NOISE MODELING & SIMULATION

Alain Mangan, MASc Candidate, University of Toronto

CIRCUIT DESIGNERS: WHAT DO WE NEED TO KNOW?

- Three key questions:
 - What exactly IS (flicker) noise?
 - How does it affect circuit operation (noise analysis)?
 - What are the pitfalls with noise analysis?

WHAT IS FLICKER NOISE?

- Caused by traps in semiconductor material
 - Due to contamination or crystal defects
- Has a 1/f power spectral density

NOISE ANALYSIS

- Done with conventional (AC) circuit analysis techniques
 - Superposition principle
 - POWER is summed (non-correlated sources)

Alain Mangan, MASc Candidate, University of Toronto

Gate

REDUCING 1/f NOISE

- Can we reduce 1/f noise?
 - Switched biasing reduces 1/f noise reason is unknown
- New questions:
 - How do we simulate this effect?
 - How do we invent new techniques?
- For answers:
 - What IS noise?

[Klumperink, 2000]

Alain Mangan, MASc Candidate, University of Toronto

NOISE SIMULATIONS

- HSPICE Analyses:
 - .NOISE [output node] [input I/V source] [# freq. Points]
 - .SAMPLE: for noise folding analysis
- HSPICE Outputs:
 - .PRINT NOISE [INOISE] [ONOISE]
 - .PLOT NOISE [INOISE] [ONOISE] [...]
 - .GRAPH: high resolution plots
 - .PROBE NOISE [INOISE] [ONOISE]

BASIC SPICE FLICKER MODELS FOR MOSFET CHANNELS

- Want to ensure accurate L dependance of models
 - Benchmark: KF parameter

• All bad models for deep sub-micron (No 1/L³ dependance)

BSIM FLICKER MODEL FOR MOSFET CHANNELS

• Again, want to ensure accurate L dependance of models

– New benchmark for BSIM3: trap density (N_t)

- Problem
 - Non-constant N_t
- Solution*
 - Dual V_T model (for MDD & channel regions)

*Solution is not yet implemented (BSIM4 uses same model as BSIM3)

Alain Mangan, MASc Candidate, University of Toronto

CONCLUSION: SHOULD WE EVEN TRY?

- Even with these problems, we can still use noise simulations as a guide. Simply be conscious:
 - For what devices are the models valid?
 - Noise simulations for small devices underestimate noise
 - Use larger devices with known characteristics if possible
- More effort should be put in understanding noise
 - Simulation results will be more accepted by designers
 - Might even find simple ways to reduce noise

References

•L.W. Couch II, Digital and Analog Communication Systems, Prentice-Hall, Inc., United States of America, 2001, ISBN: 0-13-081223-4.

•P.R. Gray, P.J. Hurst, S.H. Lewis, R.G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th edition, John Wiley & Sons, Inc., United States of America, 2001, ISBN: 0-471-32168-0.

•D.A. Neamen, Semiconductor Physics and Devices, 3rd edition, McGraw-Hill, Inc., New York, NY, 2003, ISBN: 0-07-232107-5. •R.F. Pierret, Semiconductor Device Fundamentals, Addison-Wesley Publishing Company, Inc., United States Of America, 1996, ISBN: 0-201-54393-1.

•W. Liu, MOSFET Models for SPICE Simulation including BSIM3v3 and BSIM4, John Wiley & Sons, Inc., Great Britain, 2001, ISBN: 0-471-39697-4.

•E.A.M. Klumperink, S.L.J. Gierkink, A.P. van der Wel, B. Nauta, "Reducing MOSFET 1/f Noise and Power Consumption by Switched Biasing", IEEE Journal of Solid-State Circuits, Volume 35, Issue 7, July 2000, pp. 994-1001.

•Z. Çelik-Butler, P. Vasina, "Channel Length Scaling of 1/f noise in 0.18m technology MDD n-MOSFETs", Solid-State Electronics, Volume 43, 1999, pp. 1695-1701.

•F. Wang, Z. Çelik-Butler, "An Improved Physics-Based 1/f noise model for deep sub-micron MOSFETs", Solid-State Electronics, Volume 45, 2001, pp. 351-357.

Alain Mangan, MASc Candidate, University of Toronto

•Star-HSpice Manual R.1998.4, Avant!, January 1999.

