Computer Automated Design of Analog
Circuits

Dennis Wu - 981073520
Nov 15, 2002

1 Introduction

Transistor feature sizes have shrunk to the point where entire systems can be
economically implemented on a monolithic IC. Often these circuits have an
analog interface to the natural world. With the increasing availability of chip
real estate, designs are increasing in size and complexity. To keep the design
times manageable, computer automated design tools have been introduced
for the digital portion of these mixed signal designs. The analog component,
however is still often hand crafted.

Computer automated design tools hope to improve the analog design
process in a number of ways. An automation system can shorten design times,
which will improve productivity and bring products to market faster and at
lower cost. They also free the designer from tedious and error prone tasks.
Once errors are worked out of a design automation system, the tool can be
used repeatedly to perform the same task correctly. Finally, by hiding design
complexities from the user, more circuit designers from novice designers to
expert designers, become able to design standard analog circuits.

The techniques used by humans to design analog circuits is complex.
Analog circuits often target multiple, conflicting design goals such as gain,
speed, linearity, noise, power, input/output impedance, voltage swings and
supply voltage. Solutions to certain analog problems usually cannot be easily
used to solve other problems. The lack of a systematic approach to building
analog circuits makes it difficult to build an automated solution.

The circuit design process usually consists of topology selection, sizing
and optimization, simulation and verification, layout, extraction and resim-
ulation. The portion of the design process that I investigate is restricted to
topology selection and device sizing.

2 Genetic Algorithm

The genetic algorithm is a heuristic for optimizing a cost function. The basic
idea is to evolve a set of solutions towards the optimal through mutation,
crossover and selection based on the fitness of the solution. The core algo-
rithm is shown below:

chromosome genericGeneticAlgorithm(){

initializeGeneration();
bestValue = calculateFitnessO0fSolutions();

while (bestValue < desiredValue){
Selection();
Crossover();
Mutation() ;
bestValue = calculateFitnessOfSolutions();

return(chromosomeOf (bestValue)) ;

}

2]

The inital pool of solutions is usually random. In some cases, known
circuits are inserted in the initial pool to speed up convergence, however, this
tends to influence the algorithm towards a local (but not global) optimum [2].
To measure the fitness of a solution, the performance parameters are obtained
through SPICE simulations and the weighted sums of these parameters are
compared.

Selection involves picking solutions that will be continued into the next
iterration. Selection aims to keep the fitter solutions (those with lower costs).
At the same time, some randomness is introduced in selection to increase the

chances of finding the global minimum. Properties that are considered unfit
in one generation may turn out to be advatanges in later generations.

In the genetic algorithm, two methods exist for producing new solutions.
Crossover generates new solutions by combining the properties of two existing
solutions. Mutation generates new solutions by making random changes to an
existing solution. These new solutions are added to the population. Finally,
the algorithm terminates once a valid solution is found.

The the flexibility of the genetic algorithm is limited only by how the
circuit is enocded. Naturally, only valid circuits should be investigated to
avoid wasting computational time. Flexible circuit encodings allow the ge-
netic algorithm to explore a broader range of circuit topologies. This can
result in novel designs not normally considered by human designers. In one
case, an FPGA was used to contruct a frequency detecting circuit [2].

The genetic algorithm does have drawbacks however. Circuits produced
using the genetic algorithm may be difficult to understand making modifica-
tions difficult. The great flexibility in circuit posibilities also means a large
number of topologies must be considered. Many of these topologies are un-
promising and would have been easily ruled out by human designers. Both
promising and unpromising topologies must go through the computationaly
expensive process of simulation. For a population of 200 chromosomes evolv-
ing over 100 generations with each simulation only taking one second, the
time spent only on simulations can take 5.5 hour [2].

3 BLADES: Expert Systems

The problem with the genetic algorithm is that it runs too slowly to be
practical. It wastes time investigating circuit topologies that circuit designers
could pick out immediately as unpromising. Expert systems, use a different
approach. Instead of relying on randomness to find a solution, they attempt
to mimic the reasoning process used by human designers. This reduces the
search space to only those circuit topologies that a human designer would
consider.

One of the earliest works on expert systems for analog circuit design is
BLADES [3]. Blades contains a knowledge base that stores formal mathe-
matical techniques and intuitive reasoning procedures. I now describe how
Blades applies the human reasoning process to design problems.

Given the specficiations for a circuit, Blades determines the type of circuit
that is being designed. Based on the circuit type, Blades partitions the
system into subsystems and assigns specifications to each of the subsystems.
The partitioning process is performed using if-then rules designed for the
particular class of circuits. For example, the following rule is used for opamp
circuits.

(op amp-design-1
if
(op amp)
then
(go into partitioning mode)

)

The opamp is divided into a differential gain stage, a direct gain stage,
and an output stage. Other stages are possible depending on the specification
of the opamp. For example, an additional input stage is added if it is a four
terminal opamp.

(four-terminal-op amp
if
(number of input terminals equal to 4)
then
(add another input stage)
)

The circuit is recursively partitioned down to function blocks. Function
blocks are the most common primatives that designers use. They can be
a group of elements or consist of a single transistor. Each function block
primative has an associated “subcircuit design expert” that specializes in
building that function block. The subcircuit design expert implements the
function block using a fixed topology and a set of design equations to calculate
the subcircuit parameters.

In situations where several function blocks can be used to meet require-
ments, the function block with the fewest transistors is selected. A subcircuit
design expert is successful if it is able to meets specifications for the function

block. Otherwise, it reports an error and a different function block is at-
tempted. For example, for a current mirror with a given output impedence,
BLADES will attempt to use a two transistor circuit. If this circuit does not
deliver the required impedance level, then a Wilson current mirror will be
tested. If that fails, then a cascode configuration is used.

Expert systems, make two major contributions to analog circuit design.
Firstly, the knowledge based approach to designing circuits greatly reduces
computational time. BLADES takes 3 to 6 CPU seconds to design an op-
erational amplifier on a fully loaded VAX/785 running the UNIX operating
system. Secondly, hierarchical decomposition of the circuit into function
blocks allows investment put in designing subcircuit design experts to be
reused in other circuits.

The restrictive nature of expert systems does have some drawbacks. They
only explore designs that the programmer intends and do not consider the
more novel designs explored with the genetic algorithm. Also the setup
time for adding or modifying circuit types is time consuming and requires
expert designers. Also, the use of simplified mathematical models causes
inaccuracies and can result in poor topology or parameter selection. Finally,
Blades ignores the strong coupling that exists between different functional
blocks during decomposition.

4 ISAID: Sequential Decomposition and SPICE

Hierarchy is not strict in analog circuits because of strong coupling between
devices in the circuit. Blades deals with this by collapsing strongly coupled
devices into one function block and designing the function block in one shot.
The problem with this approach is that larger function blocks are more diffi-
cult to implement. Also, large function blocks are too specific too be reusable
in other circuits. The reusability benefit of hierarchical design becomes lost.

ISAID [4], another analog IC design automator, deals with this prob-
lem by using a technique called sequential decomposition. Instead of using
a straight top-down decomposition, as it is done in [3] and [5], where the
subblocks are designed independently, sequential decomposition allows in-
formation to travel upwards as well as downwards through the hierarchy.
This enables a higher level in the hierarchy to monitor the performances
of already designed lower-level circuit blocks and to asses the interactions

between them.

ISAID does this in the following way. Say circuit A is decomposed into
subcircuits B1, B2 and B3. A subcircuit is selected, say Bl, specifications
are assigned to it and the subcircuit is synthesised. The performance char-
acteristics and estimated device parasitics for Bl are returned to circuit A.
The performance characteristics of B1 can be used to influence the design
of subsequent circuit blocks. For example, if subcircuit Bl returns with per-
formances that exceed those originally requested, then the specifications for
subcircuits downstream can be relaxed. Performance conflicts may occour
when a subblock downstream cannot be made to satisfy the requirements set
by previous subblocks. Careful scheduling of the subblocks can reduce such
conflicts. Subcircuits that generate a lot of constraints are usually synthe-
sized first.

Another development of ISAID is that it closes the loop by using simula-
tion results to verify and adjust the circuit topology. With Blades, the entire
design process is completed using simplified mathematical models. Inaccura-
cies in these simplified models may cause the designer to make bad choices.
ISAID uses a two step design and assess approach where the design is done
using level 1 models, and the analysis is done using level 2 models. Differ-
ences in the results between the two models are fed back into the system.
For example, say the transconductance of a transistor is designed to be g,
but is evaluated using level 2 models to be g,,,. Let the difference be Ag,, =
Im - G- If g, is found to be outside the acceptable range, then the design
will be repeated with a new transconductance specification of g,, + Agp,.
The assumption is that the difference Ag,, will remain constant so that new
the transconductance gain will become ¢,y + Agp = gm- This is only valid
for differences that are small which is typically the case with ISAID. The
number of adjustment interations needed is found to be usually 1 or 2.

5 ANACONDA: Simulation Based Synthesis

Previous computer design automation systems use simplified transistor mod-
els to produce designs quickly. ISAID, attempts to correct the simplified
models’ deficiencies by feeding back the results of the analysis into the sys-
tem. To produce even better designs, the same industrial-strength simulator
used during verification should also be used the design stage. This is the

approach taken by Anaconda [6].

The problem with going to industrial-strength simulation completely is
speed. The fact that industrial strength spice simulations take longer to
compute than simplified mathematical models is not the problem. The prob-
lem is that when using an equation based approach, results are obtained
in one shot, whereas with SPICE, the result must be obtained iteratively.
This iterrative approach works as follows: A circuit is simulated with set
of parameters. If the input mix does not produce satisfactory results, the
inputs are adjusted until satisfactory results are obtained. Depending on the
algorithm used and the level of optimization desired, a circuit may need to
be simulated in the order of 100 000 times before arreiving at a satisfactory
result. Commercial circuit simulators are not designed to be invoked 100 000
times in the inner loop of a numerical analyser.

A proven optimization algorithm called simulated annealing is first diss-
cussed. The algorithm is then modified for network level parallesim to de-
crease computation time.

Simulated annealing attempts to minimize a cost function. The opti-
mization problem for analog circuits is formulated as follows: Given a fixed
topology, find devices sizes that minimize the difference between the mea-
sured specs and the desired specs. The circuit begins at a random starting
point and high temperature. A rating is computed for the circuit using
SPICE simulations. The inputs are then adjusted with some randomness.
The magnitude of the adjustment decreases as the temperature decreases.
The rating for this circuit is computed. If the rating improved, then the new
inputs are kept. If the rating does not improve, then the new inputs are
kept with probability e~/ where T is the temperature. The temperature
decreases at a rate dictated by an annealing schedule. As the temperature
decreases, the inputs settle about some optimal values. The point of adding
randomness early in the annealer is to escape local minimums in search of
the global minimum.

Anaconda modifies the simulated annealing algorithm into what they
call stochastic pattern search (SPS). The modifications aim to distribute
the processing time over multiple workstations. SPS begins with a random
population of circuits. In each iterration, k circuits are selected randomly
for modification. New circuits are generated by applying pattern searches to
a small locus around a given solution point. The starting perturbation in
the pattern search starts large to skip over local minima and decreases over

7

time. SPS does not accept uphill movement as in simulated annealing. The
justification is that by starting with a random population, there is enough
randomness to lead the search to a global minimum. The new circuits are
added back into the population and the worst circuits in the population are
eliminated.

The pattern search for each of the k candidates can be processed in paral-
lel. And for each of the k candidates, t pattern searches are simulated. Thus
allowing the problem to be distributed over kt workstations. Using this dis-
tributed approach, 50 000-100 000 circuit candidates can be fully simulated
in a few hours.

6 Conclusion

In this paper a number of approaches to the computer automated design
problem are investigated. Genetic algorithms produce novel designs but are
too slow to be practical. Expert systems, such as Blades, make computa-
tion time reasonable by following the human reasoning process and using
hierarchical decomposition and simplified equation models. ISAID improves
on this by using sequential decomposition to adjust for coupling between
subcircuits. It also uses SPICE in a design and verify loop to reduce in-
accuracies introduced by the simplified equation models. Finally, Anaconda
makes practical the use of an industrial-strength simulator in both the design
and verify stages by exploiting parrallism in the stochastic pattern search.

References

[1] Navid Azizi, “Automated analog circuit design using genetic algorithms,”
2001.

[2] Fatehy El-Turky and Elizabeth E. Perry, “Blades: An artificial in-
telligence approach to analog circuit design,” IEFEE Transactions of
Computer-Aided Design, Vol. 8. NO. 6, June 1989.

[3] Costas A. Makris Christofer Toumazou, “Analog ic design automation:
Part i-automated circuit generation: New concepts and methods,” IEFE

Transactions of Computer-Aided Design of Integrated Clircuits and Sys-
tems, VOL. 14. NO. 2, February 1995.

Francky Leyn Koen Lampaert Jan Vandenbussche Georges G. E. Gielen
Willy Sansen Petar Veselinovic Geert Van der Plas, Geert Debyser and
Domine Leenaerts, “Amgie - a synthesis environment for cmos analog
integrated circuits,” IEEFE Transactions of Computer-Aided Design of
Integrated Circuits and Systems, VOL. 20. NO. 9, September 2001.

Rob A. Rutenbar Richard Carley Rodney Phelps, Michael Krasnicki and
James R. Hellums, “Anaconda: Simulation-based synthesis of analog
circuits via stochastic pattern search,” IEEE Transactions of Computer-
Aided Design of Integrated Circuits and Systems, VOL. 20. NO. 9, June
2000.

