
regions by an entropic segmentation method. Phys Rev Lett 85(6):1342–1345

Bilu Y, Linial M, Slonim N. Tishby N (2002) Locating transcription factors binding sites
using a Variable Memory Markov Model, Leibintz Center TR 2002–57. Available online at
http://www.cs.huji.ac.il/∼johnblue/papers/

Brejova B, Brown D.G, Li M, Vinai T (2005) ExonHunter: a comprehensive approach to gene
finding. Bioinformatics 21(Suppl 1):i57–i65

Brown NP, Sander C et al. (1998) Frame: detection of genomic sequencing errors. Bioinformatics
14(4):367–371

Burge C, Karlin S (1998) Finding the genes in genomic DNA. Curr Opin Struct Biol 8(3):346–354
Cawley SL, Pachter L (2003) HMM sampling and applications to gene finding and alternative

splicing. Bioinformatics 19(Suppl 2):ii36–ii41
Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved microbial gene identifica-

tion with GLIMMER. Nucl Acids Res 27(23):4636–4641
Feder M, Merhav N (1994) Relations between entropy and error probability. IEEE Trans Inf Theory

40(1):259–266
Fickett JW (1996) Finding genes by computer: the state of the art. Trends Genet 12(8):316–320
Fickett JW, Tung CS (1992) Assessment of protein coding measures. Nucl Acids Res 20(24):

6441–6450
Freund Y, Schapira RE (1997) A decision theoretic generalization of on-line learning and an

application to boosting. J Comput Syst Sci 55(1):119–139
GENIE data-sets, from Genbank version 105 (1998) Available: http://www.fruitfly.org/seq_tools/

datasets/Human/CDS_v105/ ; http://www.fruitfly.org/seq_tools/datasets/Human/intron_v105/
Hanisch D et al. (2002) Co-clustering of biological networks and gene expression data. Bioinfor-

matics 1:1–10
Hatzigorgiou AG, Fiziev P, Reczko M (2001) DIANA-EST: a statistical analysis. Bioinformatics

17(10):913–919
Herzel H, Grosse I (1995) Measuring correlations in symbols sequences. Phys A 216:518–542
Iseli C, Jongeneel CV, Bucher P (1999) ESTScan: a program for detecting, evaluating, and recon-

structing potential coding regions in EST sequences. In: Proceedings of intelligent systems for
molecular biology. AAAI Press, Menlo Park

Kel AE, Gossling E et al. (2003) MATCH: a tool for searching transcription factor binding sites in
DNA sequences. Nucl Acids Res 31(13):3576–3579

Larsen TS, Krogh A (2003) EasyGene—a prokaryotic gene finder that ranks ORFs by statistical
significance. BMC Bioinf 4(21) Available Online www.biomedcentral.com/1471-2105/4/21

Lottaz C, Iseli C, Jongeneel CV, Bucher P (2003) Modeling sequencing errors by combining Hidden
markov models. Bioinformatics 19(Suppl 2):ii103–ii112

Majoros WH, Pertea M, Salzberg SL (2004) TigrScan and GlimmerHMM: two open source ab
initio eukaryotic gene-finders. Bioinformatic 20:2878–2879

Nicorici N, Berger JA, Astola J, Mitra SK (2003) Finding borders between coding and noncod-
ing DNA regions using recursive segmentation and statistics of stop codons. Available Online:
http://www.engineering.ucsb.edu/ ∼jaberger/pubs/FINSIG03_Nicorici.pdf

Ohler U, Niemann H (2001) Identification and analysis of eukaryotic promoters: recent computa-
tional approaches. Trends Genet 17:56–60

Ohler U, Harbeck S, Niemann H, Noth E, Reese M (1999) Interpolated Markov chains for eukary-
otic promoter recognition. Bioinformatics 15(5):362–369

Using a VOM model for reconstructing potential coding regions in EST sequences

Orlov YL, Filippov VP, Potapov VN, Kolchanov NA (2002) Construction of stochastic context trees
for genetic texts. In Silico Biol 2(3):233–247

Rissanen J (1983) A universal data compression system. IEEE Trans Inf Theory 29(5):656–664
Shmilovici A, Ben-Gal I (2004) Using a compressibility measure to distinguish coding and noncod-

ing DNA. Far East J Theoret Stat 13(2):215–234
Shmilovici A, Alon-Brimer Y, Hauser S (2003) Using a stochastic complexity measure to check the

efficient market hypothesis. Comput Econ 22(3):273–284
Vert JP (2001) Adaptive context trees and text clustering. IEEE Trans Inf Theory 47(5):1884–1901
Xu Y, Mural RJ, Uberbacher EC (1995) Correcting sequencing errors in DNA coding regions using

a dynamic programming approach. Bioinformatics 11:117–124
Zaidenraise KOS, Shmilovici A, Ben-Gal I (2004) A VOM based gene-finder that specializes in

short genes. In: Proceedings of the 23th convention of electrical and electronics engineers in
Israel, September 6–7, Herzelia, Israel, pp. 189–192

Ziv J (2001) A universal prediction lemma and applications to universal data compression and
prediction. IEEE Trans Inf Theory 47(4):1528–1532

	Using a VOM model for reconstructing potential coding regions in EST sequences
	Abstract
	Motivation and introduction
	Introduction to VOM models
	Annotating coding and noncoding DNA
	Datasets and VOM-based classifiers
	EST annotation via VOM classifier
	Annotation of sequences with errors
	Annotation of real EST sequences
	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

