New upper bounds in Klee’s measure
problem

Mark H. Overmars and Chee-Keng Yap

RUU-CS-89-28
November 1989

Utrecht University

%
S So .
; < Department of Computer Science
<
% %y Padualaan 14, P.O. Box 80.089,

>
4771 ¥ 3508 TB Utrecht, The Netherlands,
Tel. : ... 4+ 31-30- 531454

New upper bounds in Klee’s measure
problem

Mark H. Overmars and Chee-Keng Yap

Technical Report RUU-CS-89-28
November 1989

Department of Computer Science
Utrecht University
P.O0.Box 80.089
3508 TB Utrecht
the Netherlands

New upper bounds in Klee’s measure problem*

Mark H. Overmars' Chee-Keng Yap?

Abstract

We give new upper bounds for the measure problem of Klee which sig-
nificantly improve the previous bounds for dimensions greater than 2. We
obtain an O(n%/2logn,n) time-space upper bound to compute the measure
of a set of n boxes in Euclidean d-space. The solution is based on a new data
structure that we call an orthogonal partition tree that has other applications
as well. The method involves several new ideas including application of the
inclusion/exclusion principle, the concept of trellises and streaming.

1 Introduction

Around 1977, Klee [5] posed the measure problem: given a set of n intervals (of
the real line), find the length of their union. He gave an O(nlogn) time solution
and asked if this was optimal. This generated considerable interest in the problem,
and shortly after, Fredman and Weide [4] proved that Q(nlogn) is a lower bound
under the usual model of computation. Bentley [2] considered the natural extension
to d-dimensional space where we ask for the d-dimensional measure of a set of d-
rectangles. He showed that the O(nlogn) bound holds for d = 2 as well, and, for
d > 2, the result generalizes to an upper bound of O(n?-!logn). Thus the results
are optimal for d = 1,2. We refer to the book [7] for an account. Concerning these
results for d > 3, Preparata and Shamos remarked in their book ([7] pp.328-9):

What is grossly unsatisfactory about the outlined method for d > 3 is
the fact that there is a “coherence” between two consecutive sections in

*Research of the first author was partially supported by the ESPRIT II Basic Research Actions
Program of the EC under contract No. 3075 (project ALCOM). Research of the second author
has been supported by ONR grant N00014-85-K-0046, and NSF grants DCR-84-01898 and CCR-
87-03458.

tDept. of Computer Science, Utrecht University, P.O.Box 80.089, 3508 TB Utrecht, the
Netherlands.

!Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New
York, NY 10012, USA.

the sweep that we are unable to exploit. ... Although it seems rather

difficult to improve on this result, no conjecture about its optimality has
been formulated.

The only progress made since was a small improvement by van Leeuwen and
Wood [8] who removed the logn factor from Bentley’s upper bound for d > 3.
The test case seems to be d = 3: is O(n?) really necessary for computing the
volume of a set of n boxes in 3-space? In this paper we show that O(n'*logn)
suffices. This immediately implies that in d-dimensions (d > 3), the bound becomes
O(n?1%logn).

The idea is to use a plane-sweep approach and dynamically maintain the measure
of a set of 2-dimensional rectangles in time O(\/n logn) per update.

Such a result means that we can maintain the area of a set of rectangles implicitly
without having to represent the full boundary structure. This is because any explicit
representation of the boundary of n rectangles requires (n?) time in the worst case
because of the simple ‘trellis’ example (see figure 1): it consists of n long vertical

rectangles which are pairwise disjoint, superposed on n long horizontal rectangles
also disjoint among themselves.

Figure 1: Trellis

The first idea is to exploit the regularity of such trellis structures by maintaining
only O(n) amount of information (at the boundary of the box containing the trellis)
to keep track of the area of the trellis rectangles. Of course, a union of rectangles is
too irregular to be consistently exploited in this way, so the next idea is to partition
the plane into a collection of trellises. Using a generalization of the k-d tree of
Bentley [1], we are able to form such a partition with only O(n) trellises each of size

2

O(y/n). As we shall see, extending this to higher dimensions requires a partition
with interesting properties that might be useful for other applications as well.

The rest of this paper is organized as follows: Section 2 describes the basic space
sweep algorithm we use and introduces the generalized k-d tree, that we will call
an orthogonal partition tree, for storing the boxes. Section 3 contains the solution
to the 3-dimensional measure problem. Section 4 generalizes this solution to a
d-dimensional method, using an interesting partition scheme of the d-dimensional
space. This results in a O(n%?log n,n%?) time-space upper bound. In section 5
we exploit a streaming technique of Edelsbrunner and Overmars [3] to reduce the
amount of storage required to O(n) only, for any dimension d. In section 6 we briefly
mention some other applications of the method like e.g. computing the measure of
the boundary of the union of a set of boxes. Finally, in section 7, some conclusions,
extensions and open problems are given.

Throughout the paper we will use the following terminology. A d-boz is the
cartesian product of d intervals in d-dimensional space. The i-boundaries of a d-box
are the parts of the boundary that are perpendicular to the i-th coordinate axis.
Each d-box has two i-boundaries for 1 < ¢ < d. We refer to them as the left and
right i-boundary. The i-interval is the projection of the d-box on the z;-axis. For a
d-box R we denote with Int(R) the interior of R.

Definition 1.1 A d-boz R, is said to partially cover R, if the boundary of R,
intersects Int(R;). R, is said to (completely) cover R; if R, C R;.

Definition 1.2 For two d-bozes R, and R; we say that R, is an i-pile w.r.t. Ry if
R, partially covers Ry and for all 1 < j < d with j # i the j-interval of R, is fully
contained in the j-interval of R;.

In other words, in each direction, except for direction ¢, R; completely covers
R;. i-piles will play an important role in this paper.
An extended abstract of this paper appeared in [6].

2 General framework

The basic method for solving the d-dimensional measure problem is as follows. Let
V be the set of n d-boxes for which we want to compute the measure. Let V' =
{a1,...,an} be the set of all different z4-coordinates of vertices of the boxes, i.e.,
all different endpoints of d-intervals. We sort the boxes both by left and right d-
boundary. We solve the measure problem using a space sweep approach turning the
static d-dimensional problem into a dynamic (d—1)-dimensional problem. We sweep
a hyperplane along the d-th coordinate axis stopping at each value in V’. During
the sweep we maintain the (d — 1)-dimensional measure of the boxes intersected by
the sweep plane. At each step of the sweep we multiply this (d — 1)-dimensional
measure by the distance traveled with the sweep hyperplane and add this to the
measure found so far. The algorithm looks as follows.

3

S:=0;
MEAS:=0;
for i:=1ton’'—1do
Insert all d-boundaries of boxes that start at a; in S;
M:=(d — 1)-dimensional measure of boxes in S;
MEAS:=MEAS + (ai41 — a;) X M;
Delete all d-boundaries of boxes that end at a;; from S
end;

At termination MEAS will contain the measure of the set of boxes. S will
be a dynamic data structure for maintaining the (d — 1)-dimensional measure. If
insertions and deletions in S can be performed in time Fy_;(n) the method will take
time O(nlogn + nFy_1(n)). This approach is due to Bentley.

To maintain the measure of the set of boxes intersected by the sweep-plane we
introduce a generalization of the k-d tree.

Definition 2.1 A d-dimensional orthogonal partition tree is a balanced binary tree.
With each internal node é is associated a region Cs of the d-dimensional space, with
the following properties:

® Cioot s the whole d-dimensional space.
e For each node § Cs is a (possibly unbounded) d-boz.
e For each node § with sons 6, and 6, Int(Cs,)NInt(Cs,) = @ and C5,UCs, = Cs.

Cs will be called the region associated with §. When 6 is a leaf we refer to Cj
as a cell. It immediately follows that for each full level of the orthogonal partition
tree all regions are essentially disjoint and their union is the d-dimensional space.
From now on we drop the qualifying word “orthogonal” and speak only of “partition
trees”, which is not to be confused with the “non-orthogonal” partition trees of e.g.
Willard [11] and Welzl [10].

To use partition trees for maintaining the measure of a set of d-boxes we store
the following extra information in the partition tree: With each leaf § we store all
boxes that intersect Int(Cs) but do not cover the region associated with the father
of 6. For each internal node § we store a counter TOTj that contains the number
of d-boxes that completely cover Cs but only partially cover C father(s)- Finally, with
each node 6 we associate a field M that is defined as follows: If § is a leaf M contains
the measure of the boxes stored at § restricted to Cs. Otherwise, if TOTs > 0 then
M is the measure of Cjs, otherwise M = Mison(s) + M son(s)- 1t is easy to verify that
M, .0 1s the measure of the set of d-boxes.

To maintain the measure in a dynamically changing set we have to be able to
insert and delete d-boxes in the partition tree. The basic insertion algorithm is the
following:

procedure Insert(boz,6);

if 6 is a leaf then
Store bozx at §;
Recompute M;

elsif boz covers Cs then
TOTs:=TOTs +1;
Mj:=measure of Cs

elsif box partially covers Cs then
Insert(box,lson(6));
Insert(boz,rson(8));
if TOT; > 0 then Mj:= measure of C; else Mg:=M,on(5) + M;s0n(s) end

end;

The routine is invoked via Insert(boz,root). The deletion routine is similar:

procedure Delete(boz,6);
if 6 is a leaf then
Remove boz at §;
Recompute Mj;
elsif bozx covers Cs then
TOTs:=TOT; — 1;
if TOTs > 0 then Mj:= measure of Cs else Ms:=Mi,on(s) + M, 4on(s) €end
elsif boz partially covers Cs then
Delete(boz ,lson(6));
Delete(boz,rson(6));
if TOTs > 0 then Mj;:= measure of C; else Ms:=Mi,on(s) + M, ,on(s) €end
end;

The routine is invoked via Delete(boz,root). Note the similarity with the methods
of Bentley [2] and van Leeuwen and Wood (8] for the 1- and 2-dimensional case.
The main difference is that we no longer insist that the leaves are fully covered
by the boxes that intersect them. It is immediately clear that the amount of time
required depends on the number of nodes visited and the amount of time required
for computing the measure at the leaves. In the sequel of this paper we will show
that partition trees exist in which both are small.

3 Dynamic measure problem in two dimensions

To illustrate the general solution we will develop in the next section, we first solve
the 3-dimensional measure problem. Solving the 3-dimensional problem means that
we have to design a 2-dimensional partition tree with good performance. To obtain
such a partition tree we first define a subdivision of the plane into rectangular cells
with some interesting properties.

Let V be the set of the rectangles that will be inserted and deleted in the partition
tree. First we split the z;-axis into 24/n intervals such that each interval contains
< {/n 1-boundaries of rectangles. This defines 2\/n slabs in the plane. Each slab s
will be split by horizontal line segments into a number of cells. Let V! be the set of
rectangles that have a 1-boundary inside s. Let V? be the set of rectangles that only
have a 2-boundary intersecting s. (Note that the size of V! is bounded by \/n but
the size of V2 can be almost n.) We draw a line segment along each 2-boundary of
a rectangle in V;'. Moreover, we draw a line segment along each /n-th 2-boundary
of a rectangle in V2. In this way s is partitioned into < 4./n rectangular cells.

Lemma 3.1 The partition has the following properties:
1. There are O(n) cells.

2. Each rectangle of V partially covers at most O(y/n) cells.
3. No cell contains vertices in its interior.

4. Each cell has at most O(/n) rectangles partially covering it.

Proof. Property 1 follows from the fact that there are 24/n slabs, each with
4./n cells.

To show property 2 note that each vertical line cuts through one slab, i.e.,
through at most 4,/n cells. Each horizontal line cuts in each slab through one
cell. Hence, through at most 2/n cells in total. V partially covers a cell only if
its boundary cuts through the cell. This boundary consists of two vertical and two
horizontal line segments. Hence, it cuts through at most 12,/n cells.

Property 3 follows from the fact that, if a vertex lies in the interior of a slab s, it
belongs to a rectangle in V! and, hence, it will lie on the horizontal segment drawn
through its 2-boundary, i.e., on the boundary of a cell.

Finally, property 4 follows from the fact that each slab contains at most /n
1-boundaries and each cell at most \/n 2-boundaries. O

We will use the cells of this partition as leaves of the partition tree. For each
slab s we construct a binary tree T, that contains its cells ordered by z;-coordinate
in its leaves. Next we construct a tree T that contains the slab trees T, ordered
by z;-coordinate in its leaves. See figure 2 for an example. Each node in the tree,
consisting of T’ and the slab trees T,, has an associated region, being the union of
the cells at the leaves in the subtree. It is easy to see that such a region is a (possibly
infinite) rectangle.

Lemma 3.2 Let V be a set of n rectangles in the plane. There ezists a partition
tree for storing any subset of V such that

1. The tree has O(n) nodes.

sl s2 s3 s4 sS

CAAAAL

Figure 2: The 2-dimensional partition tree.

2. Each rectangle is stored in O(/n) leaves.
3. Each rectangle influences O(y/nlogn) TOT fields.
4. No cell of a leaf contains vertices of rectangles in the interior.

5. Each leaf stores no more than O(y/n) rectangles.

Proof. Properties 1, 2, 4 and 5 follow immediately from the above lemma.
The third property follows from the first two. If the tree has O(n) nodes its depth
is bounded by O(logn). When a rectangle influences the TOT field of a node
6 it partially covers Cfather(s), and there must be a leaf below father(6) that is
intersected by the rectangle. Hence, the number of internal nodes intersected by a
rectangle is bounded by O(log n) times the number of leaves where the rectangle is
stored. As a result the rectangle can only influence that number of TOT fields. (I

It remains to show how the measure at a leaf is maintained when inserting and
deleting rectangles. To this end we use the inclusion/exclusion principle. Note that,
due to property 4, the rectangles stored at a leaf § are 1-piles or 2-piles w.r.t. Cj.
In other words, they form a trellis. The measure of such a trellis can be maintained
in the following way. Let V; be the projection of the 1-piles on the z;-axis and let
V2 be the projection of the 2-piles on the z;-axis. Let M; be the (1-dimensional)
measure of V; and M; the (1-dimensional) measure of V;. Assume that the cell
Cs has measure Ly x L,. Now it is easy to see that the measure of the trellis is
M, x Ly + M; x Ly — My x M,. Hence, we just have to maintain the 1-dimensional

measure of V; and V,. For this we can use a simple segment tree that uses linear
storage and maintains the measure in time O(logn) per insertion and deletion (see
[7]). So with each cell (leaf) § we associate two segment trees S; and S;. S; contains
the projections of the 1-piles in § on the z;-axis and S; contains the projections of the
2-piles on the x;-axis. Inserting (deleting) a rectangle at § now consists of inserting

(deleting) it in S or S; (never in both). In this way M; and M, get updated and
we obtain the new measure in the leaf.

Theorem 3.3 The measure of a set of n 8-bozes in 3-dimensional space can be
computed in time O(n+/nlogn) using O(n\/n) storage.

Proof. We use the plane sweep approach and maintain the partition tree de-
scribed above. To insert or delete a rectangle we have to update O(y/nlogn) TOT
fields. This takes time O(y/nlogn). Next, we have to insert or delete the rectangle
at O(y/n) leaves. At each such leaf this causes an insertion or deletion in a segment
tree which takes O(logn). Hence, the total update time of the partition tree is
O(y/rnlogn).

The bound on the amount of storage required follows from the fact that the
tree itself takes O(n) storage and each leaf stores O(\/n) information (according to
property 5 of the above lemma). O

In section 5 we will show how to reduce the amount of storage used to O(n).

4 Dynamic measure in multi-dimensional space

We will now generalize this method to d-dimensional space. To this end we will
describe a d-dimensional partition tree, based on a cell decomposition of the d-
dimensional space.

Definition 4.1 A slab at level i = 1,...,d is a subset of R? of the form I, x I, x
. X I; x R4~% where I, ..., I; are intervals of R.

Let V be the set of all d-boxes that will be inserted or deleted in the partition
tree. We split the z;-axis in 24/n intervals, each of whose interior contains < /n
1-boundaries of boxes. This splits the d-dimensional space in 24/n slabs at level 1.
For each such slab s let V, be the set of d-boxes that partially cover s. We split V; in
two subsets: V! of d-boxes that have a 1-boundary inside s and V? of d-boxes that
do not have a 1-boundary inside s. Note that |V}}| < y/n. Each slab s we now split
with respect to second coordinate. We split it at the 2-boundaries of each d-box in
V}! and we split it at every y/n-th 2-boundary of d-boxes in V2. As a result we split
each slab s into O(4/n) slabs at level 2. For each such slab s’ let V,, be the set of
d-boxes that partially cover s’. We again split Vs into two subsets: V,} of boxes that
have a 1- or a 2-boundary intersecting Int(s’) and V? of boxes that do not have a

8

1- nor a 2-boundary intersecting Int(s’). (Note that there are no boxes that have
both a 1- and 2-boundary intersecting Int(s').) Again |V}| = O(y/n). We split s’
into slabs at level 3 with respect to the third coordinate. Again, we split at each
3-boundary of boxes in V and at every \/n-th 3-boundary of boxes in V2. In this
way we continue for all coordinates.

Lemma 4.1 The partition has the following properties:
1. There are O(n¥/?) cells.
2. Each d-boz of V partially covers at most O(nld-1/2) cells.

3. Each cell only contains piles in its interior.

4. Each cell has at most O(\/n) d-bozes partially covering it.

Proof. For each coordinate, every slab at level ¢ is split into O(y/n) slabs at
level 2 + 1. Hence the total number of cells we obtain is O(\/r_zd) = O(nd/?).

If a d-box R partially covers a cell C then an i-boundary B of R cuts through
C for some ¢ (1 < ¢ < d). At the moment we split slabs at level i — 1 with respect
to the ith coordinate there are O(n(i~1)/2) slabs. Each of these slabs is split into
O(4/n) slabs at level ¢ at this moment but B can cut through only one of them
(because the cutting is done with respect to the ith coordinate axis). So after the
ith step B still cuts through at most O(n(i~1)/2) slabs at level i. In the next (d — 1)
steps each slab at level 7 is cut into O(n(#=9/2) cells. So B will cut through at most
O(nl-1/2 x p(d-)/2) = O(n(d-1/2) cells.

Property 3 follows from the fact that no d-box can have both an #;- and an
t3-boundary intersecting a slab at level ¢ with ¢; < i, < i. Hence, no d-box has
boundaries in more than one coordinate intersecting a slab at level d, i.e., a cell. So
each d-box forms a pile in a cell.

The last property follows immediately from the way we split the slabs. O

We will use the cells of this partition as leaves of the partition tree. It is easy to
see how the rest of the tree can be built on top of it. The tree consists of d “stages”,
where each stage consists of O(logn) levels of the tree. The top stage consists of
a tree T that stores the 2,/n slabs at level 1 in its leaves, sorted on z;-coordinate.
Each slab is represented by a slab tree that stores its slabs at level 2 (created in the
second step) sorted by z,-coordinate. For each of these slabs there is again a slab
tree that stores its subdivision by z3-coordinate, etc.

Lemma 4.2 Let V be a set of n d-bozes in d-dimensional space. There ezists a
partition tree for storing any subset of V such that

1. The tree has O(n%?) nodes.

2. Each d-boz is stored in O(nl4-1/2) leqves.
3. Each d-boz influences O(n4=V/2logn) TOT fields.
4. Each cell of a leaf only contains piles.

5. Each leaf stores no more than O(,/n) d-bozes.

Proof. Properties 1, 2, 4 and 5 follow immediately from the above lemma. The
third property follows from the first two as the depth is again bounded by O(log n).
O

It remains to show how the measure at a leaf is maintained when inserting
and deleting d-boxes. To this end we again use the inclusion/exclusion principle. As
stated in property 4, the d-boxes stored at a leaf § are piles and form a d-dimensional
trellis. Let V; be the projection of the i-piles on the z;-axis for each 1 < i < d. Let
M; be the 1-dimensional measure of V;. Let L; be the length of Cj in direction z;.
The following result is easy to proof:

Lemma 4.3 The measure of the trellis is

Z (—1)k+1Zk

1<k<d

where

> (HM-.- 11 L,)

1< <..<jk<d \1<i<k 1#j; for any 7

Although this might look quite complicated it is simply the inclusion/exclusion
principle. E.g., for d = 3 the formula shows that the measure is

M\LyL3 + LiM, Ly + Ly LoMs — MyM,Ly — MyLoM; — Ly My Ms + My My Ms.

When M; is known for each i the measure can be computed in constant time (as-
suming d is a constant).

Hence, we just have to maintain the 1-dimensional measure of V; for each i. For
this we use d segment trees S ... Sy, one for each dimension. An insertion or deletion
in a leaf means inserting or deleting the i-pile in the correct segment tree S;. In this
way we obtain the updated measure M; and we can recompute the above formula
to obtain the new measure in the cell. This will take time O(log n) (assuming that
d is a constant).

Lemma 4.4 Updates in the d-dimensional partition tree take time O(n(4-1)/21og n)
and the tree uses O(n(4t1/2) storage.

10

Proof. Follows from the above lemmas. [J

Theorem 4.5 The measure of a set of n d-bozes in d-dimensional space can be
computed in time O(n?/2logn) using O(n9/?) storage.

Proof. We use the plane sweep approach and maintain a (d—1)-dimensional par-
tition tree. So we have to perform O(n) updates, each taking time O(n(d-1-1)/2 Jog n).

The time bound follows. According to the preceding lemma, the structure uses
O(n(4-141)/2) storage. O

5 Reducing the amount of storage

In this section we will show how the amount of storage required can be reduces
to O(n). To this end we use an instance of the streaming technique introduced in
Edelsbrunner and Overmars(3].

The idea of streaming is the following: Before hand we know what updates
have to be performed and in what order. We can view the space sweep method as
traversing in time (being the d-th coordinate). Each update in the structure has
to be performed at a specific moment in time. Before each update we check what
the current measure is and we multiply it by the time passed since the last update.
Rather than building the structure and performing the updates one after the other,
we will perform them simultaneously and construct parts of the data structure when
we need them. When we are ready with the part we discard it again to free memory.

To formalize this, at any moment we are given a sequence of updates L over time
and a region of the space C. This region corresponds to some node in the tree and
L is the sequence of updates that will pass through this node. With each update
in L we have stored the time at which it has to be performed. In the beginning C
is the whole (d — 1)-dimensional space and L is the complete list of updates, time
being the d-th coordinate. A counter MEAS will be used to collect all the measure
found. In the beginning it will be set to 0.

The technique now works as follows: When all (d — 1)-boxes in L are piles with
respect to C (i.e., we are at a leaf in the partition tree) we construct d — 1 segment
trees. We perform all the updates on the segment trees and compute the (d — 1)-
measure in the cell after each update. These measures we multiply with the time
period to the next update to obtain the d-measure in C. This d-measure we add to
MEAS. This will take time O(|L|log n) and O(|L|) storage. Afterwards we destroy
all the structures.

When not all boxes are piles (i.e., we are at an internal node) we first compute
during which periods of time C will be completely covered by one box. (This cor-
responds to the time when TOT # 0.) This can be done by simply walking along
the list of updates and maintaining the number of boxes that cover C. Whenever

11

this number is larger than 0 C is covered. This takes time O(|L]). We multiply
the (d — 1)-measure of C with the total amount of time C is covered and add it
to MEAS. Next we change time by collapsing the covered periods into a single
moment, performing all the updates in that period at the same moment. (This is
necessary to avoid that lower in the tree measure will be found during these periods
again and counted twice.) Boxes that are now inserted and deleted at the same
moment are removed from L. Again this takes time O(|L|) only.

Next we split C into two cells C; and C; in a way similar to as it would have
been split in the partition tree. This can be done in the following way. Remember
that in the first stage of the tree we split on z;-coordinate, in the next stage on
xa-coordinate etc. until, in the last stage we split on z4_;-coordinate. Hence, it
is easy to remember on which coordinate we have to split at a particular moment.
So assume we have to split on the i-th coordinate. There are two different splits
we make: splits along ¢-boundaries in V¢ or splits along i-boundaries of boxes in
VZ (see the previous section). There is no problem in first making the splits along
i-boundaries of V} and after that along i-boundaries in V2. (The tree will get a
depth that is at most twice as large.) So making a split can be done as follows:

o Let ¢ be the current splitting coordinate. Split L into V} and V2.
o If V5 # 0 then split along the median i-boundary in V.

e Else, if VZ contains more than /n i-boundaries split along the median i-
boundary in V2.

e Else, increase 7 and repeat the procedure.

Finding the splitting line can easily be done in time O(|L|). It is easy to see that
the resulting partition tree will still satisfy the properties in lemma, 4.2.

Now we construct the list I, out of L containing the updates that influence C;.
In L we only keep the other updates. Hence, each update is either stored in L,
or in L. We recursively call the routine for C; and L,. When we get back from
the recursive calls, we join L; and L to reconstruct L in its original form. Now
we determine the list L, of updates that influence C;, again leaving in L the other
updates. We now recursively call the routine with C; and L,. When we get back we
again reconstruct L (to be used one level higher in the recursion). Note that during
the whole process we never copy updates. We simply take a part of list L and send
it down the recursion. When we get back we take another part of L and go again
in recursion. As a result each update is stored at at most one place.

The method does essentially the same work as the original technique in which
all updates are performed one after the other. In fact, it is more efficient because of
two reasons. When the whole list consists of piles we immediately solve the problem
rather than splitting till the list contains less than \/n boxes. Secondly, we don’t
consider boxes anymore when during their whole period of existence they are covered
by some other box.

12

Theorem 5.1 The measure of a set of n d-bozes in d-dimensional space can be
computed in time O(n%/?logn) using O(n) storage.

Proof. The amount of time used is essentially the same as in the case we
performed the updates one after the other.

To estimate the amount of storage, note that each update is stored at most once
in a list L. The bound follows. [J

6 Extensions

The partition tree and method described above can also be used to solve a number
of related problems. In this section we will briefly mention some of them.

It is well-known that the perimeter of the union of n rectangles in the plane can be
computed in time O(nlogn). (See e.g. [7,9].) Computing the perimeter generalizes
to computing the (d — 1)-dimensional measure of the contour of the union of a set
of d-boxes in d-dimensional space. The contour consists of parts of i-boundaries
of boxes that do not lie in the interior of the union. We will only show how to
compute the measure of the parts of d-boundaries of the contour. The measure
of the i-boundaries for other ¢ can easily be obtained by renumbering coordinates.
The total measure of the boundary is obviously the sum of the measures of the
t-boundaries in the contour for all 1 < i < d.

To compute the measure of the d-boundaries of the contour we use exactly the
same method as in section 4. We move a sweep plane along the d-th coordinate
axis and maintain the measure of the intersection. At any d-boundary where the
sweep-plane halts we update the (d — 1)-dimensional measure as in section 4. The
part of this d-boundary that is part of the contour is obviously the absolute value
of the difference of the old and the new measure. (Except when more boundaries
have the same d’th coordinate value. In this case some care has to be taken. The
procedure below correctly treats those cases.) To be precise, the main algorithm (as
described in section 2) is changed as follows:

S:=0;

MEAS:=0;

for i:=1 to n' do
M:=(d — 1)-dimensional measure of boxes in S;
Insert all d-boundaries of boxes that start at @; in S;
M, :=(d — 1)-dimensional measure of boxes in S;
Delete all d-boundaries of boxes that end at a; from S;
M_:=(d — 1)-dimensional measure of boxes in S;
MEAS:=MEAS + (M, — M)+ (My — M)

end;

13

S is again stored as a partition tree and maintained in exactly the same way.
The correctness of the method is easily established. This lead to the following result:

Theorem 6.1 The measure of the contour of the union of a set of n d-bozes in
d-dimensional space can be computed in time O(n??logn) using O(n?/?) storage.

The method can also be used to compute the measure of lower-dimensional parts
of the contour. It is unclear how streaming can be applied here to reduce storage.

As a second application consider the following query problem: Given a set of
d-boxes in d-dimensional space, store them such that for a given query box R it can
efficiently be determined whether R is completely covered by the d-boxes.

To solve this problem we store the d-boxes in a d-dimensional partition tree. A
query is performed using the procedure filled, described below. It gets two argu-
ments, a node é and the query rectangle R and returns whether the part of R inside

Cs is fully covered by d-boxes. Calling the routine with § the root of the tree gives
the required answer.

procedure filled (6, R):boolean;
if R completely covers Cs then
return M; = measure of Cj
else if R partially covers Cs then
if § is a leaf then
search the segment trees to see whether in at least
one of them the projection of R is fully covered;
return the result
else
return filled(I/sons,R) and filled(rsons,R)
else
return true
end;

The correctness of the method can easily be established. Searching the segment
trees in a leaf takes time O(logn). This has to be done in at most O(n(4-1)/2)
leaves. The total number of internal nodes visited is bounded by O(n(¢-1/2]ogn).
The following theorem follows.

Theorem 6.2 Let V be a set of n d-bozes in d-dimensional space. One can store V
using O(n(4+t1)/2) storage, such that for a given d-box R one can determine in time
O(n'9-V/210og n) whether R is completely covered by the bozes in V.

The method can easily be extended to compute the measure of the union of the
d-boxes restricted to a given box R, in the same time bounds. Updates from a fixed
set of boxes can be performed in time O(n(4-1/2logn) using the same method as
described for maintaining the measure.

14

Other applications exist. For example, it is possible to use the techniques given
here to determine contours and i-contours (contour of the area covered by at least
or precisely ¢ d-boxes).

7 Conclusions

We have given a new solution to Klee’s measure problem that is much more effi-
cient than previously known results, improving the time bound from O(n¢~!) to
O(n/?logn). The technique uses some new ideas, including a result on partitioning
space, a new type of partition tree and the use of the inclusion/exclusion principle.
Streaming was applied to reduce the amount of storage used to O(n).

The dynamic data structure we presented for dynamically maintaining the mea-
sure can be used for other problems as well. As we have shown it is very simple to
compute e.g. the perimeter. Moreover, the structure gives a compact representation
of the shape of the set of d-boxes. This can be used to answer certain classes of
queries efficiently.

Some open problems remain. First of all, it might be possible to shave off the
factor of logn. But, in fact, there is no reason to believe that the method is even near
optimal. Improvements or lower bounds should be worked on. It is also interesting
to look at the measure of other objects. For example the best bound known for
computing the measure of the union of a set of triangles is O(n?).

References

[1] Bentley, J.L., Multidimensional binary search trees used for associated search-
ing, Comm. ACM 18 (1975), 509-517.

[2] Bentley, J.L., Algorithms for Klee’s rectangle problem, Unpublished notes,
Dept. of Computer Science, CMU, 1977.

(3] Edelsbrunner, H., and M.H. Overmars, Batched dynamic solutions to decom-
posable searching problems, J. Algorithms 6 (1985), 515-542.

[4] Fredman, M.L., and B. Weide, The complexity of computing the measure of
Ula;, b}, Comm. ACM 21 (1978), 540-544.

(5] Klee, V., Can the measure of Ufa;,b;] be computed in less than O(nlogn)
steps?, Amer. Math. Montly 84 (1977), 284-285.

[6] Overmars, M.H., and C.K. Yap, New upper bounds in Klee’s measure prob-
lem (extended abstract), Proc. 29th IEEE Symp. on Foundations of Computer
Science, 1988, pp. 550-556.

15

[7] Preparata, F.P., and M.I. Shamos, Computational Geometry, Springer-Verlag,
1985.

[8] van Leeuwen, J., and D. Wood, The measure problem for rectangular ranges in
d-space, J. Algorithms 2 (1980), 282-300.

[9] Vitanyi, P.M.B. and D. Wood, Computing the perimeter of a set of rectangles,
Techn. Rep. 79-CS-23, Unit for Computer Science, McMaster University, 1979.

[10] Welzl, E., Partition trees for triangle counting and other range searching prob-
lems, Proc. 4th ACM Symp. on Computational Geometry, 1988, pp. 23-33.

(11] Willard, D.E., Polygon retrieval, SIAM J. Computing 11 (1982), 149-165.

16

New upper bounds in Klee’s measure
problem

Mark H. Overmars and Chee-Keng Yap

RUU-CS-89-28
November 1989

Utrecht University

#
Sutedo -
; <, Department of Computer Science
<
s 5 Padualaan 14, P.0. Box 80.089,

»
4771 o , 3508 TB Utrecht, The Netherlands,
Tel. : ... 4+ 31-30- 531454

New upper bounds in Klee’s measure
problem

Mark H. Overmars and Chee-Keng Yap

Technical Report RUU-CS-89-28
November 1989

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
the Netherlands

New upper bounds in Klee’s measure problem*

Mark H. Overmars' Chee-Keng Yap?

Abstract

We give new upper bounds for the measure problem of Klee which sig-
nificantly improve the previous bounds for dimensions greater than 2. We
obtain an O(n%/2logn,n) time-space upper bound to compute the measure
of a set of n boxes in Euclidean d-space. The solution is based on a new data
structure that we call an orthogonal partition tree that has other applications
as well. The method involves several new ideas including application of the
inclusion/exclusion principle, the concept of trellises and streaming.

1 Introduction

Around 1977, Klee [5] posed the measure problem: given a set of n intervals (of
the real line), find the length of their union. He gave an O(nlogn) time solution
and asked if this was optimal. This generated considerable interest in the problem,
and shortly after, Fredman and Weide [4] proved that (nlogn) is a lower bound
under the usual model of computation. Bentley [2] considered the natural extension
to d-dimensional space where we ask for the d-dimensional measure of a set of d-
rectangles. He showed that the O(nlogn) bound holds for d = 2 as well, and, for
d > 2, the result generalizes to an upper bound of O(n%!logn). Thus the results
are optimal for d = 1,2. We refer to the book [7] for an account. Concerning these
results for d > 3, Preparata and Shamos remarked in their book ([7] pp.328-9):

What is grossly unsatisfactory about the outlined method for d > 3 is
the fact that there is a “coherence” between two consecutive sections in

*Research of the first author was partially supported by the ESPRIT II Basic Research Actions
Program of the EC under contract No. 3075 (project ALCOM). Research of the second author
has been supported by ONR grant N00014-85-K-0046, and NSF grants DCR-84-01898 and CCR-
87-03458.

'Dept. of Computer Science, Utrecht University, P.O.Box 80.089, 3508 TB Utrecht, the
Netherlands.

tCourant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New
York, NY 10012, USA.

the sweep that we are unable to exploit. ... Although it seems rather
difficult to improve on this result, no conjecture about its optimality has
been formulated.

The only progress made since was a small improvement by van Leeuwen and
Wood [8] who removed the logn factor from Bentley’s upper bound for d > 3.
The test case seems to be d = 3: is O(n?) really necessary for computing the
volume of a set of n boxes in 3-space? In this paper we show that O(n!logn)
suffices. This immediately implies that in d-dimensions (d > 3), the bound becomes
O(n4-1%logn).

The idea is to use a plane-sweep approach and dynamically maintain the measure
of a set of 2-dimensional rectangles in time O(/n logn) per update.

Such a result means that we can maintain the area of a set of rectangles implicitly
without having to represent the full boundary structure. This is because any explicit
representation of the boundary of n rectangles requires Q(n?) time in the worst case
because of the simple ‘trellis’ example (see figure 1): it consists of n long vertical

rectangles which are pairwise disjoint, superposed on n long horizontal rectangles
also disjoint among themselves.

Figure 1: Trellis

The first idea is to exploit the regularity of such trellis structures by maintaining
only O(n) amount of information (at the boundary of the box containing the trellis)
to keep track of the area of the trellis rectangles. Of course, a union of rectangles is
too irregular to be consistently exploited in this way, so the next idea is to partition
the plane into a collection of trellises. Using a generalization of the k-d tree of
Bentley (1], we are able to form such a partition with only O(n) trellises each of size

2

O(y/n). As we shall see, extending this to higher dimensions requires a partition
with interesting properties that might be useful for other applications as well.

The rest of this paper is organized as follows: Section 2 describes the basic space
sweep algorithm we use and introduces the generalized k-d tree, that we will call
an orthogonal partition tree, for storing the boxes. Section 3 contains the solution
to the 3-dimensional measure problem. Section 4 generalizes this solution to a
d-dimensional method, using an interesting partition scheme of the d-dimensional
space. This results in a O(n%?logn,n%?) time-space upper bound. In section 5
we exploit a streaming technique of Edelsbrunner and Overmars [3] to reduce the
amount of storage required to O(n) only, for any dimension d. In section 6 we briefly
mention some other applications of the method like e.g. computing the measure of
the boundary of the union of a set of boxes. Finally, in section 7, some conclusions,
extensions and open problems are given.

Throughout the paper we will use the following terminology. A d-boz is the
cartesian product of d intervals in d-dimensional space. The i-boundaries of a d-box
are the parts of the boundary that are perpendicular to the i-th coordinate axis.
Each d-box has two ¢-boundaries for 1 < i < d. We refer to them as the left and
right i-boundary. The i-interval is the projection of the d-box on the z;-axis. For a
d-box R we denote with Int(R) the interior of R.

Definition 1.1 A d-boz R, is said to partially cover R, if the boundary of R,
intersects Int(R;). Ry is said to (completely) cover R; if R, C R;.

Definition 1.2 For two d-boxes R; and R, we say that Ry is an i-pile w.r.t. Ry if
Ry partially covers R, and for all 1 < j < d with j # i the j-interval of R, is fully
contained in the j-interval of R,.

In other words, in each direction, except for direction i, R, completely covers
R;,. i-piles will play an important role in this paper.
An extended abstract of this paper appeared in [6].

2 General framework

The basic method for solving the d-dimensional measure problem is as follows. Let
V be the set of n d-boxes for which we want to compute the measure. Let V' =
{a1,...,a.} be the set of all different z4-coordinates of vertices of the boxes, i.e.,
all different endpoints of d-intervals. We sort the boxes both by left and right d-
boundary. We solve the measure problem using a space sweep approach turning the
static d-dimensional problem into a dynamic (d—1)-dimensional problem. We sweep
a hyperplane along the d-th coordinate axis stopping at each value in V. During
the sweep we maintain the (d — 1)-dimensional measure of the boxes intersected by
the sweep plane. At each step of the sweep we multiply this (d — 1)-dimensional
measure by the distance traveled with the sweep hyperplane and add this to the
measure found so far. The algorithm looks as follows.

3

S:=0;
MEAS:=0;
for i:=1ton’'—1do
Insert all d-boundaries of boxes that start at a; in S;
M:=(d — 1)-dimensional measure of boxes in S;
MEAS:=MEAS + (ai41 — a;) X M;
Delete all d-boundaries of boxes that end at @;41 from S
end;

At termination MEAS will contain the measure of the set of boxes. § will
be a dynamic data structure for maintaining the (d — 1)-dimensional measure. If
insertions and deletions in S can be performed in time Fy_;(n) the method will take
time O(nlog n + nFy_,(n)). This approach is due to Bentley.

To maintain the measure of the set of boxes intersected by the sweep-plane we
introduce a generalization of the k-d tree.

Definition 2.1 A d-dimensional orthogonal partition tree is a balanced binary tree.
With each internal node é is associated a region Cs of the d-dimensional space, with
the following properties:

¢ Cioot s the whole d-dimensional space.
e For each node § Cs is a (possibly unbounded) d-boz.
o For each node § with sons §; and 6, I nt(Cs,)NInt(Cs,) = 0 and C5,UCs, = Cs.

Cs will be called the region associated with 6. When § is a leaf we refer to Cs
as a cell. It immediately follows that for each full level of the orthogonal partition
tree all regions are essentially disjoint and their union is the d-dimensional space.
From now on we drop the qualifying word “orthogonal” and speak only of “partition
trees”, which is not to be confused with the “non-orthogonal” partition trees of e.g.
Willard [11] and Welzl [10].

To use partition trees for maintaining the measure of a set of d-boxes we store
the following extra information in the partition tree: With each leaf § we store all
boxes that intersect Int(Cs) but do not cover the region associated with the father
of 6. For each internal node § we store a counter TOT} that contains the number
of d-boxes that completely cover C; but only partially cover Clather(s)- Finally, with
each node § we associate a field M that is defined as follows: If 6 is a leaf M contains
the measure of the boxes stored at § restricted to Cj. Otherwise, if TOTs > 0 then
M is the measure of Cj, otherwise M = Mison(s) + M, son(s)- It is easy to verify that
M, o0 1s the measure of the set of d-boxes.

To maintain the measure in a dynamically changing set we have to be able to

insert and delete d-boxes in the partition tree. The basic insertion algorithm is the
following:

procedure Insert(boz,5);

if 6 is a leaf then
Store boz at §;
Recompute M;

elsif box covers Cs then
TOTs:=TOTs + 1;
Mjs:=measure of Cj

elsif box partially covers Cs then
Insert(boz,lson(6));
Insert(boz,rson(6));
if TOTs > 0 then M;:= measure of C; else Ms:=M,,on(s) + M, s0n(s) end

end,;

The routine is invoked via Insert(boz,root). The deletion routine is similar:

procedure Delete(boz,§);
if 6 is a leaf then
Remove boz at §;
Recompute M;
elsif box covers Cs then
TOT5:=TOT5 - 1;
if TOTs > 0 then M;:= measure of C; else Ms:=Misons) + M,40n(s) end
elsif boz partially covers Cs then
Delete(boz,lson(6));
Delete(boz,rson(8));
if TOTs > 0 then M;:= measure of C; else Ms:=Mison(s) + M s0n(s) end
end;

The routine is invoked via Delete(boz,root). Note the similarity with the methods
of Bentley [2] and van Leeuwen and Wood [8] for the 1- and 2-dimensional case.
The main difference is that we no longer insist that the leaves are fully covered
by the boxes that intersect them. It is immediately clear that the amount of time
required depends on the number of nodes visited and the amount of time required
for computing the measure at the leaves. In the sequel of this paper we will show
that partition trees exist in which both are small.

3 Dynamic measure problem in two dimensions

To illustrate the general solution we will develop in the next section, we first solve
the 3-dimensional measure problem. Solving the 3-dimensional problem means that
we have to design a 2-dimensional partition tree with good performance. To obtain
such a partition tree we first define a subdivision of the plane into rectangular cells
with some interesting properties.

Let V be the set of the rectangles that will be inserted and deleted in the partition
tree. First we split the z,-axis into 2,/n intervals such that each interval contains
< y/n 1-boundaries of rectangles. This defines 2,/n slabs in the plane. Each slab s
will be split by horizontal line segments into a number of cells. Let V! be the set of
rectangles that have a 1-boundary inside s. Let V2 be the set of rectangles that only
have a 2-boundary intersecting s. (Note that the size of V! is bounded by v/ but
the size of V,? can be almost n.) We draw a line segment along each 2-boundary of
a rectangle in V,!. Moreover, we draw a line segment along each \/n-th 2-boundary
of a rectangle in V2. In this way s is partitioned into < 4/n rectangular cells.

Lemma 3.1 The partition has the following properties:
1. There are O(n) cells.

2. Each rectangle of V' partially covers at most O(y/n) cells.

3. No cell contains vertices in its interior.

4. Each cell has at most O(+/n) rectangles partially covering it.

Proof. Property 1 follows from the fact that there are 2/n slabs, each with
4./n cells.

To show property 2 note that each vertical line cuts through one slab, i.e.,
through at most 4,/n cells. Each horizontal line cuts in each slab through one
cell. Hence, through at most 2\/n cells in total. V partially covers a cell only if
its boundary cuts through the cell. This boundary consists of two vertical and two
horizontal line segments. Hence, it cuts through at most 12,/n cells.

Property 3 follows from the fact that, if a vertex lies in the interior of a slab s, it
belongs to a rectangle in V' and, hence, it will lie on the horizontal segment drawn
through its 2-boundary, i.e., on the boundary of a cell.

Finally, property 4 follows from the fact that each slab contains at most Vn
1-boundaries and each cell at most \/n 2-boundaries. O

We will use the cells of this partition as leaves of the partition tree. For each
slab s we construct a binary tree T, that contains its cells ordered by z,-coordinate
in its leaves. Next we construct a tree T' that contains the slab trees 7T, ordered
by z1-coordinate in its leaves. See figure 2 for an example. Each node in the tree,
consisting of T' and the slab trees T,, has an associated region, being the union of
the cells at the leaves in the subtree. It is easy to see that such a region is a (possibly
infinite) rectangle.

Lemma 3.2 Let V be a set of n rectangles in the plane. There exists a partition
tree for storing any subset of V such that

1. The tree has O(n) nodes.

sl s2 s3 s4 s5

Figure 2: The 2-dimensional partition tree.

2. Each rectangle is stored in O(,/n) leaves.

3. Each rectangle influences O(/nlogn) TOT fields.
4. No cell of a leaf contains vertices of rectangles in the interior.

5. Each leaf stores no more than O(,/n) rectangles.

Proof. Properties 1, 2, 4 and 5 follow immediately from the above lemma.
The third property follows from the first two. If the tree has O(n) nodes its depth
is bounded by O(logn). When a rectangle influences the TOT field of a node
6 it partially covers Cfather(s), and there must be a leaf below father(§) that is
intersected by the rectangle. Hence, the number of internal nodes intersected by a
rectangle is bounded by O(log) times the number of leaves where the rectangle is
stored. As a result the rectangle can only influence that number of TOT fields. [J

It remains to show how the measure at a leaf is maintained when inserting and
deleting rectangles. To this end we use the inclusion/exclusion principle. Note that,
due to property 4, the rectangles stored at a leaf § are 1-piles or 2-piles w.r.t. Cj.
In other words, they form a trellis. The measure of such a trellis can be maintained
in the following way. Let V; be the projection of the 1-piles on the x;-axis and let
V2 be the projection of the 2-piles on the z,-axis. Let M; be the (1-dimensional)
measure of V; and M, the (1-dimensional) measure of V3. Assume that the cell
Cs has measure L; x L;. Now it is easy to see that the measure of the trellis is
M, x Ly + My x Ly — My x M,. Hence, we just have to maintain the 1-dimensional

measure of V; and V,. For this we can use a simple segment tree that uses linear
storage and maintains the measure in time O(log n) per insertion and deletion (see
[7]). So with each cell (leaf) § we associate two segment trees S; and S,. S; contains
the projections of the 1-piles in 6 on the z;-axis and S; contains the projections of the
2-piles on the zz-axis. Inserting (deleting) a rectangle at § now consists of inserting
(deleting) it in S; or S (never in both). In this way M; and M, get updated and
we obtain the new measure in the leaf.

Theorem 3.3 The measure of a set of n S-bozes in 3-dimensional space can be
computed in time O(n\/nlogn) using O(n./n) storage.

Proof. We use the plane sweep approach and maintain the partition tree de-
scribed above. To insert or delete a rectangle we have to update O(y/nlogn) TOT
fields. This takes time O(y/nlogn). Next, we have to insert or delete the rectangle
at O(y/n) leaves. At each such leaf this causes an insertion or deletion in a segment
tree which takes O(logn). Hence, the total update time of the partition tree is
O(y/nlogn).

The bound on the amount of storage required follows from the fact that the
tree itself takes O(n) storage and each leaf stores O(y/n) information (according to
property 5 of the above lemma). O

In section 5 we will show how to reduce the amount of storage used to O(n).

4 Dynamic measure in multi-dimensional space

We will now generalize this method to d-dimensional space. To this end we will

describe a d-dimensional partition tree, based on a cell decomposition of the d-
dimensional space.

Definition 4.1 A slab at level i = 1,...,d is a subset of R? of the form I x I, x
o X Iy X R% where I, ..., I; are intervals of R.

Let V be the set of all d-boxes that will be inserted or deleted in the partition
tree. We split the z;,-axis in 24/n intervals, each of whose interior contains < Vn
1-boundaries of boxes. This splits the d-dimensional space in 2\/n slabs at level 1.
For each such slab s let V, be the set of d-boxes that partially cover s. We split V, in
two subsets: V! of d-boxes that have a 1-boundary inside s and V;? of d-boxes that
do not have a 1-boundary inside s. Note that |V}!| < y/n. Each slab s we now split
with respect to second coordinate. We split it at the 2-boundaries of each d-box in
V,! and we split it at every /n-th 2-boundary of d-boxes in V2. As a result we split
each slab s into O(y/n) slabs at level 2. For each such slab s’ let V,, be the set of
d-boxes that partially cover s’. We again split V,, into two subsets: V} of boxes that
have a 1- or a 2-boundary intersecting Int(s’) and V;? of boxes that do not have a

8

1- nor a 2-boundary intersecting Int(s’). (Note that there are no boxes that have
both a 1- and 2-boundary intersecting Int(s’).) Again [V}| = O(/n). We split s’
into slabs at level 3 with respect to the third coordinate. Again, we split at each

3-boundary of boxes in V} and at every \/n-th 3-boundary of boxes in V2. In this
way we continue for all coordinates.

Lemma 4.1 The partition has the following properties:
1. There are O(n/?) cells.
2. Each d-bozx of V partially covers at most O(nld-1/2) cells,
8. Each cell only contains piles in its interior.

4. Each cell has at most O(y/n) d-bozes partially covering it.

Proof. For each coordinate, every slab at level : is split into O(y/n) slabs at
level i + 1. Hence the total number of cells we obtain is O(\/ﬁd) = O(nd/?),

If a d-box R partially covers a cell C then an i-boundary B of R cuts through
C for some i (1 < < d). At the moment we split slabs at level 1 — 1 with respect
to the ith coordinate there are O(n(i-1)/2) slabs. Each of these slabs is split into
O(y/n) slabs at level ¢ at this moment but B can cut through only one of them
(because the cutting is done with respect to the ith coordinate axis). So after the
ith step B still cuts through at most O(nt-1)/2) slabs at level i. In the next (d —)
steps each slab at level i is cut into O(n{9-9/2) cells. So B will cut through at most
O(nl-1/2 x p(d=0/2) = O(nld-1/2) cells.

Property 3 follows from the fact that no d-box can have both an i;- and an
t2-boundary intersecting a slab at level ¢ with 7; < i, < s. Hence, no d-box has
boundaries in more than one coordinate intersecting a slab at level d, i.e., a cell. So
each d-box forms a pile in a cell.

The last property follows immediately from the way we split the slabs. [

We will use the cells of this partition as leaves of the partition tree. It is easy to
see how the rest of the tree can be built on top of it. The tree consists of d “stages”,
where each stage consists of O(logn) levels of the tree. The top stage consists of
a tree T that stores the 2,/n slabs at level 1 in its leaves, sorted on x;-coordinate.
Each slab is represented by a slab tree that stores its slabs at level 2 (created in the
second step) sorted by zz-coordinate. For each of these slabs there is again a slab
tree that stores its subdivision by z3-coordinate, etc.

Lemma 4.2 Let V be a set of n d-bozes in d-dimensional space. There erists a
partition tree for storing any subset of V such that

1. The tree has O(n%/?) nodes.

2. Each d-boz is stored in O(n(4-1/2) Jeqves.

8. Each d-boz influences O(n®-V/21logn) TOT fields.
4. Each cell of a leaf only contains piles.

5. Each leaf stores no more than O(/n) d-bozes.

Proof. Properties 1, 2, 4 and 5 follow immediately from the above lemma. The
third property follows from the first two as the depth is again bounded by O(log n).
O

It remains to show how the measure at a leaf is maintained when inserting
and deleting d-boxes. To this end we again use the inclusion/exclusion principle. As
stated in property 4, the d-boxes stored at a leaf § are piles and form a d-dimensional
trellis. Let V; be the projection of the i-piles on the z;-axis for each 1 < i < d. Let
M; be the 1-dimensional measure of V;. Let L; be the length of Cj in direction z;.
The following result is easy to proof:

Lemma 4.3 The measure of the trellis is

Z (_1)k+lzk

1<k<d

where

Zi= Y (HM-,. 11 L,)

1€0<..<jx<d \1<i<k 15 for any 7

Although this might look quite complicated it is simply the inclusion/exclusion
principle. E.g., for d = 3 the formula shows that the measure is

M\L;L3 + LhM; L3 + LyLoMs — MyMyLs — My LoMs — Ly M, M; + MyM,M;.

When M; is known for each i the measure can be computed in constant time (as-
suming d is a constant).

Hence, we just have to maintain the 1-dimensional measure of V; for each i. For
this we use d segment trees S ... Sy, one for each dimension. An insertion or deletion
in a leaf means inserting or deleting the i-pile in the correct segment tree S;. In this
way we obtain the updated measure M; and we can recompute the above formula
to obtain the new measure in the cell. This will take time O(log n) (assuming that
d is a constant).

Lemma 4.4 Updates in the d-dimensional partition tree take time O(nl-1/2 log n)
and the tree uses O(n(4t1)/2) storage.

10

Proof. Follows from the above lemmas. [

Theorem 4.5 The measure of a set of n d-bozes in d-dimensional space can be
computed in time O(n%?logn) using O(n9/?) storage.

Proof. We use the plane sweep approach and maintain a (d—1)-dimensional par-
tition tree. So we have to perform O(n) updates, each taking time O(n{?-1-1/21og n).

The time bound follows. According to the preceding lemma, the structure uses
O(n(d-1+1)/2) storage. O

5 Reducing the amount of storage

In this section we will show how the amount of storage required can be reduces
to O(n). To this end we use an instance of the streaming technique introduced in
Edelsbrunner and Overmars[3].

The idea of streaming is the following: Before hand we know what updates
have to be performed and in what order. We can view the space sweep method as
traversing in time (being the d-th coordinate). Each update in the structure has
to be performed at a specific moment in time. Before each update we check what
the current measure is and we multiply it by the time passed since the last update.
Rather than building the structure and performing the updates one after the other,
we will perform them simultaneously and construct parts of the data structure when
we need them. When we are ready with the part we discard it again to free memory.

To formalize this, at any moment we are given a sequence of updates L over time
and a region of the space C. This region corresponds to some node in the tree and
L is the sequence of updates that will pass through this node. With each update
in L we have stored the time at which it has to be performed. In the beginning C
is the whole (d — 1)-dimensional space and L is the complete list of updates, time
being the d-th coordinate. A counter M EAS will be used to collect all the measure
found. In the beginning it will be set to 0.

The technique now works as follows: When all (d — 1)-boxes in L are piles with
respect to C (i.e., we are at a leaf in the partition tree) we construct d — 1 segment
trees. We perform all the updates on the segment trees and compute the (d — 1)-
measure in the cell after each update. These measures we multiply with the time
period to the next update to obtain the d-measure in C. This d-measure we add to
MEAS. This will take time O(|L|logn) and O(|L|) storage. Afterwards we destroy
all the structures.

When not all boxes are piles (i.e., we are at an internal node) we first compute
during which periods of time C will be completely covered by one box. (This cor-
responds to the time when TOT # 0.) This can be done by simply walking along
the list of updates and maintaining the number of boxes that cover C. Whenever

11

this number is larger than 0 C is covered. This takes time O(|L|). We multiply
the (d — 1)-measure of C with the total amount of time C is covered and add it
to MEAS. Next we change time by collapsing the covered periods into a single
moment, performing all the updates in that period at the same moment. (This is
necessary to avoid that lower in the tree measure will be found during these periods
again and counted twice.) Boxes that are now inserted and deleted at the same
moment are removed from L. Again this takes time O(|L|) only.

Next we split C into two cells C; and C; in a way similar to as it would have
been split in the partition tree. This can be done in the following way. Remember
that in the first stage of the tree we split on z;-coordinate, in the next stage on
zg-coordinate etc. until, in the last stage we split on z4_;-coordinate. Hence, it
is easy to remember on which coordinate we have to split at a particular moment.
So assume we have to split on the i-th coordinate. There are two different splits
we make: splits along i-boundaries in V{ or splits along i-boundaries of boxes in
V& (see the previous section). There is no problem in first making the splits along
i-boundaries of Vj} and after that along i-boundaries in VZ. (The tree will get a
depth that is at most twice as large.) So making a split can be done as follows:

e Let i be the current splitting coordinate. Split L into V3 and V2.
o If V5 # 0 then split along the median i-boundary in V.

o Else, if V2 contains more than /n i-boundaries split along the median i-
boundary in V2.

¢ Else, increase ¢ and repeat the procedure.

Finding the splitting line can easily be done in time O(|L|). It is easy to see that
the resulting partition tree will still satisfy the properties in lemma 4.2.

Now we construct the list L; out of L containing the updates that influence C;.
In L we only keep the other updates. Hence, each update is either stored in L,
or in L. We recursively call the routine for C; and L;. When we get back from
the recursive calls, we join L; and L to reconstruct L in its original form. Now
we determine the list L, of updates that influence C;, again leaving in L the other
updates. We now recursively call the routine with C; and L,. When we get back we
again reconstruct L (to be used one level higher in the recursion). Note that during
the whole process we never copy updates. We simply take a part of list L and send
it down the recursion. When we get back we take another part of L and go again
in recursion. As a result each update is stored at at most one place.

The method does essentially the same work as the original technique in which
all updates are performed one after the other. In fact, it is more efficient because of
two reasons. When the whole list consists of piles we immediately solve the problem
rather than splitting till the list contains less than \/n boxes. Secondly, we don’t
consider boxes anymore when during their whole period of existence they are covered
by some other box.

12

Theorem 5.1 The measure of a set of n d-bozes in d-dimensional space can be
computed in time O(n%/2logn) using O(n) storage.

Proof. The amount of time used is essentially the same as in the case we
performed the updates one after the other.

To estimate the amount of storage, note that each update is stored at most once
in a list L. The bound follows. O

6 Extensions

The partition tree and method described above can also be used to solve a number
of related problems. In this section we will briefly mention some of them.

It is well-known that the perimeter of the union of n rectangles in the plane can be
computed in time O(nlogn). (See e.g. [7,9].) Computing the perimeter generalizes
to computing the (d — 1)-dimensional measure of the contour of the union of a set
of d-boxes in d-dimensional space. The contour consists of parts of i-boundaries
of boxes that do not lie in the interior of the union. We will only show how to
compute the measure of the parts of d-boundaries of the contour. The measure
of the i-boundaries for other 7 can easily be obtained by renumbering coordinates.
The total measure of the boundary is obviously the sum of the measures of the
i-boundaries in the contour for all 1 < ¢ < d.

To compute the measure of the d-boundaries of the contour we use exactly the
same method as in section 4. We move a sweep plane along the d-th coordinate
axis and maintain the measure of the intersection. At any d-boundary where the
sweep-plane halts we update the (d — 1)-dimensional measure as in section 4. The
part of this d-boundary that is part of the contour is obviously the absolute value
of the difference of the old and the new measure. (Except when more boundaries
have the same d’th coordinate value. In this case some care has to be taken. The
procedure below correctly treats those cases.) To be precise, the main algorithm (as
described in section 2) is changed as follows:

S:=0;

MEAS:=0;

for i:=1 to n’ do
M:=(d — 1)-dimensional measure of boxes in S;
Insert all d-boundaries of boxes that start at a; in S;
M, :=(d — 1)-dimensional measure of boxes in S;
Delete all d-boundaries of boxes that end at a; from S;
M_:=(d — 1)-dimensional measure of boxes in S;
MEAS:=MEAS+ (M, — M) + (M, — M)

end;

13

S is again stored as a partition tree and maintained in exactly the same way.
The correctness of the method is easily established. This lead to the following result:

Theorem 6.1 The measure of the contour of the union of a set of n d-bozes in
d-dimensional space can be computed in time O(n?/?log n) using O(n?/?) storage.

The method can also be used to compute the measure of lower-dimensional parts
of the contour. It is unclear how streaming can be applied here to reduce storage.

As a second application consider the following query problem: Given a set of
d-boxes in d-dimensional space, store them such that for a given query box R it can
efficiently be determined whether R is completely covered by the d-boxes.

To solve this problem we store the d-boxes in a d-dimensional partition tree. A
query is performed using the procedure filled, described below. It gets two argu-
ments, a node § and the query rectangle R and returns whether the part of R inside

Cs is fully covered by d-boxes. Calling the routine with & the root of the tree gives
the required answer.

procedure filled (6, R):boolean;
if R completely covers Cs then
return M; = measure of C;
else if R partially covers Cs then
if 6 is a leaf then
search the segment trees to see whether in at least
one of them the projection of R is fully covered;
return the result
else
return filled(/sons,R) and filled(rsons,R)
else
return true
end;

The correctness of the method can easily be established. Searching the segment
trees in a leaf takes time O(logn). This has to be done in at most O(n(d-1/2)
leaves. The total number of internal nodes visited is bounded by O(n(4-1/2log n).
The following theorem follows.

Theorem 6.2 Let V be a set of n d-bozes in d-dimensional space. One can store V
using O(n(#+1/2) storage, such that for a given d-boz R one can determine in time
O(n@-V/2log n) whether R is completely covered by the bozes in V.

The method can easily be extended to compute the measure of the union of the
d-boxes restricted to a given box R, in the same time bounds. Updates from a fixed
set of boxes can be performed in time O(n{?-1/2logn) using the same method as
described for maintaining the measure.

14

Other applications exist. For example, it is possible to use the techniques given
here to determine contours and i-contours (contour of the area covered by at least
or precisely ¢ d-boxes).

7 Conclusions

We have given a new solution to Klee’s measure problem that is much more effi-
cient than previously known results, improving the time bound from O(n4!) to
O(n%?logn). The technique uses some new ideas, including a result on partitioning
space, a new type of partition tree and the use of the inclusion/exclusion principle.
Streaming was applied to reduce the amount of storage used to O(n).

The dynamic data structure we presented for dynamically maintaining the mea-
sure can be used for other problems as well. As we have shown it is very simple to
compute e.g. the perimeter. Moreover, the structure gives a compact representation
of the shape of the set of d-boxes. This can be used to answer certain classes of
queries efficiently.

Some open problems remain. First of all, it might be possible to shave off the
factor of log n. But, in fact, there is no reason to believe that the method is even near
optimal. Improvements or lower bounds should be worked on. It is also interesting
to look at the measure of other objects. For example the best bound known for
computing the measure of the union of a set of triangles is O(n?).

References

[1] Bentley, J.L., Multidimensional binary search trees used for associated search-
ing, Comm. ACM 18 (1975), 509-517.

(2] Bentley, J.L., Algorithms for Klee’s rectangle problem, Unpublished notes,
Dept. of Computer Science, CMU, 1977.

[3] Edelsbrunner, H., and M.H. Overmars, Batched dynamic solutions to decom-
posable searching problems, J. Algorithms 6 (1985), 515-542.

[4] Fredman, M.L., and B. Weide, The complexity of computing the measure of
Ulai, b;], Comm. ACM 21 (1978), 540-544.

[5] Klee, V., Can the measure of U[a;,b;] be computed in less than O(nlogn)
steps?, Amer. Math. Montly 84 (1977), 284-285.

[6] Overmars, M.H., and C.K. Yap, New upper bounds in Klee’s measure prob-

lem (extended abstract), Proc. 29th IEEE Symp. on Foundations of Computer
Science, 1988, pp. 550-556.

15

[7] Preparata, F.P., and M.I. Shamos, Computational Geometry, Springer-Verlag,
1985.

[8] van Leeuwen, J., and D. Wood, The measure problem for rectangular ranges in
d-space, J. Algorithms 2 (1980), 282-300.

[9] Vitanyi, P.M.B. and D. Wood, Computing the perimeter of a set of rectangles,
Techn. Rep. 79-CS-23, Unit for Computer Science, McMaster University, 1979.

[10] Welzl, E., Partition trees for triangle counting and other range searching prob-
lems, Proc. 4th ACM Symp. on Computational Geometry, 1988, pp. 23-33.

[11] Willard, D.E., Polygon retrieval, SIAM J. Computing 11 (1982), 149-165.

16

