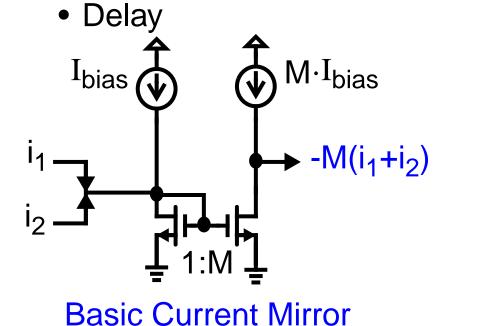
Switched-Current Signal Processing

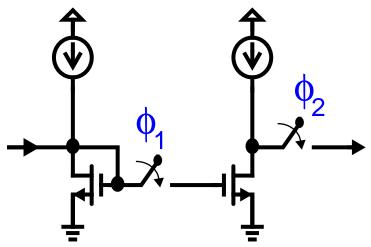
Mike Bichan

November 2003

Outline

- Switched-Current (SI) Circuits
- SI Building Blocks
- Comparison with Switched-Capacitor Circuits
- Nonidealities
- State-of-the-Art D/A Converter Circuits
 - Sigma-Delta Audio D/A Converters
 - Nyquist-Rate A/D Converters
- Conclusion

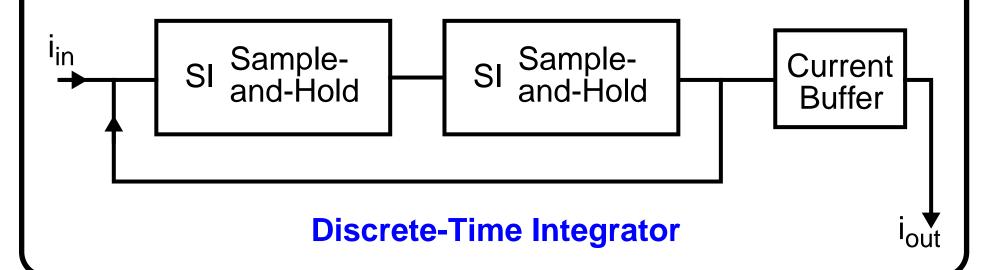

Switched-Current (SI) Circuits


- Used for discrete-time signal processing
- Signals are processed in the current domain, as opposed to the voltage domain

- No need for high-impedance nodes to get high gain
 - So, there is the potential for higher bandwidth
- SI circuits consist only of transistors, which means they are ideal for implementation in an all-digital process

SI Building Blocks

- The basic current mirror allows us to do three of the fundamental signal processing functions:
 - Inversion, addition, and scaling
- We can use the SI Sample-and-Hold circuit to do the fourth:



SI Sample-and-Hold

SI Building Blocks

- We can make more complicated blocks out of these two:
 - Integrator
 - Differentiator
 - Quantizer

Comparison with Switched-Capacitor (SC) Circuits

- SC Circuits require:
 - linear capacitors
 - high-gain op amps
 - voltage headroom

- SI Circuits require:
 - only MOSFETs

- So SI circuits seem ideal for integration with digital circuits as supply voltages decrease
- In reality, however, circuit nonidealities cause severe performance degradation

Circuit Nonidealities

- Transistor mismatch
- Finite output impedance
- Charge injection

Example: Threshold Voltage Mismatch

ideal:

with mismatch:

$$i_{out} = i_{in}$$
 $i_{out} = i_{in} + \frac{\beta_0}{2} \Delta V_T^2 - \sqrt{2\beta_0 i_{in}} \Delta V_T$

State-of-the-Art SI Circuits

- SI circuit has much smaller area and power dissipation
- SC circuit has much higher SNDR (Signalto-Noise-and-Distortion-Ratio)

Sigma-Delta Audio Frequency A/D Converters

Parameter	Switched- Capacitor	Switched- Current		
Process	0.5 um	1.2 um		
Area	9.5 mm ²	0.03 mm^2		
Power	70 mW	1 mW		
Voltage	3.3 V	5 V		
Sampling Rate	3.072 MS/s	5.12 MS/s		
Bandwidth	20 kHz	20 kHz		
SNDR	100 dB	80 dB		
Reference	[Fogelman '01]	[Rodriguez- Calderon '02]		

State-of-the-Art SI Circuits

SI A/D converter
 does not have the
 speed of the SC cir cuit, but it does have
 smaller area, less
 power, and a lower
 supply voltage

High-Speed A/D Converters

Parameters	Switched- Capacitor	Switched-Current		
Process	0.35 um	0.35 um		
Area	3.4 mm ²	0.62 mm ²		
Power	655 mW	60 mW		
Voltage	3.3 V	1.9 V		
Sampling Rate	200 MS/s	40 MS/s		
Bandwidth	30 MHz	5 MHz		
SNDR	43 dB	40 dB		
Reference	[Uyttenhove '03]	[Hughes '01]		

Low-Voltage A/D Converters

- SI circuits should work
 well at low voltages
- But SC A/D converters still seem to be better, even at very low supply voltages

Low-Voltage A/D Converters

Parameter	Switched- Capacitor	Switched- Current		
Process	0.18 um	0.8 um		
Area	0.14 mm ²	4 mm ²		
Power	62 uW	2 mW		
Voltage	0.65 V	1.5 V		
Sampling Rate	1.024 MS/s	12 kS/s		
Bandwidth	16 kHz	4 kHz		
SNDR	59 dB	49 dB		
Reference	[Sauerbrey '03]	[Chen '98]		

Conclusion

- Switched-current circuits seem to have great promise
- In practice, nonidealities limit performance severely
- More work needs to be done to compensate for these nonidealities

A/D Converter	Process	Area	Power	Voltage	Sampling Rate	Bandwidth	SNDR	Reference
SC Audio	0.5um	9.5mm2	70mW	3.3V	3.072MS/s	20kHz	100 dB	[Fogelman '01]
SI Audio	1.2um	0.03mm2	1mW	5V	5.12MS/s	20kHz	80 dB	[Rodriguez- Calderon '02]
SO Audio	0.18um	0.14mm2	62uW	0.65	1.024MS/s	16kHz	59 dB	[Sauerbrey '03]
SC 1MHz	0.65um BiCMOS	6.1mm2	22mW	2.7V	100MS/s	1MHz	57 dB	[Henkel '02]
SI 1MHz	0.8um	0.48mm2	60mW	5V	6.67MS/s	10kHz	65 dB	[de la Rosa '00]
non-SI Nyquist	0.35um	3.4mm2	655mW	3.3V	200MS/s	30MHz	43 dB	[Uyttenhove '03]
SI Nyquist	0.35um	0.62mm2	60mW	1.9V	40MS/s	5MHz	40 dB	[Hughes '01]

Table 1:

References

- C.-C. Chen and C.-Y. Wu, "Design Techniques for 1.5-V Low-Power CMOS Current-Mode Cyclic Analog-to-Digital Converters", *IEEE Trans. on Circuits and Systems II*, Vol. 45, No. 1, pp. 28-40, January 1998.
- E. Fogelman, J. Welz and I. Galton, "An Audio ADC Delta-Sigma Modulator with 100-dV Peak SINAD and 102-dB DR Using a Second-Order Mismatch-Shaping DAC", *IEEE Journal of Solid-State Circuits*, Vol. 36, No. 2, pp. 339-348, March 2001.
- F. Henkel et al. "A 1-MHz-Bandwidth Second-Order Continuous-Time Quadrature Bandpass Sigma-Delta Modulator for Low-IF Radio Receivers", *IEEE Journal of Solid-State Circuits*, Vol. 37, No. 12, pp. 1628-1635, December 2002.
- J. B. Hughes, M. Mee and W. Donaldson, "A Low Voltage 8-bit, 40MS/s Switched-Current Pipeline Ana log-to-Digital Converter", *Int. Symp. on Circuits and Systems*, pp. 572-575, 2001.
- R. Rodriguez-Calderon, J. Santana-Corte and F. Sandoval-Ibarra, "Reducing Non-Idealities On Switched-Current Sigma-Delta Modulators", *IEEE Int. Caracas Conf. on Devices, Circuits and Systems*, April 2002.
- J. de la Rosa et al. "A CMOS 0.8-um Transistor-Only 1.63-MHz Switched-Current Bandpass Sigma-Delta Modulator for AM Signal A/D Conversion", *IEEE Journal of Solid-State Circuits*, Vol. 35, No. 8, pp. 1220-1226, August 2000.
- J. Sauerbrey et al. "0.65V Sigma-Delta Modulators", *Int. Symp. on Circuits and Systems*, Vol. 1, pp. 1021-1024, 2003.
- K. Uyttenhove et al. "Design Techniques and Implementation of an 8-bit 200-MS/s Interpolating/Averag ing CMOS A/D Converter", *IEEE Journal of Solid-State Circuits*, Vol. 38, No. 3, pp. 483-494, March 2003.