
Evaluation of Collaborative Filtering Algorithms

Bakkalaureatsarbeit

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Software & Information Engineering (033 534)

ausgeführt von

Patrick Marschik

Matrikelnummer 0625039

patrick.marschik@student.tuwien.ac.at

am:

Institut für Softwaretechnik und Interaktive Systeme

Betreuer: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43/(0)1/58801-0 http://www.tuwien.ac.at

patrick.marschik@student.tuwien.ac.at

Contents

1 Introduction 1

1.1 Motivation . 2

2 Context 2

3 Notation 3

4 Related Work 3

4.1 Pearson Correlation Coefficient . 4

4.1.1 Inverse User Frequency . 5

4.1.2 Case Amplification . 6

4.2 Item-based Collaborative Filtering . 6

4.2.1 Similarity Calculation . 7

4.2.2 Prediction Calculation . 8

4.3 Slope One . 10

4.4 Evaluation of Recommendations . 12

4.4.1 Mean Absolute Error . 12

4.4.2 Root Mean Squared Error . 13

5 Contribution 13

5.1 Experiment Setup . 13

5.2 Experiment Procedure . 14

5.3 Pearson Correlation Coefficient . 14

5.4 Item-based Collaborative Filtering . 15

5.5 Slope One . 15

5.6 Results . 15

6 Conclusion 17

List of Figures 18

List of Tables 18

List of Algorithms 18

References 19

i

A Implementation 20

A.1 easyRec . 20

A.2 Extension of Data Model . 22

A.2.1 cont lastaction . 22

A.2.2 cont userassoc . 22

A.2.3 so lastupdate . 23

A.2.4 so deviation . 23

A.3 Pearson Correlation Coefficient . 24

A.4 Item-based Collaborative Filtering . 26

A.5 Slope One . 28

B Detailed Results 30

B.1 Detailed Accuracy Results . 30

B.2 Detailed Performance Results . 34

ii

Abstract

Collaborative filtering recommender algorithms generate personalized recom-

mendations for users based on a set of ratings on items. In this work we will

present three different algorithms for collaborative filtering based recommender sys-

tems: the Pearson Correlation Coefficient, Item-based Collaborative Filtering and

Slope One. We will also introduce metrics to measure accuracy of these algorithms.

Finally we will compare the accuracy and performance result of an implementation

of these three algorithms.

1 Introduction

Since the amount of information is ever growing it becomes harder and harder to find

information of relevance. Therefore techniques to filter the information for pieces relevant

to the user need to be devised. One domain of algorithms that tries to solve this problem

is Collaborative Filtering (CF) recommender systems. CF algorithms store preferences

of users for items in a database. This data is then used to generate a neighborhood of

similar users or items with the assumption that a user likes the same items as the users

in a close neighborhood to him.

This work will compare the performance – both accuracy and runtime – of several CF

algorithms. These algorithms are Slope One as described by Lemire and Maclachlan

[2005], Item-based collaborative filtering by Sarwar et al. [2001] and, as a baseline ref-

erence scheme, the Pearson Correlation Coefficient as presented by Breese et al. [1998].

Although the original works did some comparison of the algorithms they introduced

with other algorithms the published accuracy data cannot be directly compared since

the test-sets used for evaluation were different. Also authors often chose random splits

of datasets which makes reproduction of the tests impossible. This work will use the

Movielens-100k1 dataset with the original five split datasets to ease reproduction of the

tests.

This paper is structured as follows:

Section 2 will briefly introduce the framework in which the algorithms were imple-

mented.

Section 3 will introduce a common notation used in later sections of the work.

1http://www.movielens.org/ as of February 2010

1

http://www.movielens.org/

Section 4 will cover in detail the three compared algorithms and metrics used to ana-

lyze them.

Section 5 will explain the experimental setup and procedure and will cover the results

of the experiment.

Section 6 final conclusions and future work.

Appendix A contains detail of the implementations.

Appendix B contains all generated experiment data.

1.1 Motivation

Smart Agent Technologies Studio (SAT)2 developed the recommender system easyRec.

In february 2010 the source code for easyRec was released under an open source li-

cense. The source code for version 0.9 can be downloaded from Source Forge3. Our task

was to implement three algorithms for use in easyRec. SAT would be happy for any

contributions made to easyRec and plan to continue supporting it as an open source

project.

2 Context

The algorithms implemented were integrated into the easyRec framework outlined in

[Cerny, 2008; Gstrein, 2009].

Figure 6 on page 20 shows the software architecture of easyRec. easyRec makes its

recommendation capabilities available as web services (SOAP and REST). The action

service stores any action happening on a client application – such as rating or viewing an

item – in a database. On request generators then store predictions in the database. Gen-

erators are implementations of recommender algorithms. The algorithms implemented

in this work are implemented as easyRec generators.

Figure 7 on page 21 depicts the data model of easyRec’s database. The key tables are

Action and ItemAssociation. Action stores all actions performed on a client site. As

we can see the action table stores different types of actions (actionTypeId column).

2http://sat.researchstudio.at as of February 2010
3http://sourceforge.net/projects/easyrec/files/easyrec_0.9.zip/download as of February

2010

2

http://sat.researchstudio.at
http://sourceforge.net/projects/easyrec/files/easyrec_0.9.zip/download

Of main interest for the algorithms implemented in this work are actions of the type

rating. ItemAssociation contains the predictions created by the generators. Since the

table is designated only for item to item associations we added several other tables to

the database. The tables added are listed in A.2 on page 22.

3 Notation

The following notation (adapted from the notation used by Lemire and Maclachlan

[2005]) is used throughout the paper for describing the different CF recommender algo-

rithms.

To express the cardinality of a set X we write card(X). Conversely |x| denotes the

absolute value of a variable x.

An evaluation (ratings given by a user) is represented as vector u. Then ui denotes the

components of this vector u. These components describe that user u rated item i. χ is

the set of all evaluations u in the training-set. Moreover u is the average of an evaluation

u.

S(u) is the subset of u consisting of the items that were rated. Furthermore Si(χ) denotes

a subset of χ containing all u ∈ χ where item i was rated (Si(χ) = {u |u ∈ χ, i ∈ S(u)}).
Likewise Si,j(χ) is the subset of χ where both the item i and j were rated (Si,j(χ) =

{u |u ∈ χ, i, j ∈ S(u)}). Predictions for user u and item i are written as P (u)i. Also

given an item i the average rating of that item is denoted as i.

4 Related Work

According to Burke [2002] recommender systems can be classified in five groups. Col-

laborative, content-based, demographic, utility-based and knowledge-based techniques.

This work will focus on collaborative techniques. Collaborative techniques use the simi-

larity relation between users to generate recommendations for users [see Gstrein, 2009].

The user is asked for his opinion of an item (a rating of that item). Based on these

ratings a similarity between users can be calculated. Predictions are then made by using

these similarities of a user to other users. Collaborative techniques can further be di-

vided to memory-based and model-based techniques [see Breese et al., 1998]. Again, this

paper will focus on the former ones. First the Pearson Correlation Coefficient algorithm

3

is introduced as a basic implementation of CF recommender algorithms. Next Item-

based Collaborative Filtering is shown because the algorithm differs from the standard

CF techniques – not similarities between users but between items are calculated. At

last the Slope One algorithm is presented which aims to be a fast but also reliable4 CF

algorithm.

4.1 Pearson Correlation Coefficient

As a baseline comparison the Pearson Correlation Coefficient was implemented. The

Pearson Correlation Coefficient is used to calculate the similarity between two users.

This similarity value is thereafter utilized to calculate the prediction for a user and an

item. This is accomplished by using a weighted sum. According to Breese et al. [1998]

there are also other ways of using the similarities to generate predictions. In the course

of this work we will be limiting us to the weighted sum.

PPCC(a)i = a+ κ
∑

o∈Si(χ)

w(a, o) · (oi − o) (1)

Let a be the active user, the one we are currently creating a prediction for. Then

other users – who rated the item in question – denoted as o will be inspected for their

similarity to the active user. The similarity is captured in the function w(a, o) which

will be described in more detail below. The weight is then multiplied with the relative

voting value of the other user. κ is a factor for normalization and is usually defined as

κ = (
∑

o∈χ |w(a, o)|)−1.

Viertl [2003, pg. 80] defined the Pearson Correlation Coefficient– which will be used as

weight w(a, o) – as

r =
Cov(X,Y)√
VarX

√
VarY

=
E(XY)− EX EY√

VarX
√

VarY
(2)

Where EX is the expected value of X.
√

VarX is the standard deviation of X. For use

with CF equation 2 is as follows

w(a, o) =

∑
o∈I(ai − a)(oi − o)√∑

o∈I(ai − a)2
∑

o∈I(oi − o)2
(3)

4reliable means generating reliably accurate predictions

4

Where I is the set of items which both – the active user a and the other user o – have

rated: I = S(a) ∩ S(o).

To improve the prediction accuracy Breese et al. [1998] proposed a number of modifica-

tions to the Pearson Correlation Coefficient. The modifications proposed are (a) Default

Voting, (b) Inverse User Frequency and (c) Case Amplification.

Default Voting tries to tackle the sparsity problem – when there are few votes – of

recommender algorithms. When one of two users didn’t rate for an item the other

user rated, a default vote is applied. Default Voting won’t be further covered in this

paper.

4.1.1 Inverse User Frequency

The idea of Inverse User Frequency is to penalize often occurring items. The gist of this

method is that seldom occurring items capture the similarity between two users, who

have both rated that item, better. An analogy in the film environment would be that

Hollywood blockbusters are penalized in weight. Conversely seldom watched art movies

are rewarded, since people watching them might be more interested in another art film

than yet another Hollywood blockbuster. The origin of the Inverse User Frequency can

be traced back to information retrieval where a similar method – the inverse document

frequency – is used [see Jones, 1972].

fi = log
card(χ)

card(Si(χ))
(4)

Where card(χ) is the total number of items in the dataset. Moreover card(Si(χ)) is the

number of times item i has been rated. Note that fi can become zero and therefore

remove an entire weight from the calculation.

This value has then to be multiplied to the ratings, i.e. each component of the vectors

a and o has to be weighed accordingly. Therefore equation 2 has to be transformed

using a weighted expected value EWX =
∑

i wixi∑
i wi

and a weighted standard deviation
√
V arWX =

√
EWX2 − E2

WX. Using the Inverse User Frequency fi as weight wi we

5

get:

w(a, o) =

∑
i∈I fi

∑
i∈I fi ai oi −

∑
i∈I fi ai

∑
i fi oi√

(
∑

i∈I fi
∑

i∈I fi a
2
i − (

∑
i∈I fi ai)

2)(
∑

i∈I fi
∑

i∈I fi o
2
i − (

∑
i∈I fi oi)

2)

(5)

Where I is the set of items which both – the active user a and the user o – rated:

I = S(a) ∩ S(o).

4.1.2 Case Amplification

Case Amplification is another simple means of improving (not only) Pearson Correlation

Coefficient predictions. The idea here is to mute low valued weights more than high

valued ones. The adaption to include this in the prediction process is simply made in

equation 1 by replacing the original weights value w(a, o) with

w(a, o)
′

=

 wρ(a, o) for w(a, o) ≥ 0

−(−wρ(a, o)) for w(a, o) < 0
(6)

Where ρ ∈ R. A typical value for ρ used by Breese et al. [1998] is 2.5. I.e. a high weight

value of 0.9 will become 0.81 and is still high but a lower weight value of 0.6 will become

much a less significant 0.36.

4.2 Item-based Collaborative Filtering

Item-based Collaborative Filtering was presented by Sarwar et al. [2001]. Usually CF

recommender algorithms calculate similarities between users. Item-based Collaborative

Filtering however computes it’s similarity values between items. After computing the

similarity between items the Item-based Collaborative Filtering algorithm uses them to

calculate the predictions for the users. In a typical application of CF there are more

users than items [see Sarwar et al., 2001]. Calculating the similarity between items

should therfore perform better than calculating the similarity between users.

6

4.2.1 Similarity Calculation

Several methods for computing the similarity of items were suggested by Sarwar et al.

[2001]. The basic scheme for all of them is to select the ratings of the users that rated

both items. This is depicted in figure 1. The rows 1...m represent the users and the

columns 1...n the items. Items i and j are fixed and only those rows that contain ratings

for both are taken into consideration

 1 2 3 i n-1 n

 1

2

u

m

m-1

j

R-

R -

R R

R R

R R

Item-item similarity is computed by
looking into co-rated items only. In
case of items i and j the similarity si,j is
computed by looking into them. Note:
each of these co-rated pairs are
obtained from different users, in this
example they come from users 1, u
and m-1.

si,j=?

3.2 Prediction Computation

3.2.1 Weighted Sum

3.2.2 Regression

3.3 Performance Implications

289

Figure 1: Isolation of the co-rated items and similarity computation5

Correlation-based Correlation-based similarity is – just like the plain Pearson Cor-

relation Coefficient CF algorithm – based on the Pearson Correlation Coefficient but

adapted to work on items instead of user vectors:

sim(i, j) =

∑
u∈Si,j(χ)

(ui − i)(uj − j)√∑
u∈Si,j(χ)

(ui − i)2
∑

u∈Si,j(χ)
(uj − j)2

(7)

Note that compared to equation 3 items and users were swapped.

Cosine-based For cosine-based similarity the items i and j are treated as vectors.

The similarity between these two vectors is the cosine of the angle between them as

5[Sarwar et al., 2001, pg. 289 figure 2]

7

described in the following equation.

sim(i, j) = cos(~i,~j) =
~i ·~j

‖~i‖ × ‖~j‖
(8)

Where ‖~x‖ is the euclidean length of ~x. In addition ~x ·~y is the dot-product of the vectors

~x and ~y.

Adjusted Cosine-based Sarwar et al. [2001] found that basic cosine-based similarity

computation in Item-based Collaborative Filtering had a drawback: the rating scale –

which differs between users – is not taken into account. In user-based CF this problem is

addressed in the prediction calculation. In Item-based Collaborative Filtering however

the information about the other users involved isn’t present in the prediction calculation

anymore. Therefore Sarwar et al. [2001] proposed a change to calculating the cosine.

They subtract the average rating for the user addressed in the component of the item

vector. With this adaption they bring the information about the users rating scale back

to the computation.

sim(i, j) =

∑
u∈Si,j(χ)

(ui − u)(uj − u)√∑
u∈Si,j(χ)

(ui − u)2
∑

u∈Si,j(χ)
(uj − u)2

(9)

Using this adjusted cosine measure for similarity had a significant impact on the quality

of predictions. It outperformed both the correlation-based and the unmodified cosine-

based similarity computations [see Sarwar et al., 2001, pg. 291 figure 4].

4.2.2 Prediction Calculation

After the similarities are calculated they are used to compute the prediction for a specific

user. Sarwar et al. [2001] proposed two different prediction calculation algorithms: a

weighted sum and regression.

The idea for the prediction generation – using the similarity pairs of items the user rated

and the item in question – is shown in figure 2. User u rated the items 1, 3, i− 1, i+ 1

and n − 1. Suppose the prediction for user u and item i is calculated. The prediction

for i is based on the similarities of the item i to the other items rated by user u.

6Sarwar et al. [2001, pg. 290 figure 3]

8

 1 2 3 ii-1 i+1 n-1 n

 1

2

u

m

m-1

2nd 1st 3rd 5th4th

Ranking of the items similar to the i-th item

R R R R

u R R R R
i1 2 3 i-1 m-1 m

si,1

si,3

si,i-1

si,m-

-

pr
ed

ic
tio

n

weighted sum regression-based

4. EXPERIMENTAL EVALUATION

4.1 Data set

.

4.2 Evaluation Metrics

290

Figure 2: The prediction generation process is illustrated for 5 neighbors6

Weighted Sum The weighted sum for Item-based Collaborative Filtering is:

P ICF(a)i =

∑
j∈S(a)(sim(i, j) + 1) · aj∑

j∈S(a) |sim(i, j)| (10)

The similarity values are in the range of [−1, 1]. Since the similarities are used as weight

they might cancel out a rating ajwhen they become 0. Therefore they are shifted to

[0, 2] by adding 1. Another way of removing the canceling effect would be to center aj ’s

rating on 0 and add that offset to the value generated by the basic prediction.

Regression Another method for prediction calculation Sarwar et al. [2001] presented

is based on linear regression. The notion is that computed similarity values might be

distant even though they have high similarity. Therefore instead of using the raw rating

value aj in equation 10 they used approximated values j
′
:

j′ = α i+ β + ε (11)

Sarwar et al. [2001] observed that regression-based predictions outperform the simple

weighted sum for sparse data. But the more data is added the quality of regression-based

predictions significantly declines. They ascribe this to over-fitting the regression model

at high data density levels.

9

4.3 Slope One

Slope One is a CF algorithm proposed by Lemire and Maclachlan [2005] with the main

goal to be easily implementable. Nonetheless it should deliver reasonably accurate pre-

dictions, fast on-line query processing and dynamic updates of the generated predictions

when new ratings occur. Lemire and Maclachlan state that the strong points of their al-

gorithm are that it (a) is easy to implement, (b) is updatable on the fly, (c) is efficient at

query time, (d) doesn’t need many ratings to generate predictions and (e) is reasonably

accurate.

Similar to Item-based Collaborative Filtering, Slope One uses an item similarity measure.

This metric however – and also the prediction computation – are different from either

variation of Item-based Collaborative Filtering. The idea is to store the differential

rating values of item pairs – called “popularity differential” by Lemire and Maclachlan.

Figure 3 displays this idea. To predict the rating of user B for item J the differential

between the ratings of user A is used. User A already rated I = 1 and J = 1.5 therefore

the differential is 0.5. Since user B already rated item I = 2 the prediction for item J

is 2 + 0.5 = 2.5.

ar
X

iv
:c

s/0
70

21
44

v1
 [

cs
.D

B]
 2

4
Fe

b
20

07

Slope One Predictors for Online Rating-Based Collaborative Filtering

Daniel Lemire∗ Anna Maclachlan†

Abstract
Rating-based collaborative filtering is the process of predict-
ing how a user would rate a given item from other user
ratings. We propose three related slope one schemes with
predictors of the form f (x) = x+ b, which precompute the
average difference between the ratings of one item and an-
other for users who rated both. Slope one algorithms are
easy to implement, efficient to query, reasonably accurate,
and they support both online queries and dynamic updates,
which makes them good candidates for real-world systems.
The basic SLOPE ONE scheme is suggested as a new ref-
erence scheme for collaborative filtering. By factoring in
items that a user liked separately from items that a user dis-
liked, we achieve results competitive with slower memory-
based schemes over the standard benchmark EachMovie and
Movielens data sets while better fulfilling the desiderata of
CF applications.

Keywords: Collaborative Filtering, Recommender, e-
Commerce, Data Mining, Knowledge Discovery

1 Introduction
An online rating-based Collaborative Filtering CF query
consists of an array of (item, rating) pairs from a single user.
The response to that query is an array of predicted (item,
rating) pairs for those items the user has not yet rated. We
aim to provide robust CF schemes that are:

1. easy to implement and maintain: all aggregated data
should be easily interpreted by the average engineer and
algorithms should be easy to implement and test;

2. updateable on the fly: the addition of a new rating
should change all predictions instantaneously;

3. efficient at query time: queries should be fast, possibly
at the expense of storage;

4. expect little from first visitors: a user with few ratings
should receive valid recommendations;

5. accurate within reason: the schemes should be compet-
itive with the most accurate schemes, but a minor gain

∗Université du Québec
†Idilia Inc.
In SIAM Data Mining (SDM’05), Newport Beach, California, April

21-23, 2005.

2 ? User B

Item J
? = 2 + (1.5 ! 1) = 2.5

1 1.5

Item I

User A

1.5 ! 1 = 0.5

Figure 1: Basis of SLOPE ONE schemes: User A’s ratings of
two items and User B’s rating of a common item is used to
predict User B’s unknown rating.

in accuracy is not always worth a major sacrifice in sim-
plicity or scalability.

Our goal in this paper is not to compare the accuracy
of a wide range of CF algorithms but rather to demonstrate
that the Slope One schemes simultaneously fulfill all five
goals. In spite of the fact that our schemes are simple,
updateable, computationally efficient, and scalable, they are
comparable in accuracy to schemes that forego some of the
other advantages.

Our Slope One algorithms work on the intuitive prin-
ciple of a “popularity differential” between items for users.
In a pairwise fashion, we determine how much better one
item is liked than another. One way to measure this differen-
tial is simply to subtract the average rating of the two items.
In turn, this difference can be used to predict another user’s
rating of one of those items, given their rating of the other.
Consider two users A and B, two items I and J and Fig. 1.
User A gave item I a rating of 1, whereas user B gave it a
rating of 2, while user A gave item J a rating of 1.5. We ob-
serve that item J is rated more than item I by 1.5 − 1 = 0.5
points, thus we could predict that user B will give item J a
rating of 2+0.5 = 2.5. We call user B the predictee user and
item J the predictee item. Many such differentials exist in a
training set for each unknown rating and we take an average
of these differentials. The family of slope one schemes pre-
sented here arise from the three ways we select the relevant
differentials to arrive at a single prediction.

The main contribution of this paper is to present slope
one CF predictors and demonstrate that they are competitive

Figure 3: The rating of two items user A rated in common with user B is used to predict
user B’s item J8

Expanding this scheme to several items the “similarity” in Slope One is defined as the

average deviation of the items i and j given by:

dev(i, j) =
∑

u∈Si,j(χ)

ui − uj
card(Si,j(χ))

(12)

8Lemire and Maclachlan [2005, pg. 1]

10

If the numerator and the denominator of the average deviation are stored separately

dev(i, j) can easily be upgraded when new ratings are entered. Also since dev(i, j) is

symmetric, computation time is halved.

As seen in figure 3 dev(i, j) + uj can be used as prediction for ui. Therefore a usable

predictor is the average of all such predictions:

P S1scheme(a)i =
1

card(Ri)

∑
j∈Ri

(dev(i, j) + uj) (13)

Where Ri = {j | j ∈ S(u), i 6= j, card(Si,j(χ)) > 0} are all items to be taken into consid-

eration. Lemire and Maclachlan [2005] present an approximation based on the fact that

in a dense dataset – where almost all pairs of items i and j were rated – Ri = S(u)\{i}.
Also in a dense dataset

∑
j∈Ri

uj

card(Rj)
is approximately u. The approximated prediction

is

P S1(a)i = u+
1

card(Ri)

∑
i∈Ri

devi,j (14)

As a further improvement, a weighted variant of equation 13 was suggested. For weights

the number of users who rated both items i and j are used. The more users rated an

item pair, the more valuable it is considered. Note that this is contradictory to the

idea of Inverse User Frequency (section 4.1.1) where less user ratings mean a greater

weight for the prediction. This is applicable because average deviations are used and

not correlation values.

PwS1(a)i =

∑
j∈S(u)−{i}(dev(i, j) + uj) card(Si,j(χ))∑

j∈S(u)−{i} card(Si,j(χ))
(15)

Lemire and Maclachlan [2005] described a third variant of Slope One, the bi-polar Slope

One. The idea of bi-polar Slope One is that average deviations are split in like and

dislike sets. These sets are based on the users average rating and Liked/disliked items

are then only weighted among themselves. Other than that the scheme is identical to

the weighted Slope One.

11

4.4 Evaluation of Recommendations

Herlocker et al. [2004] reviewed methods for evaluating CF recommender systems. They

split the evaluation into several steps. Some of them are the identification of the user

tasks to be evaluated and accuracy metrics.

Among the user tasks “Find Good Items” is of most interest to us since it is used by

most commercial systems. “Find Good Items” is the task of showing the user a list of

(ranked) items that he might like.

Several different measurements for accuracy of a CF recommender system were pre-

sented. Herlocker et al. separated them into three groups: (a) predictive accuracy

metrics, (b) classification accuracy metrics and (c) rank accuracy metrics. Predictive

accuracy metrics – such as MAE and RSME – try to capture how close the predictions

were to the actual rating of a user. Classification accuracy metrics measure how often

a system makes incorrect decisions about wether a recommended item is good. Finally

rank accuracy metrics try to appraise the order the recommender system generates versus

the order the user would have made.

4.4.1 Mean Absolute Error

The Mean Absolute Error (MAE) metric has been used several times to analyze CF

recommender systems [see Breese et al., 1998; Gstrein, 2009; Lemire and Maclachlan,

2005; Sarwar et al., 2001]. Although predictive accuracy metrics can be used for “Find

Good Items”, rank accuracy metrics are better fitted for the task. However the Mean

Absolute Error has the advantages that it is easy to calculate and also statistically well

studied. Therefore it is good for comparison of different recommender systems.

MAE =

∑
(u,i)∈ψ |P (u)i − ui|

card(ψ)
(16)

Where ψ = {(u, i) | ∀u ∈ S(χ′), ∀i ∈ S(u)} is the set of all user-item pairs in the test-set

χ′ and P (u)i is the prediction generated from the training-set χ.

12

4.4.2 Root Mean Squared Error

The Root Mean Squared Error (RMSE) is related to the Mean Absolute Error but

stresses large errors more seriously.

RMSE =

√∑
(u,i)∈ψ |P (u)i − ui|2

card(ψ)
(17)

Where – like before – ψ = {(u, i) | ∀u ∈ S(χ′), ∀i ∈ S(u)} is the set of all user-item pairs

in the test-set χ′ and P (u)i is the prediction generated from the training-set χ.

5 Contribution

In the course of this work Slope One, Pearson Correlation Coefficient and Item-based

Collaborative Filtering algorithms were implemented for the easyRec9 recommender sys-

tem framework outlined in [Cerny, 2008; Gstrein, 2009].

5.1 Experiment Setup

The dataset used for comparison was Movielens-100k10 with the default five-split subsets.

Movielens-100k contains 100,000 ratings in the range from 1 to 5 given by 943 users on

1682 movies. Each of the users rated at least 20 movies. The default five-split subsets

are splits of 80% training data and 20% test data and are disjoint.

The data for the test-sets was imported to a MySQL 5.1 database. Indices were added

to the tables/columns most beneficial to time consuming queries. The algorithms were

implemented in Java version 1.6 and the operating system used was Mac OS X 10.6.

This software setup is summarized in table 1.

Software Version

Operating System Mac OS X 10.6.2
Programming Language Java SE 1.6.0 17
Database MySQL 5.1.41

Table 1: Software Setup

9http://easyrec.org/ as of February 2010
10http://www.movielens.org/ as of February 2010

13

http://easyrec.org/
http://www.movielens.org/

Accuracy as well as performance evaluation were performed on a MacBook with a pro-

cessor speed of 2.4 GHz and 2 GB of RAM. The hardware setup is summarized in

table 2.

Part Specifications

CPU Intel Core 2 Duo
CPU frequency 2.4 GHz
Main Memory Size 2 GB
Main Memory Speed 1.07 GHz

Table 2: Hardware Setup

5.2 Experiment Procedure

When running the tests for a single algorithm the Java Virtual Machine was not restarted

until the algorithm ran for all five test sets. After an algorithm finished running, the

database tables were cleared of the generated data. Then for the next test, the Java

Virtual Machine was restarted.

As a metric both MAE and RSME described in section 4.4 were used. The computed

recommendations were truncated to fit in the rating scale [1...5]. All recommendations

the algorithms could produce were generated – not just the ones in the test-set. For

performance the time needed by the algorithms was taken and converted into a recom-

mendations/second measure.

5.3 Pearson Correlation Coefficient

For our experiment the Pearson Correlation Coefficient algorithm was implemented with

both Inverse User Frequency and Case Amplification. For Case Amplification a param-

eter of ρ = 2.5 was assumed like Breese et al. [1998] proposed. The weights generated

were stored in the database. We ran several variations of the algorithm with Inverse

User Frequency and Case Amplification turned either completely off, one of the two off

or both on.

14

5.4 Item-based Collaborative Filtering

Similarity calculation for Item-based Collaborative Filtering was implemented in all three

variants introduced in [Sarwar et al., 2001]. The similarities calculated were stored in

a database table for querying in the prediction phase. For prediction calculation only

the basic weighted sum (see equation 10) was implemented. Since the exact method

used in [Sarwar et al., 2001] was not given, we implemented both variations described

in section 4.2.2. We have found that adding 1 to the similarity sim(i, j) delivers a

much better MAE than the method of centering the rating aj . Our implementation of

Item-based Collaborative Filtering also differs in the size of neighboring item similarities

used. Sarwar et al. used only a limited set of neighbors whereas we used the complete

neighborhood available.

5.5 Slope One

Slope One was implemented in both, the simple and the weighted variant described in

section 4.3. The average deviations of the items were stored in a database table. The

columns for the deviations were split for the numerator and denominator. This allows

to make differential updates – adding new ratings after the average deviations have been

calculated.

5.6 Results

In figure 4 we can see that the Pearson Correlation Coefficient CF algorithm has the best

accuracy of the algorithms compared. Second best is Slope One followed by Item-based

Collaborative Filtering. This confirms that Slope One is an algorithm with reasonably

accurate prediction quality. On the contrary the Item-based Collaborative Filtering

algorithm didn’t do better than user-based CF recommenders.

In figure 5 the results of the performance measures are shown. Since all three algorithms

produced a different amount of predictions, recommendations per second were chosen

as performance measure. Some Pearson Correlation Coefficient variations were run with

only 20,000 predictions generated.

Slope One clearly dominates the performance test. It outperformed the second placed

Item-based Collaborative Filtering by a factor of roughly 4 and the last placed Pearson

Correlation Coefficient by a factor of 15. This confirms that Slope One is fast for

15

Comparison

Average Pearson Item-Item Slope One
MAE

RSME
Recommendations/Second

0.7511443 0.8039935 0.7788253
0.9533300 1.0070928 0.9849328

36.973 126.027 544.377

0

0.20

0.40

0.60

0.80

1.00

1.20

MAE RSME

0.985

0.779

1.007

0.804

0.953

0.751

Error Comparison

Pearson Item-Item Slope One

0

110.000

220.000

330.000

440.000

550.000

Recommendations/Second

544.377

126.027

36.973

Performance Comparison

Pearson
Item-Item
Slope OneFigure 4: Accuracy of the algorithms

online queries and – as we have seen before – reasonably accurate. The second placed

Item-based Collaborative Filtering is still about 3 times faster than Pearson Correlation

Coefficient, therefore confirming the results of Sarwar et al. [2001].

Table 7 on page 30 displays the detailed accuracy results for the Pearson Correlation

Coefficient. We can see that the unmodified Pearson Correlation Coefficient variant is

the most accurate of the variants tested. The Inverse User Frequency is the second most

accurate followed by Case Amplification. The combination of Case Amplification and

Inverse User Frequency performs worst of all variants.

On table 8 on page 31 we can see the accuracy results for Item-based Collaborative

Filtering. The calculations were performed with the weighted sum adapted to add 1 to

sim(i, j). As expected adjusted-cosine similarity calculation performed best followed by

cosine and Pearson similarity calculation. When using centered ratings aj the accuracy

drops significantly as shown in table 9 on page 32.

Slope One accuracy data is shown in table 10 on page 33. As anticipated the weighted

variant is better than the simple variant.

Detailed performance results for all algorithms are on the tables 11, 12, 13 and 14 on

pages 34, 35, 36 and 37 respectively.

16

Comparison

Average Pearson Item-Item Slope One
MAE

RSME
Recommendations/Second

0.7511443 0.8039935 0.7788253
0.9533300 1.0070928 0.9849328

36.973 126.027 544.377

0

0.20

0.40

0.60

0.80

1.00

1.20

MAE RSME

0.985

0.779

1.007

0.804

0.953

0.751

Error Comparison

Pearson Item-Item Slope One

0

110.000

220.000

330.000

440.000

550.000

Recommendations/Second

544.377

126.027

36.973

Performance Comparison

Pearson
Item-Item
Slope One

Figure 5: Performance of the algorithms

6 Conclusion

In this work we introduced three Collaborative Filtering recommender algorithms. Firstly

the Pearson Correlation Coefficient, which is based on the relation between pairs of users.

Secondly the Item-based Collaborative Filtering algorithm that creates its predictions

on the relation between pairs of items. And finally Slope One which tries to be a fast

but sufficiently accurate CF recommender algorithm. We compared these three algo-

rithms using MAE and RSME as accuracy metric and recommendations per second as

performance metric.

The results showed that, although Pearson Correlation Coefficient was the most accurate,

it was also several times slower than the fastest algorithm Slope One. Despite the fact

that Item-based Collaborative Filtering was faster than Pearson Correlation Coefficient

it was also the most inaccurate of the three compared algorithms.

Further work should include the bi-polar variant of Slope One. Moreover experiments

with different neighborhood sizes and an implementation of regression based predictions

for Item-based Collaborative Filtering could be implemented. Furthermore the com-

parison could be extended by implementing default voting for the Pearson Correlation

Coefficient.

17

List of Figures

1 Isolation of the co-rated items and similarity computation 7

2 The prediction generation process is illustrated for 5 neighbors 9

3 The rating of two items user A rated in common with user B is used to

predict user B’s item J . 10

4 Accuracy of the algorithms . 16

5 Performance of the algorithms . 17

6 Overview of easyRec Software Architecture 20

7 easyRec’s data model . 21

List of Tables

1 Software Setup . 13

2 Hardware Setup . 14

3 Data Model for cont lastaction . 22

4 Data Model for cont userassoc . 22

5 Data Model for so lastupdate . 23

6 Data Model for so deviation . 23

7 Accuracy of Pearson Correlation Coefficient and variants 30

8 Accuracy of Item-based CF and variants with sim(i, j) + 1 31

9 Accuracy of Item-based CF and variants with centered aj 32

10 Accuracy of Slope One and variants . 33

11 Performance of Pearson Correlation Coefficient and variants 34

12 Performance of Item-based CF and variants with sim(i, j) + 1 35

13 Performance of Item-based CF and variants with centered aj 36

14 Performance of Slope One and variants . 37

List of Algorithms

1 Pearson Correlation Coefficient weight calculation 24

2 Pearson Correlation Coefficient prediction calculation 25

3 Item-based Collaborative Filtering similarity calculation 26

4 Item-based Collaborative Filtering prediction calculation 27

5 Slope One calculation of average deviations 28

6 Slope One calculation of predictions . 28

18

References

John S. Breese, David Heckerman, and Carl Kadie. Empirical analysis of predictive algo-

rithms for collaborative filtering. In UAI ’98: Proceedings of the Fourteenth Conference

on Uncertainty in Artificial Intelligence, pages 43–52. Morgan Kaufmann, 1998.

Robin Burke. Hybrid recommender systems: Survey and experiments. User Modeling

and User-Adapted Interaction, 12(4):331–370, 2002. ISSN 0924-1868. doi: http://dx.

doi.org/10.1023/A:1021240730564.

Roman Cerny. Design and implementation of a generic recommender and its applica-

tion to the music domain. Master’s thesis, Vienna University of Technology, Vienna,

Austria, October 2008.

Erich Gstrein. Adaptive Personalization: A multi view personalization approach incor-

porating contextual information. PhD thesis, Vienna University of Technology, 2009.

Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, John, and T. Riedl. Evalu-

ating collaborative filtering recommender systems. ACM Transactions on Information

Systems, 22:5–53, 2004.

Karen Spärck Jones. A statistical interpretation of term specificity and its application

in retrieval. Journal of Documentation, 28:11–21, 1972.

Daniel Lemire and Anna Maclachlan. Slope one predictors for online rating-based col-

laborative filtering. In Proceedings of SIAM Data Mining (SDM’05), pages 471–475,

2005.

Badrul Sarwar, George Karypis, Joseph Konstan, and John Reidl. Item-based collab-

orative filtering recommendation algorithms. In WWW ’01: Proceedings of the 10th

international conference on World Wide Web, pages 285–295, New York, NY, USA,

2001. ACM. ISBN 1-58113-348-0. doi: http://doi.acm.org/10.1145/371920.372071.

Reinhard Viertl. Einführung in die Stochastik - Mit Elementen der Bayes-Statistik und

der Analyse unscharfer Information. Springers Lehrbücher der Informatik. Springer-

Verlag, Vienna, Austria, 3rd edition, 2003. ISBN 3-211-00837-3.

19

A Implementation

A.1 easyRec

O
nl

in
e

R
ec

om
m

en
de

r
S

er
vi

ce
s

R
ec

om
m

en
de

r S
er

ve
r

C
lie

nt
s

O
ffl

in
e

R
ec

om
m

en
de

r
S

er
vi

ce
s

A
ct

io
n

S
er

vi
ce

G
en

er
at

or
 S

er
ve

r

A
ct

io
n-

B
as

ed
G

en
er

at
or

s

C
on

te
nt

-B
as

ed
G

en
er

at
or

s

D
B

(A
ss

oc
ia

tio
n

R
ul

es
)

D
B

(A
ct

io
ns

)

Ap
pl

ic
at

io
n

La
ye

r
A

P
I L

ay
er

D
at

ab
as

e
La

ye
r

Web Service API

C
lie

nt
Ap

pl
ic

at
io

n
1

C
lie

nt
Ap

pl
ic

at
io

n
2

C
lie

nt
A

pp
lic

at
io

n
N

D
at

am
in

in
g

La
ye

r

C
lie

nt
 L

ay
er

3rd
 P

ar
ty

M
et

ad
at

a

Figure 6: Overview of easyRec Software Architecture11

11[Cerny, 2008, pg. 34]

20

RecommendedItem

-id:int
-itemId:int
-itemTypeId:int
-recommendationId:int
-predictionValue:double
-itemAssocId:int
-explanation:String

View Type

-tenantId:int
-name:String
-id:int

Tenant

-id:int
-stringId:String
-description:String
-ratingRangeMin:int
-ratingRangeMax:int
-ratingRangeNeutral:double

SourceType

-tenantId:int
-name:String
-id:int

Recommendation

-id:int
-tenantId:int
-userId:int
-queriedItemId:int
-queriedITemTypeId:int
-queriedAssocTypeId:int
-relatedActionTypeId:int
-recommendationStrategy:String
-explanation:String
-recommendationTime:Date

ItemType

-tenantId:int
-name:String
-id:int

ItemAssociation

-id:int
-tenantId:int
-itemFromId:int
-itemFromTypeId:int
-assocTypeId:int
-assocValue:double
-itemToId:int
-itemToTypeId:int
-sourceTypeId:int
-sourceInfo:String
-viewTypeId:int
-active:boolean
-changeDate:Date

IDMapping

-intId:int
-stringId:String

Authentication

-tenantId:int
-domainURL:String

AssociationType

-tenantId:int
-name:String
-id:int

AggregateType

-tenantId:int
-name:String
-id:int

ActionType

-tenantId:int
-name:String
-id:int

Action

-id:int
-tenantId:int
-userId:int
-sessionId:String
-IP:String
-itemId:int
-itemTypeId:int
-actionTypeId:int
-ratingValue:int
-searchSucceeded:boolean
-numberOfFoundItems:int
-description:String
-actionTime:Date

*

0..1

*

*
*

*

*

*

*

*

*

*

*

*

0..1

*

0..1
*

0..1

*

*
*

*

* *

*

*

Figure 7: easyRec’s data model12

12[Cerny, 2008, pg. 47]

21

A.2 Extension of Data Model

A.2.1 cont lastaction

Field Type Description

id int(11) Identifier

tenantId int(11) Identifier for the tenant the action belongs to

userId int(11) Identifier for the user that did the action

itemId int(11) Identifier for the item on which the action applies

itemTypeId int(11) Identifier for the type of the involved item

actionTypeId int(11) Identifier for the action that was performed

ratingValue int(11) Value of the rating

actionTime datetime Time when the action occured

previousRatingValue int(11) The last rating value of the action before an update

previousActionTime datetime The last action time of the action before an update

Table 3: Data Model for cont lastaction

A.2.2 cont userassoc

Field Type Description

id int(11) Identifier

tenantId int(11) Identifier for the tenant the association belongs to

userFromId int(11) Identifier for the user that is associated

assocValue double Value of the association

itemToId int(11) Identifier for the item that is associated

itemToTypeId int(11) Identifier for the type of the item that is associated

sourceTypeId int(11) Identifier for the source that generated the association

changeDate datetime Date when the association was last changed

Table 4: Data Model for cont userassoc

22

A.2.3 so lastupdate

Field Type Description

tenantId int(11) Identifier for the tenant that was updated

lastUpdate datetime Date when the last update of the tenant occured

Table 5: Data Model for so lastupdate

A.2.4 so deviation

Field Type Description

id int(11) Identifier

tenantId int(11) Identifier for the tenant the deviation belongs to

item1Id int(11) Identifier for the first item involved in the deviation

item1TypeId int(11)
Identifier for the type of the first item involved in the devi-

ation

item2Id int(11) Identifier for the second item involved in the deviation

item2TypeId int(11)
Identifier for the type of the second item involved in the

deviation

difference double Sum of differences for the deviations

count int(11) Number of actions involved in the deviation

Table 6: Data Model for so deviation

23

A.3 Pearson Correlation Coefficient

Algorithm 1 Pearson Correlation Coefficient weight calculation

Require: U set of users

Require: A map of average user ratings

Require: iuf a boolean describing if Inverse User Frequency is enabled

1: function calculateWeights(U ,A,iuf)

2: for i← 1, card(U) do

3: ua ← Ui

4: for j ← i+ 1, card(U) do

5: uo ← Uj

6: R← getItemsRatedTogether(ua, uo)

7: if card(R) = 0 then

8: continue

9: end if

10: f ← 1

11: if iuf = true then

12: f ← log(card(U)/card(R))

13: if f = 0 then

14: continue

15: end if

16: end if

17: fsum ← 0

18: eboth ← 0; eactive ← 0; eother ← 0

19: eactive square ← 0; eother square ← 0

20: for all r ∈ R do

21: fsum ← fsum + f

22: eboth ← eboth + (f · ractive · rother)
23: eactive ← eactive + (f · ractive)
24: eother ← eother + (f · rother)
25: eactive square ← eactive + (f · r2active)
26: eother square ← eother + (f · r2other)
27: end for

24

28: varactive ← fsum · eactive square − e2active
29: varother ← fsum · eother square − e2other
30: n1 ← fsum · eboth; n2 ← eactive · eother
31: d← √varactive · varother
32: n1 ← n1/d; n2 ← n2/d

33: w ← n1 − n2
34: if w = NaN ∨ w =∞ then

35: continue

36: end if

37: storeWeight(ua,uo,w,now())

38: end for

39: end for

40: end function

Algorithm 2 Pearson Correlation Coefficient prediction calculation

Require: U set of users

Require: A map of average user ratings

Require: ca a boolean giving the weight for Case Amplification or null

1: function predict(U ,A,ca)

2: for all ua ← U do

3: I ← getItemsNotRatedByUser(ua)

4: for all i ∈ I do

5: κ← 0; n← 0

6: W ← getWeights(ua,i)

7: if card(W) = 0 then

8: continue

9: end if

10: for all w, uo ∈W do

11: r ← getRating(uo, i)

12: if ca 6= null then

13: if w ≥ 0 then

14: r ← rca

25

15: else
16: r ← −(−rca)
17: end if
18: end if
19: κ← κ+ |w|
20: n← n+ (w · (r −Auo))
21: end for
22: p← Aua + n/κ
23: storeUserAssoc(ua,i,p,now(),”pearson”)
24: end for
25: end for
26: end function

A.4 Item-based Collaborative Filtering

Algorithm 3 Item-based Collaborative Filtering similarity calculation

Require: I set of items

Require: A map of average ratings. Depending if Pearson, cosine or adjusted cosine

similarity is chosen this contains either average ratings between items, all 0s or users

1: function predict(I,A)

2: for i← 1, card(I) do

3: for j ← i+ 1, card(I) do

4: n← 0; d1 ← 0; d2 ← 0

5: R← getItemsRatedTogether(Ii, Ij) . ratings stored in a tuple (ri, rj)

6: for all r ∈ R do

7: ri,difference ← ri −Ai; rj,difference ← rj −Aj
8: ri,difference squared ← r2i,difference; rj,difference squared ← r2j,difference
9: n← n+ ri,difference · rj,difference

10: d1 ← d1 + ri,difference squared

11: d2 ← d2 + rj,difference squared

12: end for

13: d1 ←
√
d1; d2 ←

√
d2

14: s← n/(d1 · d2)
15: storeItemAssoc(Ii,Ij ,s,now(),”itembased”)

16: end for

17: end for

18: end function

26

Algorithm 4 Item-based Collaborative Filtering prediction calculation

Require: U set of users

Require: I set of items

1: function calculateSimilarities(U ,I)

2: for all i ∈ I do

3: IA← getItemAssocsFrom(i) . get all associations this item has, these are

the similarities

4: for all u ∈ U do

5: if didUserRateItem(u,i) then

6: continue

7: end if

8: R← getRatingMapOfUser(u) . all ratings by the user stored in a map

9: n← 0; d← 0

10: for all a ∈ IA do

11: r ← Ra . get the rating the user has for the associated item

12: if r = null then . user did not rate the other item

13: continue

14: end if

15: s← avalue . the association value is the calculated similarity

16: n← n+ s · r
17: d← d+ |s|
18: end for

19: p← n/d

20: storeUserAssoc(u,i,p,now(),”itembased”)

21: end for

22: end for

23: end function

27

A.5 Slope One

Algorithm 5 Slope One calculation of average deviations

Require: U set of users

Require: R set of ratings

1: function calculateAverageDeviations(U ,R)

2: for all u ∈ U do

3: for i← 1, card(R) do

4: for j ← i, card(R) do

5: d← Rj −Ri
6: c← 1

7: if existsRating(j,i) then

8: r ← getRating(j.i)

9: c← rcount + 1

10: d← rdifference + d

11: end if

12: storeDifference(i,j,d,c,now())

13: end for

14: end for

15: end for

16: end function

Algorithm 6 Slope One calculation of predictions

Require: U set of users

Require: I set of items

1: function predict(U ,I)

2: for all u ∈ U do

3: P ← queryDatabase(query1) . See below for query1

4: for all p ∈ P do

5: storeUserAssoc(u,pitem,pvalue,now(),”slopeone”)

6: end for

7: end for

8: end function

28

query1 referenced in algorithm 6

SELECT

a . tenantId ,

a . userId ,

d . i tem1id AS itemId ,

d . i tem1typeId AS itemTypeId ,

max(a . actionTime) AS actionTime ,

sum(d . d i f f e r e n c e + d . count ∗ a . rat ingValue) / sum(d . count)

AS predictedRat ingValue

FROM

c o n t l a t e s t a c t i o n AS a ,

s o d i f f e r e n c e s AS d

WHERE

a . use r Id = 1 AND

a . tenantId = 0 AND

a . act ionTypeId = 3 AND

a . itemTypeId = 1 AND

d . tenant = a . tenantId AND

d . i tem1type id = a . itemTypeId AND

d . item2typeId = a . itemTypeId AND

d . i tem1id <> a . itemId AND

d . i tem2id = a . itemId

GROUP BY

d . item1id , d . i tem1type id

ORDER BY

predictedRat ingValue DESC

29

B Detailed Results

B.1 Detailed Accuracy Results

Dataset MAE RSME

Pearson Correlation Coefficient

1 0.7635520 0.9702232

2 0.7505339 0.9562967

3 0.7437165 0.9451121

4 0.7452924 0.9454570

5 0.7526264 0.9495611

Average 0.7511443 0.9533300

Pearson Correlation Coefficient with Inverse User Frequency

1 0.7639219 0.9705908

2 0.7506847 0.9563386

3 0.7441498 0.9455021

4 0.7452835 0.9453658

5 0.7531001 0.9501610

Average 0.7514280 0.9535917

Pearson Correlation Coefficient with Case Amplification

1 0.7705180 0.9818705

2 0.7577260 0.9680626

3 0.7516665 0.9565630

4 0.7528841 0.9571213

5 0.7617860 0.9630655

Average 0.7589161 0.9653366

Pearson Correlation Coefficient w. Inverse User Frequency & Case Amplification

1 0.7712756 0.9826301

2 0.7580820 0.9683381

3 0.7524764 0.9572186

4 0.7528907 0.9570222

5 0.7627600 0.9643410

Average 0.7594970 0.9659100

Table 7: Accuracy of Pearson Correlation Coefficient and variants

30

Dataset MAE RSME

Item-based CF with Pearson

1 0.8451958 1.0560540

2 0.8326298 1.0403383

3 0.8187247 1.0239130

4 0.8243788 1.0293141

5 0.8288750 1.0322253

Average 0.8299608 1.0363689

Item-based CF with Cosine

1 0.8526758 1.0655582

2 0.8399762 1.0487119

3 0.8259486 1.0324829

4 0.8312965 1.0373955

5 0.8355467 1.0399038

Average 0.8370888 1.0448105

Item-based CF with Adjusted Cosine

1 0.8184876 1.0260597

2 0.8064411 1.0105663

3 0.7932508 0.9956074

4 0.7985840 1.0004563

5 0.8032043 1.0027744

Average 0.8039935 1.0070928

Table 8: Accuracy of Item-based CF and variants with sim(i, j) + 1

31

Dataset MAE RSME

Item-based CF with Pearson

1 0.8665182 1.0569228

2 0.8587559 1.0484764

3 0.8448666 1.0342531

4 0.8448015 1.0334911

5 0.8492508 1.0371189

Average 0.8528386 1.0420525

Item-based CF with Cosine

1 0.8517630 1.0646594

2 0.8391258 1.0478695

3 0.8250294 1.0316673

4 0.8304550 1.0365816

5 0.8347454 1.0391338

Average 0.8362237 1.0439823

Item-based CF with Adjusted Cosine

1 0.9255928 1.1145369

2 0.9089847 1.0961304

3 0.8859999 1.0736999

4 0.8881302 1.0764718

5 0.8935878 1.0830849

Average 0.9004591 1.0887848

Table 9: Accuracy of Item-based CF and variants with centered aj

32

Dataset MAE RSME

Slope One

1 0.7906500 1.0148195

2 0.7815405 1.0037249

3 0.7764282 0.9944784

4 0.7746065 0.9891329

5 0.7709014 0.9827666

Average 0.7788253 0.9969845

Weighted Slope One

1 0.7748267 0.9990537

2 0.7653394 0.9824848

3 0.7668576 0.9829939

4 0.7643000 0.9776460

5 0.7696126 0.9824855

Average 0.7681873 0.9849328

Table 10: Accuracy of Slope One and variants

33

B.2 Detailed Performance Results

Dataset Similarity Calcu-

lation

Recommendation

Calculation

of Recommen-

dations

Recommendations

/ second

Pearson Correlation Coefficient

1 0h 10m 29s 0h 18m 55s 20000 11.338

2 0h 11m 33s 0h 19m 7s 20000 10.870

3 0h 10m 35s 0h 19m 48s 20000 10.971

4 0h 9m 33s 0h 18m 39s 20000 11.820

5 0h 9m 38s 0h 18m 3s 20000 12.041

Average 0h 10m 22s 0h 18m 54s 20000.000 11.408

Pearson Correlation Coefficient with Inverse User Frequency

1 0h 15m 40s 0h 27m 50s 20000 7.663

2 0h 14m 18s 0h 21m 33s 20000 9.298

3 0h 14m 53s 0h 21m 49s 20000 9.083

4 0h 15m 58s 0h 26m 11s 20000 7.908

5 0h 15m 42s 0h 26m 0s 20000 7.994

Average 0h 15m 18s 0h 24m 41s 20000.000 8.389

Pearson Correlation Coefficient with Case Amplification

1 0h 24m 42s 0h 33m 30s 20000 5.727

2 0h 32m 43s 0h 40m 32s 20000 4.551

3 0h 33m 53s 0h 42m 15s 20000 4.378

4 0h 30m 23s 0h 46m 38s 20000 4.328

5 0h 27m 16s 0h 34m 38s 20000 5.385

Average 0h 29m 47s 0h 39m 31s 20000.000 4.874

Pearson Correlation Coefficient w. Inverse User Frequency & Case Amplification

1 0h 12m 34s 10h 24m 3s 1457039 38.145

2 0h 11m 0s 10h 28m 40s 1456296 37.944

3 0h 10m 57s 11h 5m 35s 1456474 35.881

4 0h 11m 4s 11h 0m 49s 1465695 36.358

5 0h 10m 41s 10h 53m 19s 1455596 36.536

Average 0h 11m 15s 10h 46m 29s 1458220.000 36.973

Average 0h 16m 41s 3h 2m 24s 379555.000 15.411

Table 11: Performance of Pearson Correlation Coefficient and variants

34

Dataset Similarity Calcu-

lation

Recommendation

Calculation

of Recommen-

dations

Recommendations

/ second

Item-based CF with Pearson

1 3h 22m 27s 1h 19m 31s 1472447 87.034

2 2h 58m 51s 0h 42m 40s 1470947 110.672

3 2h 11m 3s 0h 47m 8s 1471837 137.671

4 3h 8m 11s 0h 43m 23s 1480727 106.573

5 3h 7m 55s 1h 23m 37s 1471531 90.322

Average 2h 57m 41s 0h 59m 16s 1473497.800 106.455

Item-based CF with Cosine

1 1h 45m 2s 1h 5m 43s 1472447 143.723

2 1h 17m 51s 0h 50m 21s 1470947 191.231

3 1h 8m 55s 0h 50m 24s 1471837 205.593

4 1h 26m 49s 0h 52m 14s 1480727 177.481

5 2h 59m 13s 1h 16m 7s 1471531 96.053

Average 1h 43m 34s 0h 58m 58s 1473497.800 162.816

Item-based CF with Adjusted Cosine

1 2h 42m 45s 1h 0m 11s 1472447 110.081

2 2h 39m 10s 1h 23m 33s 1470947 101.006

3 1h 56m 56s 1h 24m 2s 1471837 122.063

4 2h 24m 33s 0h 49m 44s 1480727 127.025

5 1h 35m 58s 0h 48m 20s 1471531 169.962

Average 2h 15m 52s 1h 5m 10s 1473497.800 126.027

Average 2h 19m 3s 1h 1m 8s 1473497.800 131.766

Table 12: Performance of Item-based CF and variants with sim(i, j) + 1

35

Dataset Similarity Calcu-

lation

Recommendation

Calculation

of Recommen-

dations

Recommendations

/ second

Item-based CF with Pearson

1 3h 22m 27s 0h 51m 53s 1472447 96.491

2 2h 58m 51s 1h 4m 35s 1470947 100.708

3 2h 11m 3s 0h 56m 17s 1471837 130.946

4 3h 8m 11s 1h 28m 7s 1480727 89.319

5 3h 7m 55s 1h 4m 8s 1471531 97.304

Average 2h 57m 41s 1h 5m 0s 1473497.800 102.954

Item-based CF with Cosine

1 1h 45m 2s 1h 4m 49s 1472447 144.485

2 1h 17m 51s 0h 55m 33s 1470947 183.776

3 1h 8m 55s 0h 56m 7s 1471837 196.193

4 1h 26m 49s 1h 10m 3s 1480727 157.323

5 2h 59m 13s 0h 40m 6s 1471531 111.827

Average 1h 43m 34s 0h 57m 20s 1473497.800 158.721

Item-based CF with Adjusted Cosine

1 2h 42m 45s 1h 25m 2s 1472447 99.041

2 2h 39m 10s 1h 26m 21s 1470947 99.854

3 1h 56m 56s 1h 31m 37s 1471837 117.625

4 2h 24m 33s 1h 16m 13s 1480727 111.787

5 1h 35m 58s 1h 3m 11s 1471531 154.103

Average 2h 15m 52s 1h 20m 29s 1473497.800 116.482

Average 2h 19m 3s 1h 7m 36s 1473497.800 126.052

Table 13: Performance of Item-based CF and variants with centered aj

36

Dataset Similarity Calcu-

lation

Recommendation

Calculation

of Recommen-

dations

Recommendations

/ second

Slope One

1 0h 31m 54s 0h 19m 19s 1472447 479.156

2 0h 36m 9s 0h 14m 55s 1346515 439.463

3 0h 30m 52s 0h 14m 42s 1267205 463.499

4 0h 31m 21s 0h 14m 53s 1276178 460.050

5 0h 32m 30s 0h 14m 13s 1271996 453.798

Average 0h 33m 42s 0h 15m 36s 1326868.200 459.193

Weighted Slope One

1 0h 25m 5s 0h 14m 10s 1472447 625.243

2 0h 25m 19s 0h 13m 44s 1346515 574.697

3 0h 26m 51s 0h 17m 22s 1267205 477.650

4 0h 27m 51s 0h 13m 23s 1276178 515.836

5 0h 27m 8s 0h 12m 59s 1271996 528.457

Average 0h 26m 27s 0h 14m 20s 1326868.200 544.377

Average 0h 29m 30s 0h 14m 58s 1326868.200 501.785

Table 14: Performance of Slope One and variants

37

	1 Introduction
	1.1 Motivation

	2 Context
	3 Notation
	4 Related Work
	4.1 Pearson Correlation Coefficient
	4.1.1 Inverse User Frequency
	4.1.2 Case Amplification

	4.2 Item-based Collaborative Filtering
	4.2.1 Similarity Calculation
	4.2.2 Prediction Calculation

	4.3 Slope One
	4.4 Evaluation of Recommendations
	4.4.1 Mean Absolute Error
	4.4.2 Root Mean Squared Error

	5 Contribution
	5.1 Experiment Setup
	5.2 Experiment Procedure
	5.3 Pearson Correlation Coefficient
	5.4 Item-based Collaborative Filtering
	5.5 Slope One
	5.6 Results

	6 Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	References
	A Implementation
	A.1 easyRec
	A.2 Extension of Data Model
	A.2.1 cont_lastaction
	A.2.2 cont_userassoc
	A.2.3 so_lastupdate
	A.2.4 so_deviation

	A.3 Pearson Correlation Coefficient
	A.4 Item-based Collaborative Filtering
	A.5 Slope One

	B Detailed Results
	B.1 Detailed Accuracy Results
	B.2 Detailed Performance Results

