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The Volterra Series and The Direct Method of Distortion Analysis
Euhan Chong, University of Toronto

ABSTRACT

In this paper, two methods of distortion analysis are described. The Volterra series is usually used to

determine nonlinear behaviour. The direct method is an extension of the Volterra series method to

circuits with multiple inputs. The Volterra series method of distortion analysis is presented in the

analysis of a common emitter circuit. Next the direct method is used to analyze a mixer circuit with

two inputs. Distortion components are calculated for both circuits.

INTRODUCTION

Distortion is a key issue in the design of many types of circuits. The Volterra series has long been used to

analyze distortion in analog circuits.[2] Unlike numerical simulations which give no information about the

source of the distortion, closed form expressions for distortion components in terms of circuit parameters

can be found using Volterra series. Unfortunately, the method of presenting the Volterra series analysis is

complex, confusing, and often intimidating to the uninitiated. Consequently, the Volterra series is often

under-utilized by circuit designers. In this paper, the basics of distortion analysis is presented with the hope

that it will help the reader to more easily familiarize themselves with distortion analysis and thus take

advantage of the Volterra series method or the direct method to analyze their designs.

BASICS OF VOLTERRA SERIES

Circuit designers prefer to work with linear models of circuits but more accurate models which take into

account the nonlinearities in a circuit are often required. Many practical circuits can be assumed to behave

in a weakly nonlinear way, and under this condition, closed form expressions for the nonlinearity can be

obtained using the Volterra series. The Volterra series is a Taylor series that simplifies to a power series

when the system is memoryless. It describes a signal as a summation of the linear behaviour, the second

order behaviour, the third order behaviour, and so on.   That is,

y(t) = a1x(t) + a2x
2(t) + a3x

3(t) + ... (1)

Note that as the amplitude of the input x(t) increases, the magnitude of the higher order components will

increase more quickly than the lower order components. For weakly nonlinear circuits that are excited by

small signals, usually only the first three terms are retained. You can think of the nonlinearity as being

approximated by the linear behaviour and made more accurate by a squared and cubed component. The
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squared and cubed products in the nonlinearity gives rise to harmonic and Intermodulation components.

Using the Volterra series, closed form expressions for the different distortion components can be found.

This gives the designer insight with regard to improving circuit performance.

The Volterra series for a circuit is generally represented as a summation of nth order operators:

y(t) = H[x(t)] = H1[x(t)] + H2[x(t)] + H3[x(t)] + ... + Hn[x(t)] + ... (2)

where

(3)

The Laplace transform of the nth order Volterra kernel hn(t1,...,tn) is represented by Hn(s1,...,sn) and can

used to calculate the magnitude of distortion components. The representation of the nonlinearity as a sum-

mation of operators of different order operating on a signal allows us to examine the contribution of each

order individually.   Dominant contributions can then be easily identified and analyzed. The block diagram

of this summation is shown in Figure 1.

Figure 1.  Block Diagram representation of the Volterra Series

DISTORTION ANALYSIS OF A COMMEN EMITTER CIRCUIT USING THE VOLTERRA SERIES METHOD

The Volterra Series method will be explained with the example of a common emitter amplifier shown in
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Figure 2[5].

Figure 2.  Schematic of the Common Emitter circuit

The small signal model of this circuit is shown in Figure 3.

Figure 3.  Small signal representation of the nonlinear circuit.

The nonlinearities considered in this circuit are due to the resistor rπ and the transconductance gm. These

nonlinearities are due to the exponential I-V characteristic of the transistor:

, and (4)

This characteristic can be approximated using the first three terms of a power series.

(5)

(6)

whereIB is the dc bias current, and the power series coefficients are given by

K2gπ = K2gm/β = IB/Vt
2 = gπ/2Vt = gm/2βVt (7)

K3gπ = K3gm/β = IB/3!Vt
3 = gπ/6Vt

2 = gm/6βVt
2 (8)

Nonlinearity coefficients depend upon the complexity of the model used to model the nonlinearity. For a

transconductance of order n, the nonlinearity coefficient is calculated using the following equation[5]:

(9)

where f(v) is the expression for the current in terms of a voltage and VCONTR is the DC value of the con-

trolling voltage.
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THE LINEAR SYSTEM

The first-order output kernel H1out is equivalent to finding the linear transfer function. Thus the first step is

to analyze the linearized circuit shown in Figure 4.   The SFG can be easily derived using the DPI/SFG

method [3][4] and is shown in Figure 5. The resulting transfer function is

(10)

The notation we use for the transfer function H1out(s) is such that the subscript ‘1’ tells us that it’s a 1st

order kernel transform and the subscript ‘out’ refers to the output node.

Figure 4. Linearized small signal equivalent circuit

Figure 5. SFG of the linearized circuit

HIGHER ORDER SYSTEMS OF THE VOLTERRA METHOD

Kernel transforms of higher order are found by solving the same basic linear network with a couple of

changes. The series expansion expressions in (5) and (6) suggest that the linear network is no longer

directly excited by the input signal, but by new excitations in the form of nth order nonlinear current

sources that represent the nonlinear components. The sources are placed in parallel with each nonlinear

element and the orientation of each source is the same as the corresponding controlled current in the origi-

nal circuit. The nonlinear signals then propagate through the rest of the linear circuit. The resulting circuit

to be solved is shown in Figure 6. The same network is solved for each order but at different frequencies

and with different expressions for the nonlinear sources. The nonlinear signals depend on lower order ker-

nels and the nonlinear coefficients given in Equations (7) and (8). We use the same nonlinear current

source expressions as Wambacq[5].
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Figure 6. Circuit and the equivalent SFG to be solved for the nth order kernels

2nd Order Distortion

The second-order behavior is represented by Figure 6 with the following expressions for the nonlinear cur-

rent sources[5]:

iNL2gπ = K2gπH1vbe(s1)H1vbe(s2) (11)

iNL2gm = K2gmH1vbes1)H1vbe(s2) (12)

Thus the nonlinearity of both rπ and gm is due to a squaring of the controlling 1st order signal H1vbe(s) and

a nonlinearity coefficient. H1vbe is found by solving for the voltage vbe in Figure 5. To calculate the sec-

ond-order intermodulation distortion ID2 at a frequency w1+w2, we need to find the ratio of Y2(jw1,+jw2)

and Y1(jw1) where Y2(jw1,+jw2) is the output of the second-order system and Y1(jw1) is the output of the

1st order system.   The kernels H2out and H1out are found by directly solving for the node voltages in the

SFG of Figure 5 and Figure 6 respectively. The factor of A2 in the intermodulation output results from

applying (3) with x(t) = Acosw1t + Acosw2t.

(13)

Solving for the kernels using SFG analysis,

(14)

Inserting the nonlinear coefficients of Equation (7) and simplifying gives

(15)
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If we assume rB << rπ, the expression further simplifies to

(16)

The harmonic distortion HD2 is simply equal to ID2 for the case when jw2 = jw1. Consequently, we are

interested only in the response to x(t) = Acosw1t. The second-order harmonic output is scaled by 1/2 due to

the squaring operation.   The factor A2/2 can be understood to come from the trigonometric identity

(Acosw1t)
2 = (A2/2)(1+cos2w1t). It also results from applying (3).

Therefore, if we assume rB << rπ,

(17)

At low frequencies, HD2 is independent of bias conditions

HD2 = A/4Vt (18)

and at high frequencies, the distortion reduces to

HD2 = A/8Vt (19)

3rd Order Distortion

The third-order harmonic and intermodulation distortion components are calculated in the same way as the

second-order distortion. The Volterra kernels are found by solving for node voltages in the linearized net-

work of the circuit shown in Figure 6 with third-order nonlinear current sources. In general, the expres-

sions for the third-order nonlinear current sources are

iNL3gm = βiNL3gπ = K3gmH1vbe(s1)H1vbe(s2)H1vbe(s3) +

K2gm(2/3)[ H1vbe(s1)H2vbe(s2,s3) + H1vbe(s2)H2vbe(s1,s3) + H1vbe(s3)H2vbe(s1,s2) ] (20)

The factor of 1/3 in Equation (20) comes from averaging the combination of products and the factor of 2 is

due to the fact that the Volterra kernels are symmetric, i.e. H2vbe(s1,s2) = H2vbe(s2,s1).  Equation (20)

shows that the third-order nonlinearity results from a component due to the multiplication of three 1st order

signals, and a component due to the multiplication of a 1st order signal and a second-order signal.
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A
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Making use of (7),(8) and noting that the Hvbe is independent of frequency we have

iNL3gm= βiNL3gπ = K3gmH1vbe
3 + 2K2gmH1vbeH2vbe (21)

= K3gm(gB/(gB+gπ))3 - 2K2gmK2gπgB
3/(gB+gπ)4 (22)

= (gm/6Vt
2)(gB/(gB+gπ))3 - (2gm

2gB
3)/(4βVt

2(gB+gπ)4) (23)

The third order response is found by solving the third-order system of Figure 3, where the nonlinear inputs

iNL3gmand iNL3gπ are given by Equation (23).

H3out(s1,s2,s3) = v3out (24)

= (iNL3gπgm/(gB+gπ) - iNL3gm) / (gL + (s1 + s2 + s3)CL) (25)

= -gmgB
4(gB-2gπ) / [6Vt

2(gB+gπ)5(gL + (s1 + s2 + s3)CL)] (26)

Thus

HD3 = |Y3(jw1,jw1,jw1)| / |Y1(jw1)| (27)

= (1/4)A3|H3vout(jw1,jw1,jw1)| / A|H1vout(jw1)| (28)

= | -A3gmgB
4(gB-2gπ)/[24(gL + 3jw1CL)Vt

2(gB+gπ)5] | / |AgBgm/(gB+gπ)(gL + jw1CLp)| (29)

= | -A2gB
3(gB-2gπ)(gL + jw1CL) / (24(gL + 3jw1CL)Vt

2(gB+gπ)4 | (30)

If we assume rB << rπ, the expression simplifies to

HD3 = | -(A2/24Vt
2)(gL + jw1CL) / (gL + 3jw1CL) | (31)

Again, we see that at low frequencies, HD3 is independent of bias,

HD3 = A/24Vt (32)

and at high frequencies, the distortion reduces to

HD3 = A/72Vt (33)

THE DIRECT METHOD

An alternative to the Volterra series method is what is referred to as the direct method of calculating distor-

tion outputs.[5] The direct method of calculating nonlinear responses is most useful in dealing with multi-

ple-input circuits. In circuits with more than one input source, Volterra kernels become tensors [Chua 79a].

For example, the second order kernel of a voltage is a matrix of size (# inputs)x (# inputs), and calculations

become more involved. An alternate method is derived in [5] where the required responses are directly

computed. The method is similar to the volterra series method in that the same basic linear network is

solved repeatedly for different inputs. The difference is in the expressions used for the nonlinear current
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sources. In particular, the sources now depend on the order of response as well as the particular type of

response calculated. That is, a new set of equations must be solved for each type of response (harmonic or

intermodulation). The direct method will be illustrated with an example. The circuit shown in Figure 7 will

be analyzed for the distortion due to the nonlinear collector current through the bipolar junction transistors.

The nonlinearity of the collector current is described by (5)(7) and(8).

Figure 7. Differential Pair

The distortion due to the two inputs vin = Re(Vinejw1t) andi in = Re(Iinejw2t) will be analyzed.

FIRST ORDER RESPONSE

Figure 8. Linearized Small Signal Equivalent Circuit

To find the 1st order response, the linear network of Figure 8 is solved for all the node voltages due to Vin

only. The output and controlling voltages for the nonlinearities can be written as a linear combination of

the node voltages.   Either a SFG analysis or the matrix method used by [5] can be used to solve the net-

work. The notation used is such that Vx,m,n represents the voltage at node x, due to the input with fre-

quency mw1+nw2.  Note that the voltages solved are actual voltages now and not Volterra kernels as in the

Volterra series method.
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The output due to Vin at frequency w1 can be shown to be

Vout,1,0 = V2,1,0 - V1,1,0 = [gm/(gL+jw1CL)]V in (34)

The controlling voltages for the nonlinearity are

V43,1,0 = Vin/2 ; V53,1,0 = -Vin/2 (35)

Next, the linear network is solved for all node voltages due to the input Iin only. These voltages are denoted

by Vx,0,1 for the linear response is at frequency w2.

The output due to Iin only is

Vout,0,1 = V2,0,1 - V1,0,1 = [1/(gL+jw2CL)]I in (36)

The controlling voltages for the nonlinearity are

V43,0,1 = V53,0,1 = Iin/2gm (37)

HIGHER ORDER RESPONSE OF THE DIRECT METHOD

Figure 9. Circuit to be Solved for the Higher Order Responses

To find the higher order voltages, the same basic nonlinear network is solved for the response of each

order. The circuit to be solved is shown in Figure 9. It is the same circuit we solved for the 1st order

response except that the inputs are zeroed and excitations referred to as nonlinear current sources are

placed in parallel with the nonlinear components. Only the expressions for the nonlinear current sources

change depending on the order of response to be solved. These higher order currents sources model the

behaviour of the nonlinear component. Like the Volterra Series method, the nonlinear sources depend on

the basic type of nonlinearity modeled and are a function of nth order nonlinear coefficients Kn and the

lower order responses for the controlling voltage(s). Again, any linear analysis method can be used to solve
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- vout +
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this circuit.  [5] uses a matrix method based on solving a set of KCL equations. SFGs can also be used and

arguably gives more insight into the response.

One difference between the direct method and the Volterra series method is that solving the network for the

node voltages correspond to actual voltages as opposed to Volterra kernels. This removes the intermediate

step of converting the kernel to the output response. This comes at the cost of a less general solution. The

direct method requires different expressions for the nonlinear sources depending on the type of response

that is solved.

2nd Order Response

The 2nd order response is found by solving the linear circuit in Figure 9 with nonlinear sources of order 2.

The 2nd order nonlinear current source for the response at |w1+w2| is

iNL2gm = K2gmVi,1,0Vi,0,+1 (38)

and for the harmonic response at 2w1 is

iNL2gm = K2gm(Vi,1,0)
2 (39)

Harmonic and intermodulation distortion as well as intercept points are directly calculated using the output

voltages solved using Figure 9. The 2nd order intermodulation output at frequency w1 + w2 can be shown

to be

Vout,1,1 = V2,1,1 - V1,1,1 (40)

=(K2gmVinI in)/[2gm(gL+j(w1+w2)CL)] (41)

If the mixing circuit of Figure 7 is used as an upconverter, Vout,1,1 is the wanted mixing product. Assuming

the baseband signal is applied at the bases of transistors Q1A and Q1B and the AC current is delivered by

the current source Iin is proportional to the local oscillator signal. Then the conversion gain of this mixer

can be found by dividing Vout,1,1 by the amplitude Vin of the baseband signal.

Conversion gain = K2gmI in/[2gm(gL+j(w1+w2)CL)] (42)

= Iin/[4Vt(gL+j(w1+w2)CL)] (43)

Thus the conversion gain is proportional to the local oscillator signal.   It is also seen that the conversion

gain is proportional to the 2nd order nonlinearity coefficient of the collector current.
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For the case where the output at frequency w1 + w2 is an unwanted signal, then the intermodulation distor-

tion ID2 is calculated directly from the responses solved from the 1st and 2nd order systems.

ID2 = Vout,1,1/Vout,1,0 (44)

= [V inI in/[4Vt(gL+j(w1+w2)CL)]] / [gm/(gL+jw1CL)]V in (45)

= Iin(gL+jw1CL) / [4Vtgm(gL+j(w1+w2)CL)] (46)

3rd Order Response

The 3rd order kernels are evaluated and found in exactly the same way as the 2nd order kernels except with

3rd order nonlinear sources applied.  The third order nonlinear behaviour results in responses at w1, w2,

|2w1+w2|, |2w2+w1|, 3w1 and 3w2. The nonlinear current sources depend on the 1st and 2nd order control-

ling voltages. The equations (47) and (48) for the nonlinear current sources are given in [5].

Nonlinear current source for a transconductance gm at frequency at 2w1+w2:

iNL3gm = K2gmVi,1,0Vi,1,+1 + K2gmVi,0,+1Vi,2,0 + (3/4)K3gmV2
i,1,0Vi,0,+1 (47)

Nonlinear current source for a transconductance gm at frequency at 3w2:

iNL3gm = K2gmVi,0,1Vi,0,2 + K3gmV3
i,0,1 (48)

where Vi in our example would be the voltage vbe which controls the nonlinear transconductance gm.

The value of the sources in (47) and (48) can be understood to come from considering all the possibilities

to produce a third order signal. For instance, to create to third order nonlinearity at frequency 2w1+w2, the

second order nonlinearity combines a first order signal at frequency w1 with a second order nonlinearity at

frequency w1+w2. The second term corresponds to the nonlinearity which results from the combination of

a first order signal at w2 and a second order signal at 2w1. And lastly the third term results from the third

order nonlinearity combining three first order signals: two at frequency w1 and one at frequency w2.

Solving the circuit of Figure 9 with the nonlinear current in (47) results in the following responses:

Vout,2,1 = 0 (49)
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The intermodulation output at frequency 2w1+w2 is zero because even order harmonics of the input signal are can-

celled in a differential circuit in which the components are matched.

The intermodulation at frequency w1+2w2 is

Vout,1,2 = (1/8)[1/(gL+(jw1+2jw2)CL)][-K 2gm
2 / gm

3 + (3/2)K3gm/gm
2]V inI in

2 (50)

Vout,1,2 = (1/8)[1/(gL+(jw1+2jw2)CL)][ -gm
2 / (4Vt

2gm
3) + (3/2)gm/6Vt

2gm
2]V inI in

2 = 0 (51)

It is seen that this intermodulation distortion is also zero when the exponential model for the collector cur-

rent holds.  When the transistors Q1A and Q1B are implemented as MOSFETs, the drain current of the

MOS satisfies the square law and thus gm = β(VGS - VT), K2gm = β/2, andK3gm = 0. The resulting intermod-

ulation distortion output from (50) becomes,

Vout,1,2 = -(1/32)[1/(gL+(jw1+2jw2)CL)][V inI in
2/β(VGS - VT)3] (52)

In the case of an upconverter, the response atw1+w2 is the wanted signal, and using (41) with the appropriate nonlinear-

ity coefficients we obtain

Vout,1,1 =(1/4)[1/(VGS - VT)][1/(gL+j(w1+w2)CL)]V inI in (53)

The ratio of the third order intermodulation product and the wanted response is

Vout,1,2/Vout,1,1 = -(1/8) [1/β(VGS - VT)] [(gL+j(w1+w2)CL)/(gL+(jw1+2jw2)CL)] I in (54)

When this ratio is set to 1 and solved for Iin, then we have an expression for the third-order intercept point:

IP3 = 8β(VGS - VT)2 |(gL+j(w1+2w2)CL)/(gL+(jw1+jw2)CL)| (55)

CONCLUSIONS

In this paper, the Volterra series and the direct method of distortion analysis were presented. The advantage

of the direct method is that circuits with multiple inputs can be analyzed. Recent work has shown how

SFGs can be applied to the Volterra Series Method to simplify the method of analysis. Since the Direct

Method also finds higher order responses by solving a linear network, the SFG can also be used to solve

for distortion components. SFGs presents a graphical analysis which is often more intuitive and insightful
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than resorting to a KCL analysis. A recent paper we submitted to the ISCAS 2002 conference outlines this

graphical method of distortion analysis. In it, the first 3 orders of response are represented by a single SFG.

This graphical representation more clearly illustrates how nonlinearities are generated in the system and

how various parameters affect the response. Conversely, the usual method of solving a matrix of nodal

equations gives us little information about the circuit and even less insight into how expressions for the

kernels were derived. Future work could include integrating the direct method with SFGs such that systems

with multiple inputs can be analyzed more easily. Multiple inputs introduce complexity into the system,

and it may be more difficult to be possible to generalize a solution where the distortion components of dif-

ferent orders can be found from a single graph. Nevertheless, this approach is worth pursuing for the SFG

representation allows us to easily modify the circuit, use different models for the nonlinearities, and make

approximations. In addition, the SFG can also illustrate the coupling between nonlinear elements which is

difficult to see when considering a single response at a time.

REFERENCES

[1] G. Gielen, P. Wambacq, W. Sansen, “Symbolic Analysis Methods and Applications for Analog Circuits: A Tuto-
rial Overview,” Proceedings of the IEEE.  vol. 82, no. 2. Feb 1994.

[2] S. Narayanan, “Transistor distortion analysis using Volterra series representation,” Bell Sys. Tech. J., May-June,
1967.

[3] A. Ochoa, “A Systematic Approach to the Analysis of General and Feedback Circuits and Systems Using Signal
Flow Graphs and Driving-Point Impedance,” IEEE Trans. Circ. and Syst. II, vol. 45, no.2, pp.187-195, Feb. 1998.

[4] K. Phang, “CMOS Optical Preamplifier Design Using Graphical Circuit Analysis,” Ph.D. thesis, Univ. Toronto,
2001.

[5] P. Wambacq and W. Sansen, Distortion Analysis of Analog Integrated Circuits.  Dordrecht:  Kluwer, 1998.
M. Schetzen,The Volterra and Wiener Theories of Nonlinear Systems.  New York:  Wiley, 1980.

[6] P. Wambacq, G. Gielen, P. Kinget, “High-Frequency Distortion Analysis of Analog Integrated Circuits,” IEEE
Trans. Circ. and Syst. II, vol. 46, no. 2, Mar. 1999.


