Bulk-Driven Circuits

Michael Gordon, M.A.Sc. Candidate
University of Toronto
December 2003

Analog Circuit Design I ECE1392 Taught by Professor K. Phang

MOSFET as a 4-terminal device

- Bulk node gives the designer an extra degree of freedom
- But designers don't use the bulk node
- V_T does not scale with V_{DD} in new submicron processes!

The Body Effect

- Common bulk effects: "Body Effect"
 - Considered as a "bad" side-effect when V_b ≠ V_s
 - Increases V_T and lowers voltage headroom

$$V_T = V_{T0} \pm \gamma (\sqrt{2 |\phi_F| - V_{BS}} - \sqrt{2 |\phi_F|})$$

- What if V_{BS} > 0? ← Reduce V_T
 - Use as a low-voltage technique
 - Might forward bias B-S diode
- Current Driven Bulk (CDB) technique

Threshold Adjust

- V_⊤ reduced from 0.55V to 0.45V
- CDB intentionally turns on the BS diode
 - Achieves maximum V_{BS} = V_{DIODE} ≈ 0.7V
- Can AC signals be applied to the bulk?

Faster Switching

- Connect VIN to gate AND bulk
 - VIN ↑, V_{BS} ↑, V_T ↓, Turn on faster
 - VIN ↓, V_{BS} ↓, V_T ↑, Turn off faster
- Faster switching: Digital gates, Mixers, etc.

- So far used bulk to adjust V_T, but can we drive actual signals through it?
- We reduced V_T, but can we get rid of it?
- Gate driven: g_mV_{qs}
- Bulk driven: g_{mb}V_{bs}

$$g_{mb} = \eta g_m$$

$$\eta = \frac{\gamma}{2\sqrt{2\phi_F - V_{BS}}} \sim 0.2 ... 0.4$$

Linearization

Simulation of a differential pair (bulk-input vs. gate-input) [1]

Main benefits: Linear Gm, Rail-to-Rail Input, Constant Gm Perfect for building Rail-to-Rail OPAMPs !!! [6,7]

The small print

Gain is reduced

$$g_{mb} = \eta g_m$$

 $g_{mb} = \eta g_m$ $\eta \sim 0.2..0.4$

Bandwidth is reduced [3]

$$f_{T,bulk-driven} \approx \frac{\eta}{3.8} f_{T,gate-driven}$$

Higher noise figure (because of lower gm)

$$Noise_{bulk-driven} = \frac{Noise_{gate-driven}}{\eta^2}$$

- Need separate wells (dual well process)
 - More expensive process
 - Bigger chip area
 - Worst matching

Latest trends from Intel

"Current performance scaling trends will not continue past the 0.13 - 0.10mm device technologies by using traditional scaling methods." [2]

"Fundamental limits in Si0₂ ... are currently being reached" [2]

- DTMOS switches faster by lowering V_T during switching
- Circuit topologies are being developed for <0.6V supply

Proposed DTMOS – Dynamic V_T MOS Inverter

A lot of research in bulk-driven circuits is needed, but very few publications exist

Summary

Consider the Bulk node as another parameter

- Static Bulk Voltage Reduce V_T
- Dynamic Bulk Voltage Dynamically Reduce V_T
- Bulk-Driven Signals Ignore V_T completely

References

- [1] E.S. Sinencio, "Bulk Driven Transistors", ELEN-607 Course notes, Texas A&M University, 2003
- [2] S. Thompson et al, "MOS Scaling: Transistor Challenges for the 21st Century", Intel Technology Journal, 3rd quarter, 1998
- [3] L. Yong, "Complementary Body-driving A Low-voltage Analog Circuit Technique Realized In 0.35um SOI Process", M. Sc. Thesis, University of Tennessee, Knoxville, August 2002
- [4] T. Lehmann, M. Cassia, "1-V Power Supply CMOS Cascode Amplifier", Solid-State Circuits Journal, July 2001
- [5] R. Friend, C.C. Enz, "Bulk driven MOST transconductor with extended linear range", Electronics Letters, 28 March 1996
- [6] T. Stockstad, H. Yoshizawa, "0.9V, 0.5uA Rail-to-Rail Opamp", Custom Integrated Circuits Conference, May 2001
- [7] B.J. Blalock et al, "Designing 1-V Op Amps Using Standard Digital CMOS Technology", Circuits and Systems II: Analog and Digital Signal Processing, July 1998
- [8] H. Huang, J. Lin, "CMOS Bulk Input Technique", ISCAS, May 2002
- [9] B.J. Blalock, P.E. Allen, "A Low-Voltage, Bulk-Driven MOSFET Current Mirror for CMOS Technology", ISCAS, May 1995