
Chapter 2

ESX Architectural Overview

30 VMware ESX Server

Now that you have a basic understanding of the VMware products
and a basic knowledge of ESX and how it works, its time to go into
detail as to what makes it all possible. As a warning, this chapter is
not intended for those with a weak heart or who are prone to falling
asleep. If you want to truly understand the magic behind ESX server
then this chapter is for you! Also, make sure you have an empty stom-
ach, because there’s a lot of information to digest here.

The Console Operating System versus
VMkernel

One of the most difficult concepts for new VMware admins to under-
stand is the difference between the Console Operating System (called
“COS”) and the VMkernel. Both play extremely important roles in
your ESX environment and it’s important to fully understand what
each does and is capable of doing. A common misconception of ESX
is that it “runs on Linux.” Let’s set the record straight once and for
all: ESX is not Linux. It’s not derived from Linux, and does not run
on Linux. Now that that’s out of the way, let’s get back to the COS
and the VMkernel.

The easiest way to distinguish the differences between these two
components is to think of the server’s console as being the “physical
world” and the VMkernel as the “virtual world.” The console lets you
touch and interact with it directly, and it allows access to modify con-
figurations and manage the environment. The VMkernel manages
everything that relates to the “virtual world” and the guests that run
within the host.

Console Operating System

The COS is used to boot your system and prepare your hardware for
the VMkernel. As the COS loads, it acts as the bootstrap for the
VMkernel which means it prepares all the necessary resources for
turnover to the VMkernel. Once the COS has loaded ESX, the
VMkernel will warm boot the system, assuming the role of primary
operating system. The VMkernel will then load the COS and several

other “helper worlds” as privileged VMs. The COS is responsible for
quite a few things that are vital to the proper operation of ESX,
including:

• User interaction with ESX. The COS is responsible for presenting
the various methods to communicate with the ESX host sys-
tem. It runs services that allow user interaction with the host
using various methods such as:

• Direct console access
• Telnet/ssh access to the console
• Web interface
• FTP

• Proc file system. The proc file system can be utilized by both the
COS and the VMkernel to provide real time statistics and to
change configuration options on the fly. The proc file system
will be discussed in greater detail in Chapter 6.

• Authentication. There are several processes that run within the
COS that provide authentication. These mechanisms deter-
mine what rights a specific user ID has over the COS itself
and the various guests running on the host. Chapter 7 is ded-
icated to these processes and how they interact with each
other, the VMkernel, and the COS.

• Running Support Applications. There are some applications that
may be run within the COS to provide extended support of
the host environment. Every major hardware vendor has
some form of agent that will run within the COS that can
detect hardware issues as they arise (voltage problems, drive
failures, fans quitting, etc.) In some scenarios it may also be
necessary to install a local backup client to the COS to back-
up critical system files. The number of applications that are
installed and run on the COS should be limited though, as the
COS is really designed to support ESX and nothing else.

VMkernel

Once the OS has loaded, the VMkernel is started. At this point the
VMkernel will warm boot the system and assume responsibility for
all hardware management and resource scheduling is turned over to

Chapter 2. ESX Architectural Overview 31

the VMkernel for management. Even the COS gets reloaded by the
VMkernel as a VM and is restricted by the VMkernel and its config-
urations. (Okay, technically, the COS still manages it’s own memory
and NIC, but that’s it.) The COS must follow the same rules for
resource allocations and sharing as every virtual guest running on the
host.

The VMkernel performs a number of functions, but one of the main
jobs it has is to manage the interaction of virtual machine hardware
and the physical hardware of the server. It acts as the “go-between”
for scheduling resources for VMs on an as needed and as configured
basis. While this may seem like a brief and simplistic description of
the VMkernel, the remainder of this chapter focuses heavily on how
the VMkernel works its magic and makes ESX what it is.

The ESX Boot Process

By taking a look at the boot process of an ESX host we can see how
the COS and the VMkernel interact and at what point the VMkernel
takes control of the system resources. There are several steps to the
boot process. While we won’t cover all of them, we will highlight the
ones that perform important system tasks as they relate to ESX.

LILO
LILO (or the “Linux Loader”) is a boot loader application (similar to
ntloader for Windows) that the system reads when it boots from the
hard drive. Based on the information contained in /etc/lilo.conf file,
the system begins its boot process. The default boot option for LILO
within ESX is to boot and load the VMkernel. The /etc/lilo.conf file
also contains information on how the COS should be configured as
it is booting. This information contains the amount of memory allo-
cated to it and the devices that are configured for COS use. Many of
the LILO configuration items are controlled by the vmkpcidivy com-
mand, discussed later in this chapter

Console Operating System
After LILO properly initializes the boot instructions the COS begins
to load. The majority of the boot process is contained in the COS.

32 VMware ESX Server

Most of these steps are used to prepare the VMkernel to take control
of the hardware resources.

init
The first process that the COS executes is init. This process reads the
/etc/inittab file and determines the system runlevel that should be
executed. (A Linux runlevel determines what services are started on
the server and the order in which they are started.) Varying runlevels
on a Linux system is comparable to the various boot options available
on a Windows server such as “Safe Mode” or “Command Prompt
Only.” The default system runlevel for ESX is 3, which means the sys-
tem will boot and present a console for system login. Based on this
value the COS will run the scripts contained in the /etc/rc.d/rc3.d
directory during the boot process.

/etc/rc.d/rc3.d
The /etc/rc.d/rc3.d directory actually contains symbolic links to start
scripts in the /etc/init.d directory. By running an “ls” command in the
/etc/rc.d/rc3.d directory you will see some scripts that begin with a K
and some that begin with an S. Scripts that begin with a K are used
to stop (or “kill”) a service during the boot process (or ensure it is not
running) and scripts beginning with an S are used to start a service.
You will also notice a number after the S or the K in the script’s file
name. These determine the order the script is run, starting at 0 and
going up to 99. The S scripts are executed in ascending number
order, whereas the K scripts are executed in descending order. The
order of the K or S values in the file have no meaning when it comes
to what order a script runs in.

S00vmkstart
If you run an “ls –l” command in the scripts directory you’ll notice
that the S00vmkstart command actually links to a script called
vmkhalt. By running this script first, VMware ensures that there are
no VMkernel processes running on the system during the boot
process.

S10network
The network script (S10network) starts the TCP/IP services on the
COS and assigns the IP address and hostname of the system.

Chapter 2. ESX Architectural Overview 33

S12syslog
The syslog script starts the daemon that processes system logs.
Starting this script allows the remainder of the boot process to be
logged. After the VMkernel begins to load it also provides a mecha-
nism to capture the log files generated by the VMkernel for review
when errors occur.

S56xinetd
The xinetd script starts the services required for the COS to handle
incoming requests for access. Each application that can be started by
xinetd has a configuration file in /etc/xinetd.d. If the “disable = no”
flag is set in the configuration file of a particular application then
xinetd starts the application. (Yeah it’s a double-negative.) The most
important application that is started here is the vmware-authd appli-
cation which provides a way to connect and authenticate to ESX to
perform VMkernel modifications.

S90vmware
This is where the VMkernel finally begins to load. The first thing that
the VMkernel does when it starts is load the proper device drivers to
interact with the physical hardware of the host. You can view all the
drivers that the VMkernel may utilize by looking in the
/usr/lib/vmware/vmkmod directory.

Once the VMkernel has successfully loaded the proper hardware
drivers it starts to run its various support scripts:

• The vmklogger sends messages to the syslog daemon and gen-
erates logs the entire time the VMkernel is running.

• The vmkdump script saves any existing VMkernel dump files
from the VMcore dump partition and prepares the partition
in the event that the VMkernel generates unrecoverable
errors.

Next the VMFS partitions (the partitions used to store all of your VM
disk files) are mounted. The VMkernel simply scans the SCSI devices
of the system and then automatically mounts any partition that is con-
figured as VMFS. Once the VMFS partitions are mounted the

34 VMware ESX Server

VMkernel is completely loaded and ready to start managing virtual
machines.

S91httpd.vmware
One of the last steps of the boot process for the COS is to start the
VMware MUI (the web interface for VMware management). At this
point the VMkernel has been loaded and is running. Starting the
MUI provides us with an interface used to graphically interact with
ESX. Once the MUI is loaded a display plugged into the host’s local
console will display a message stating everything is properly loaded
and you can now access your ESX host from a web browser.

So why do I need to know the boot process?

You need to understand the basic boot process to understand that the
VMkernel is a separate entity from the COS. Also if your server fails
to boot or certain services or processes fail to start you’ll have a good
idea of where to start looking for problems. If you’re not familiar
with Linux then this is all probably very new to you. If you have
some experience with Linux then this section just helped you under-
stand how the VMkernel fits into the picture.

Now let’s take a look at how the VMkernel does its magic and “vir-
tualizes” the hardware.

Hardware Virtualization

The whole idea behind VMware is to present a standard hardware
layer as a virtual machine to the guest operating systems. These vir-
tual hardware resources remain constant regardless of what physical
hardware makes up the host.

The VMkernel is responsible for providing the virtual hardware layer
to virtual machines. When a guest OS accesses a resource the
VMkernel is then responsible for mapping the virtual request
through to the physical hardware for processing. Since VMware pres-

Chapter 2. ESX Architectural Overview 35

ents standard hardware to virtual guests, you need to be familiar with
this hardware. Some resources such as SCSI and the network have
several options, so we need to understand when each option is used
and what it changes in the environment with each.

System Devices

When ESX presents a hardware layer to a guest operating system it
presents a system based on Intel’s 440BX chipset. This is a highly
supported chipset and is compatible with every guest operating sys-
tem that can be run within ESX. You may be wondering how we can
run Pentium 4 XEON and AMD Opteron processors in a guest that
has a 440BX chipset. While this sounds a little off, we’ll describe that
in detail a later in this chapter. For now you just need to understand
that the 440BX is what is presented to the guest and it allows for a
high degree of compatibility across numerous platforms for our guest
operating systems.

Processors

Assuming you are utilizing a processor that meets the requirements
of ESX server, your guest will see the same type of physical proces-
sor that’s installed on the host. The VMkernel is capable of accepting
processor calls and handing it straight to the physical processors of
the host with limited virtualization overhead. By presenting the host
processor type to the guest, the VMkernel does not need to perform
any conversions to ensure compatibility between the physical and
hardware layer. This simply means that the processor is NOT
accessed through on emulation layer. And that if your host has an MP
or DP type processor then that’s what is presented to the guest.

It’s important to note that not all registers of the physical CPU are
presented by the VMkernel. While VMware is fairly tight-lipped
about these registers, one that is known for sure is processor serial
numbers. Applications that are licensed to a serial number of a
processor or group of processors will not function within VMware.

36 VMware ESX Server

Network

ESX provides us with two hardware options when presenting virtual
network adapters to guest operating systems. Depending on the guest
operating system, there may be a requirement for one over the other.

VLANCE
The vlance adapter is a virtualized AMD PCNET driver. This adapter
has guaranteed compatibility across every guest operating system that
can be run within ESX. Since it’s based on legacy hardware it will also
have some limitations when utilizing it within a guest. After installing
the drivers you’ll notice that the connection speed within the guest
operating system shows 10Mb/sec. This is a limitation of the driver
and in fact doesn’t impact the transfer rate of the hardware. The
vlance adapter will utilize as much bandwidth as is available to the
physical connection. There is native support for this device in every
operating system that ESX has been certified for. If you’re configur-
ing a DOS boot disk for a network based installation or to use a DOS
based tool such as Ghost, this is the only driver that will properly
function. Using this driver will require increased virtualization over-
head over the other networking option available to us.

VMXNET
VMware has created a virtual network device that was designed from
the ground up to interact with the VMkernel. This device is the
vmxnet adapter. Because of its tight integration with the VMkernel
you will receive enhanced performance when using it in a guest,
especially with high speed connections. Since this device is a VMware
creation there is no native support for it in any guest operating sys-
tem. The only way to configure this device is to install the drivers
provided by the VMware Tools installation package within the guest.
Using this adapter minimizes the amount of virtualization overhead
and increases the network performance for a guest OS. It’s important
to note that not all operating systems will have the capability to use
this device. Use of this device is based strictly on the availability of a
VMware Tools installation package and vmxnet driver for the target
guest.

Chapter 2. ESX Architectural Overview 37

SCSI

Like the virtual network adapter, VMware provides two different
SCSI adapters that may be presented to a guest operating system. The
device that’s used by your specific guest depends on the operating
system that will be installed. The two options available to use are an
LSI Logic adapter or a Bus Logic adapter. Each adapter has different
levels of support in each of the supported operating systems. To elim-
inate any error when building a guest, ESX automatically assigns the
proper controller during the virtual machine configuration wizard
based on operating system choice. While the default controller may
be changed in some cases, it typically requires additional drivers to
first be installed in the guest. It may also impact the performance of
the virtual machine (more on this in Chapter 4). As a general rule of
thumb the choices that VMware makes for us guarantee compatibili-
ty for our guest servers.

As you can see the virtual hardware presented to the guests create a
relatively flexible environment that can be used by almost any main-
stream Intel OS. Now that you have a basic understanding of the vir-
tual hardware as presented to the guests, let’s look a little more at
how hardware is divided between the physical and virtual worlds.

Hardware Allocation

When installing and configuring ESX, you’ll see that both the COS
and the VMkernel are responsible for controlling certain aspects of
the hardware. There are three different settings for your hardware
devices: Virtual, Console, or Shared. Devices that are allocated as
“virtual” can only be accessed by the VMkernel (the virtual world).
“Console” devices are those that are limited to functioning in the con-
sole operating system (the physical world). The third option is a mix
of the two and allows for a device to be accessed in both the COS
and the VMkernel (physical and virtual worlds). There are also sev-
eral different ways in which the device allocations may be changed to
accommodate changing needs of the environment.

38 VMware ESX Server

Virtual

Virtual devices, as stated above, may only be accessed by the virtual
guests running on your host. The first obvious device that would be
configured for virtual machines is at least one network adapter.
(Later in this book we’ll discuss why you would want to strongly con-
sider using multiple adapters). Configuring a network adapter for vir-
tual machine use is the only way that your guests will be able to com-
municate with the network outside of your host server.

In addition to network connectivity you also need a place to store the
data that makes up your guest. In order to do this a SCSI adapter
should also be assigned for virtual machine (which means the
VMkernel). To simplify things for now, ESX also considers fiber
adapters to be SCSI adapters in terms of virtual, console, or shared
configuration. Depending on the size of your environment and the
type of data you’ll be connecting to, you may or may not have a need
for fiber HBAs or additional SCSI adapters.

Console

While “virtual” devices are only be seen by your virtual guests, “con-
sole” devices, as you may have guessed, are only seen by the COS.
Every ESX host has at least one network adapter that is used by the
service console. (This adapter is usually, although not always, dedicat-
ed to the COS.) When you communicate to the host with the MUI or
connect via ssh, you’re interacting with this network interface. When
you install backup or management agents on the console operating
system, this adapter is also used to communicate through the net-
work.

In order for the console operating system to properly boot, it needs
a disk controller to be allocated to Console use. Since the COS is a
standalone operating system (just like Windows) it needs a hard drive
configured so it can create and use the partitions and files required
to boot. This can be a physically attached hard drive, or in the case
of ESX 2.5 or newer, a remote boot off of a SAN. (More on this in
Chapter 4.)

Chapter 2. ESX Architectural Overview 39

We should note that you don’t need a disk controller that’s dedicated
to the COS only. You just need to have a controller (either “shared”
or “console”) that’s available to the COS so it can boot.

Shared Resources

Shared resources are those that can be accessed by both the VMkernel
and the COS at the same time. Consider the situation we just alluded
to previously where you have a system with only one SCSI controller
and no SAN in your environment. In order to hold large amounts of
data you purchase a SCSI drive cage that externally attaches to your
ESX host. Since you only have the one SCSI adapter, you need to
make sure the console has access to the internal hard drives for the
installation of the COS. We also need to make sure that once ESX is
installed the VMkernel will have the appropriate access to the exter-
nal drive cage.

Shared devices are not limited to SCSI controllers, but may also be
fiber HBAs or network adapters. In Chapter 4 we’ll introduce you to
some of the advanced configurations available to you utilizing the
shared bus mode.

Modifying These Configurations

During the installation process of ESX we’ll show you how to initial-
ly allocate your devices in Chapter 3. As your needs change and your
virtual environment grows it’s essential to know that you can modify
which devices are seen in the physical and virtual worlds. Fortunately
VMware provides several tools to make this possible.

MUI
Modifying device allocations utilizing the MUI (the web interface) is
a relatively simple process. In order to access the configuration screen
you need to log into the MUI as the root user. This will enable the
“Options” tab on the main page. The top link in the left column of
the options tab will be “Startup Profile.” This is the area where you
can configure HyperThreading options and memory resources for
the service console, and device allocations.

40 VMware ESX Server

Device allocation configuration through the MUI is somewhat limit-
ed in that the only devices that can be configured as “Shared” are
SCSI and Fiber Storage Adapters. In order to share a device you must
choose to allocate it to “Virtual Machines” and then select the “Share
with Service Console” checkbox. You’ll notice that the network
adapters installed in the system do not have this option. Configuring
the network devices for shared use is an advanced configuration and
not recommended unless certain conditions are met. This limitation
should be sufficient for a vast majority of the implementations, but
we feel it’s important to note that you cannot do everything from the
MUI. Details on this can be found in Chapter 4.

Console Operating System
Modifying device allocations through the service console can be done
with the vmkpcidivy command. This command can be run in two dif-
ferent ways: interactive and batch mode.

Running vmkpcidivy in interactive mode is the easiest way to config-
ure your devices outside of the MUI. You can run vmkpcidivy in
interactive mode by accessing the service console (locally or via ssh)
and using the following command:

vmkpcidivy –i

After executing the interactive mode command you’ll be presented
with a list of configurable devices in the system and how they’re cur-
rently allocated. (This is shown in the Example: 2.1). The devices are
presented in a list categorized by their allocations. You’ll see “Shared”
devices listed twice—once under the Console section and once in the
Virtual Machines section.

Example 2.1

[root@esx1 root]# vmkpcidivy -i
Checking for existing VMnix Boot Configurations.

The following VMnix kernel images are defined on your
system:
Boot image configuration: esx
Image file: /boot/vmlinuz-2.4.9-vmnix2

Chapter 2. ESX Architectural Overview 41

Memory: 192M
Service Console devices:
Ethernet controller: Intel Corporation 82557
[Ethernet Pro 100] (rev 08)
RAID storage controller: Symbios Logic Inc. (formerly
NCR) 53c895 (rev 02) (shared)
VM devices:
Ethernet controller: 3Com Corporation 3c905C-TX [Fast
Etherlink] (rev 78)
RAID storage controller: Symbios Logic Inc. (formerly
NCR) 53c895 (rev 02) (shared)
Type in the name of the boot image configuration you
wish to configure or type "new" to create a new image
[esx]:

Following the list of devices is a prompt asking if you would like to
modify an existing configuration or create a new one. The default
configuration name for ESX 2.1.1 and higher is ESX. Prior to 2.1.1
the default configuration name was VMNIX. You can tell what your
default is by either paying attention to the LILO boot menu at start-
up or by viewing the /etc/lilo.conf file with the following command:

grep default /etc/lilo.conf

By choosing your default configuration you will be presented with
each device and its current setting. When presented with a list of
devices, the current values will be set as the “default” values. By sim-
ply hitting enter the particular device that’s listed will keep its current
configuration.

There are three possible values to use for allocating your devices: c,
v, or s. These represent Console, Virtual Machines, and Shared,
respectively. When you get to the particular device(s) you wish to
modify, enter the proper value and hit enter. Once you’ve gone
through the entire list of devices you’ll be prompted as to whether
you want to apply the configuration changes or not. Once you’ve cho-
sen to apply the changes you will need to reboot the system the
changes to take effect. If you’re using vmkpcidivy for information
gathering you’ll either want to break out of the application using
CTRL+C or choose not to apply the changes to the configuration.

42 VMware ESX Server

We strongly recommended that if you’re unsure of the change you’re
attempting to make that you create a new configuration with a prop-
er temporary name such as “esx-test.” This will require that you type
“new” at the first prompt followed by your temporary configuration
name at the second. When you create a new profile, the settings from
your original profile are not remembered. You’ll have to pay close
attention to each option presented to ensure your system comes up
in a functional state after its next reboot.

The Core Four Resources

There are four resources that you need to strongly consider when you
review and design your virtual environment. (These are what we’ve
starting calling “Core Four.”) Properly understanding and configur-
ing these resources are essential to maintaining a stable virtual envi-
ronment. This section focuses on these “Core Four” resources and
how they pertain to VMware ESX Server and its guests.

Processor

As mentioned previously, the virtualization of the processor compo-
nent that is presented to virtual machines is slightly different than
other devices. As we discussed, the motherboard architecture present-
ed to the guest operating system is based on the Intel 440BX chipset
which is a Pentium III-based motherboard. So how does this impact
the physical processors that are installed in the host server?

This simple answer is, “it doesn’t.” The best way to describe how
VMware virtualizes the processor was described to us by one of the
VMware sales engineers that we frequently have the opportunity to
work with. Since the system architecture as presented to the guest
operating system is 440BX-based, the device manager within
Windows shows you all the typical components of that “virtual moth-
erboard.” The single exception in this virtual motherboard is that at
the hardware level there’s a hole cut out of the motherboard where
the processor belongs.

Chapter 2. ESX Architectural Overview 43

The VMkernel, based on processor family, presents the specific capa-
bilities of your host processors to the guest operating system which
allows full utilization of the processors installed. While there are
some registers that are not virtualized, the guest has the capability to
benefit from the key registers of advanced processors such as
Pentium 4 XEON and AMD Opteron. Simply put, the processors are
not really virtualized the same way as the other “core four” (memo-
ry, disk and network) are. The processor utilization is scheduled, but
what the guest sees is pretty much what it gets.

Hyper-threading
Hyper-threading is an Intel technology that allows a single processor
to execute threads in parallel, which Intel claims can boost perform-
ance by up to 30%. If you think about it, what Intel is really doing is
presenting two processors to the OS for each physical processor
installed. This idea and technology really comes from trying to make
up for the poor task scheduling that Microsoft does in its Windows
operating systems (but that’s another book all together).

VMware ESX 2.1 introduced support for hyper-threaded processors.
The additional logical processors are packaged with the physical and
are numbered adjacently. For example, processors 0 and 1 would be
physical CPU 1 and its logical counterpart (and 2 and 3 would be
CPU 2 and its logical counterpart, etc.). This behavior is different
than that displayed in a typical x86 operating system in that all phys-
ical CPUs are counted first, and then the logical CPU pairs are num-
bered. It will be important to remember this numbering system if you
begin to use the more advanced concepts of “pinning” a Guest VM
to a specific processor for performance reasons.

The increase that a system receives from hyper-threading is depend-
ent on how well the applications running on the system utilize the
system cache. While a typical operating system requires that hyper-
threading be enabled or disabled for the entire system, VMware has
provided several mechanisms for configuring hyper-threading sharing
on the system that can be configured on a per virtual machine basis:

• Any. This is the default setting for virtual machines running
on the system. This allows multiple virtual CPUs to share a

44 VMware ESX Server

single processor package at the ESX level. It allows you to get
the most out of enabling hyper-threading on your system, but
can introduce problems where an inefficient application may
impact overall performance of the other virtual machines
sharing a package with it.

• Internal. This option is only supported by SMP (multiproces-
sor) machines. It allows both virtual CPUs for a virtual
machine to run in a single package and isolates it from any
other virtual CPUs in the system. This prevents the config-
ured guest form impacting other guests and protects it from
other guests that may have inefficient applications. If overall
system utilization allows, a guest configured with internal
hyper-threading sharing can still utilize a package per virtual
CPU to maximize performance.

• None. In cases where an application is known to perform
poorly with hyper-threading, sharing can be disabled. This
completely isolates each virtual CPU of the system to its own
package. This option should only be used when suggested by
VMware or an application vendor as it isolates a large amount
of system resources.

Modifying the hyper-threading settings of the system may be done
one of three ways. Your system must have hyper-threading enabled at
the hardware level in order to view and modify these options. Also,
the virtual machine must be powered off for these modifications to
be possible.

• MUI. By using the MUI, the hyper-threading sharing option
can be modified two ways. The first is by editing the CPU
Resource Settings for the virtual machine. You’ll be present-
ed with a checkbox that’s labeled “Isolate Virtual Machine
from Hyper-Threading.” The behavior of this setting depends
on whether the system is a single processor system or if it has
Virtual-SMP enabled. For a single processor machine this
option will set the sharing value to “none.” For SMP
machines, the value will be changed to “internal. The other
option is to use the verbose configuration option for the
guest. When presented with a list of configuration options,
add (or modify) a value titled “cpu.htsharing.” Assign the
value of “any, internal, or none” to this option.

Chapter 2. ESX Architectural Overview 45

• COS. You can easily set the hyper-threading sharing value by
directly modifying the VMX file for the virtual machine in
question. The easiest way to modify the file is to utilize the
following command:

echo cpu.htsharing = \“value\” >> /path/to/server-
name.vmx

Make sure you substitute the proper value inside the escaped quota-
tion marks. The escape character of “\” is required for echo to prop-
erly insert the quotation marks into the configuration file. Another
thing you MUST be careful of is that you use the double output sym-
bol “>>”. If you use a single output symbol the existing text of the file
will be overwritten. It’s always recommended that you make a back-
up copy of the VMX file before making any modification. If you’re
familiar with the vi editor then you may use that to modify the VMX
file with the following line:

cpu.htsharing = “value”

There’s one final note about using hyper-threading in your ESX envi-
ronment. If you’re using a system that utilizes a NUMA memory
architecture, it’s strongly recommended that you only use ESX ver-
sions 2.1.2 or higher. There have been specific issues tied to these sys-
tems that appear to have been fixed by the 2.1.2 updates. While there
is no “official” announcement from VMware on this, internal employ-
ees have confirmed that update code was included to enhance this
functionality. Non-NUMA systems seem to perform extremely well
with hyper-threading enabled regardless of the ESX version.

Symmetrical Multi-Processing (also known as SMP or
Virtual-SMP)
SMP is an add-on module for ESX that provides the capability to con-
figure multi-processor guest operating systems. You enable Virtual
SMP by plugging in a license key to your ESX host either during the
install process or by modifying the licensing options afterwards.
(Note that you do NOT need an SMP license to use ESX on a multi-
processor host. You only need it to create VMs that use multiple
physical host processors.) While SMP can provide enhanced perform-
ance to your system, there are several guidelines that should be strict-

46 VMware ESX Server

ly followed as SMP can just as easily negatively impact an environ-
ment.

• Administrators should never start off by configuring a virtual
machine as an SMP system.

• Once upgraded to SMP, it is extremely difficult (and some-
times impossible) to properly downgrade a Windows guest.

• Utilizing SMP slightly increases CPU and memory overhead
of an ESX host.

While performing best practices analysis of environments we’ve
notice there are quite a few people who start off deploying every vir-
tual machine as an SMP system. The added virtualization overhead
from this configuration can be the source of significant performance
problems once the environment becomes fully utilized.

Additionally, “downgrading” the kernel of a Windows system is a sen-
sitive process with Windows 2000 and is not possible with Windows
2003. It’s recommended that all guests be created as single processor
machines and then if performance dictates and the application is
capable of fully utilizing SMP technology it’s a simple process to
upgrade the system to SMP. By only utilizing SMP on guests that are
capable of taking advantage of it, the virtualization overhead of an
ESX host is kept low allowing the system utilization to be maximized.

One final note, SMP is only supported on ESX Server—not GSX or
Workstation.

Memory

Memory utilization within ESX is managed at many levels. To start,
the COS is given dedicated memory resources as part of its boot
process (based on the configuration choices you made during ESX
installation). This memory is used to support the operation of the
COS and virtualization overhead for the service console and each
running virtual machine. The COS is allocated 24MB of memory
from its available bank for its own virtualization. This is performed
automatically and cannot be customized. Each virtual machine that’s

Chapter 2. ESX Architectural Overview 47

powered on requires memory in the COS space to support virtualiza-
tion. (This is the “virtualization overhead” that you hear people talk-
ing about). We’ll further discuss the details on virtualization require-
ments and console configuration in Chapter 3 when we install ESX
server.

The remaining physical memory that’s not assigned to the COS is pre-
sented to the VMkernel for virtual machine use. The way memory is
controlled and accessed is complicated by the fact that the VMkernel
intercepts memory pages and presents them to the guests as if it were
continuous memory pages. This process is somewhat complex and
described about a hundred different ways depending on who you talk
to.

Figure 2.1

We’ve found that the process is best described in Carl Waldsurger’s
“Memory Resource Management in a VMware ESX Server” docu-
ment. Summarizing this document (and following Figure 2.1):

• VMkernel takes machine page numbers (MPNs) and stores
them as physical page numbers (PPNs).

• MPNs are memory pages that are located in the physical
memory of the host server.

• PPNs exist only within the VMkernel and are used map
MPNs to virtual page numbers (VPNs) that the VMkernel

Physical Memory

Pages

MPN (machine

page numbers)

PPN (physical page

numbers)
VMkernel

VPN (virtual page

numbers)

Operating System
VMware page

mapping

Traditional

mapping

Operating System

48 VMware ESX Server

presents to the guest operating systems. By presenting VPNs
to a guest in a contiguous manner, the VMkernel gives the
illusion that contiguous memory space is being used within
the guest.

• “Shadow page tables” help to eliminate virtual machine over-
head by allowing direct correlation of VPNs to MPNs. The
VMkernel keeps these mappings up-to-date as the PPN to
MPN mappings change.

Later in this chapter we’ll describe something called “transparent
page sharing.” This process (or architecture) allows for a certain
amount of secure memory sharing between VMs. The memory
resource management used by VMware is what makes transparent
page sharing and other memory saving features possible.

NUMA
With the increasing demand for high-end systems, today’s hardware
vendors needed an affordable and easily scalable architecture. To
answer these needs the NUMA (Non-Uniform Memory Access)
architecture was developed and adopted by several hardware vendors.
NUMA functions by utilizing multiple system buses (nodes) in a sin-
gle system connected by high speed interconnects. Systems that have
NUMA architectures provide certain challenges for today’s operating
systems. As processor speeds increase, memory access bandwidth
becomes increasingly more important. When processors must make a
memory call to memory residing on a different bus it must pass
through these interconnects—a process which is significantly slower
than accessing memory that is located on the same bus as the proces-
sor.

NUMA optimizations that were included with version 2.0 of ESX
have turned ESX into a fully NUMA-aware operating system. These
optimizations are applied using several methods:

• Home Nodes. When a virtual machine initially powers on, it’s
assigned a home node. By default it attempts to access mem-
ory and processors that are located on its home node. This
provides the highest speed access from processor to memory
resources. Due to varying workloads, home nodes alone do

Chapter 2. ESX Architectural Overview 49

not optimize a system’s utilization. For this reason it’s strong-
ly recommended that NUMA nodes remain balanced in
terms of memory configuration. Having unbalanced memory
on your nodes will significantly negatively impact your system
performance.

• Dynamic Load Balancing. At a default rate of every two seconds,
ESX checks the workloads across the virtual machines and
determines the best way to balance the load across the vari-
ous NUMA zones in the system. If workloads are sufficient-
ly unbalanced, ESX will migrate a VM from one node to
another. The algorithm used to determine which VM to
migrate takes into consideration the amount of memory the
VM is accessing in its home node and the overall priority of
the VM. Any new memory pages requested by the VM are
taken from its new node while access to the old pages must
traverse the NUMA bus. This minimizes the impact of a guest
operating system from a migration across nodes.

• Page Migration. While dynamic migration of a virtual machine
across nodes limits the impact on the guest, it does not com-
pletely eliminate it. Since memory pages now reside on two
nodes, memory access speeds are limited by the fact that the
processors do not have direct access to them. To counter this,
ESX implements a page migration feature that copies data at
a rate of 25 pages per second (100 kb/sec) from one node to
the other. As it does this the VMkernel updates the PPN to
MPN mapping of memory to eliminate virtualization over-
head.

Network

Like everything else in the VMware environment, network resources
exist in two worlds. The use and configuration of a network resource
is quite different depending on whether it’s assigned to the COS or
to the VMkernel. While the COS configuration is fairly straightfor-
ward, virtual adapters have a wide variety of options. In fact, there is
enough information around this technology that we’ve dedicated an
entire chapter to it later in this book. Figure 2.2 represents what a
typical VMware network configuration would look like on an ESX
host.

50 VMware ESX Server

Figure 2.2

Console NIC Configuration
This adapter is utilized by the COS (remember COS is the “console
operating system”) for management tasks. ESX management, backups
of VMware configuration files, and file copies between ESX hosts are
done over this interface.

While this interface is not typically used as much as the interface that
the production VMs use, you still want it to be fast if you’ll be using
it to backup VM disk files. This interface is known to the COS as
eth0, and it will commonly be referred to as the “management
adapter” throughout this book. By default, the first NIC the COS
detects is assigned eht0, and it requires a unique IP address. This
does not mean the console NIC will always be an on-board Ethernet
interface. Depending on how the system BUS numbering is laid out,
it’s entirely possible that a PCI slot will act as eth0 for the system.

VMNIC Configuration
ESX assigns adapters configured for virtual machine using sequential
names starting with “Outbound Adapter 0” which maps to “Physical
Adapter 1.” These adapters are labeled as NICs 2 and 3 in Figure 2.2.
Like the COS adapter, this numbering is determined by system BUS
order. Please refer to Figure 2.3 for Physical Adapter to Outbound
Adapter mapping.

Virtual Machines

Virtual Switch

Redundant Switch Infrastructure

VMotion

Network

Console

OS

ESX SERVER

1 4

32

Chapter 2. ESX Architectural Overview 51

Figure 2.3

Outbound Adapter Physical Adapter
0 1
1 2
2 3
3 4
etc. etc.

To prevent network bottlenecks on VMware, Gigabit Ethernet con-
nections should be used whenever possible. There are ways to assist
in limiting the amount of bandwidth that travels over the wire which
will be described later, but for production use, gigabit connections
allow you to provide adequate resources to each VM.

Virtual Switch
Virtual switches were introduced in ESX 2.1 as a new way to assign
network connectivity to virtual machines. While virtual switches can
be created with a single physical NIC (or in some cases, no physical
NICs), the failure of that NIC would cause the virtual machines using
it to lose their network connectivity. To prevent this downtime, ESX
allows us to bond up to 8 gigabit Ethernet adapters (up to 10 10/100
adapters) together to present to virtual machines. A virtual switch is
just what its name describes—it emulates a 32-port switch for the
guests that are configured to utilize it. Each time a virtual machine
references a virtual switch in its configuration it utilizes one port.
Virtual switches also load-balance virtual machines across all physical
NICs used to create the switch. If one network switch port or
VMNIC were to fail, the remaining VMNICs in the bond that makes
up the virtual switch would pick up the workload.

Another feature of the virtual switch is that any traffic between VMs
on the same virtual switch is typically transferred locally across the
system bus as opposed to the across network infrastructure. This
helps to lessen the amount of traffic that must travel over the wire for
the entire host. An example of where this may be used is a front end
web server making database queries to another server configured on
the virtual switch. The only traffic that traverses the network infra-
structure is the request from the client to the web server.

52 VMware ESX Server

During the creation process of a virtual switch in VMware you are
prompted for a “Network Label.” This label serves several purposes,
the first being that it’s a meaningful way to manage the switch. If you
give it a name of “Trusted” or “VLAN17,” you have a good idea as
to the exact specifications of the switch. The other purpose is for uti-
lizing VMware’s VMotion technology. In order to move a virtual
guest from one physical host to another, all settings on both hosts
must be identical, including virtual switch labels.

Virtual Network (VMnet) Configuration
Feeding off the virtual switch methodology, VMware has also imple-
mented what they call virtual networks, or “VMnets” in ESX. This
feature provides the capability to create a private network that is vis-
ible only to other hosts configured on the same VMnet on the same
physical host. VMnets are simply virtual switches that don’t have any
outbound adapters assigned to them. Using this feature it’s entirely
possible to create a multi-network environment on a single host. In
the Figure 2.4, traffic coming in through the external virtual switch
would have no way to directly communicate to the Virtual Machine
3 and would only be able to interact with Virtual Machine 1 or 2.

Figure 2.4

Virtual

Machine 1

Virtual

Machine 2

Virtual Switch

Virtual

Machine 3

Virtual Switch

ESX

SERVER

Chapter 2. ESX Architectural Overview 5353 VMware
ESX Server

There are several instances in which this configuration may be bene-
ficial:

• Testing in a secure isolated environment. Setting up a VMnet
within VMware does not require any physical network con-
nectivity to the box beyond the management NIC. As an
example, to see how a group of schema changes impacts an
Active Directory, a parallel directory could be created in the
virtual environment and tested without ever tying into a pro-
duction network.

• DMZ Architecture. Since this design creates an isolated envi-
ronment, it could be created to secure critical systems using
network address translation (NAT). This would entail a fire-
wall or reverse proxy being connected to both the virtual
switch and the VMnet. Requests from clients would come
into this server over the virtual switch. The firewall would
then initiate its own connection to the backend web server,
which in turn receives data from a database. The information
is then returned back to the client without ever having the
capability to talk directly to the web or database server.

Storage

Storage for ESX comes in two flavors: local and SAN. With ESX 2.1.2
and lower, every system (at least every supported system) requires
local storage for the installation of the COS. In the introduction of
ESX 2.5, VMware provided limited support for a “boot from SAN”
option which eliminates the need to have local storage connected to
the system at all. Before we get into the differences of locally-attached
and SAN-attached storage we should understand what it is that will
be utilizing these resources.

Virtual Disk Files for VMs
Each VMware virtual disk file represents a physical hard disk that can
be allocated to a virtual machine. VMDK files may be up to 9TB in
size, which is a limitation that should never really be encountered.
Any system that would require that much storage would most likely
fall outside of the “VM Candidate” range as described in Chapter 5.
ESX does not allow dynamically expanding disks (also known as

54 VMware ESX Server

“sparse” disks) like GSX does. Any VMDK file that is created has all
space immediately allocated to it. This is done for a very good rea-
son. It eliminates fragmentation of the hard drive that the VMDK
resides on. If you’ve used VMware’s GSX or Workstation products,
you may have noticed that heavy fragmentation occurs when a
VMDK file must expand itself as it grows. By immediately allocating
all space when the vDisk file is defined ESX configures a VMDK file
in a relatively contiguous layout on the physical disk.

Allocating the full disk space immediately also ensures that the full
amount will be available to the guest OS. There’s nothing worse in a
datacenter than having a guest crash because it encounters a non-
recoverable disk error because it can’t write to a section of the disk
that it thinks is there.

As a final note, VMDK files may only be presented to virtual
machines as SCSI drives. The only device that has IDE support with-
in a guest operating system—at least on ESX Server—is the CD-ROM
drive.

VMFS
Any VMDK file that’s created for a virtual machine must reside on a
VMFS partition. The VMFS file system is optimized or high I/O. It’s
a flat file system (which means it may not contain subdirectories) that
has a 1MB sector size (by default). Unlike the standard way a
Windows Server locks a file system, an ESX Server does not lock the
entire partition while communicating with it. The lock instead is
placed at a file level which allows multiple ESX hosts to utilize the
same SAN space and same VMFS partitions (In order to achieve this
functionality a SAN is required.)

Standard files should not be stored on VMFS partitions.

There are two different VMFS configuration options you can config-
ure when building a VMFS partition:

• Public. This is the default VMFS mode for VMware and fits
most needs for configuring and running virtual machines.

Chapter 2. ESX Architectural Overview 55

When the file system is configured as “public,” multiple hosts
may access files on the same partition. When a virtual
machine is running, a lock is placed on the individual file so
no other host can utilize it. If the virtual machine is powered
off, power can be restored from any host that has access to the
VMDK file.

• Shared. This mode is used when configuring clustering across
two or more physical hosts as it allows more than one virtual
machine to access the same VMDK file at the same time
(although only one host can have write access at a time—the
other(s) would have read-only access). With Shared mode,
ESX allows the guest OS to manage the locking of the file sys-
tem which is why a “Shared” VMFS volume always seems to
be locked or “read only” from the COS. The VMDK files
stored in a shared VMFS partition can be clustered with
nodes on the same ESX host or nodes that expand across sev-
eral ESX hosts. For the second option, a SAN LUN must be
zoned to all ESX hosts that will host a node of the cluster.

Real World VMFS Mode strategy
At this point some of you may be asking, “why not used shared mode
for all my LUNs?” The simple answer is overhead. Managing and
monitoring which hosts have VMDKs files opened on a shared mode
VMFS partition adds overhead to the system.

In the real world the default mode of public is used as a standard for
VMFS partitions. Then, when shared mode is needed, a specific
“clustering LUN” is created to host the shared mode VMFS partition
and the shared VMDK files.

Local Storage
Local storage for ESX is defined as disk drives directly attached to
the system by either a SCSI or IDE interface. (Yes, you can use an
IDE interface for storage in an ESX system in a limited configura-
tion.) For example, some blade systems do not have SCSI support for
hard drives. In these cases it’s possible to install and configure the
COS on a local IDE drive. However, it’s important to note that IDE
cannot be used for a VMFS file system. So although you can install
ESX to IDE, you will not be able to run virtual machines unless you
have SCSI or fiber-attached storage.

56 VMware ESX Server

When building an ESX server for a small environment that may only
require one or two servers, local storage may fit the bill for VMFS
partitions. (This is certainly much cheaper than a SAN infrastruc-
ture.) While a SAN does provide significant benefits over locally
attached storage, sometimes these benefits do not outweigh the costs.

Nearly all hardware vendors provide external drive cages that can be
loaded up with SCSI hard drives at fairly reasonable prices. This
allows for very large amounts of storage in a small amount of rack
space. There are several advantages and disadvantages to using local
storage.

Advantages of Using Local Storage

• Extremely high speed access rates (dependent on the SCSI
controller)

• The entire ESX system is contained in one or two rack
devices (the server and disk enclosure), making it easy to
move

• Easy to manage

Disadvantages of Using Local Storage

• Limited redundancy

• Disk resources are limited to one host at a time (since virtual
machines cannot be clustered across physical hosts in this
fashion)

• You cannot use VMware’s VMotion product to migrate
between hosts

Often smaller environments will find that local storage is the only
cost-effective solution available. This is not to say that local storage is
any better or worse than SAN storage, it just means that it fits them
better. Saying outright that SAN Storage is better than local storage
for every ESX environment is like saying a Porsche is better than a
Ford truck. The truth is that a Porsche is not better than a Ford truck
if you are trying to haul a cubic meter of rocks. If one accomplishes
your goals at a price you can afford, then that is the right solution.

Chapter 2. ESX Architectural Overview 57

SAN Storage
ESX Server has a strong dependency on SAN storage when imple-
mented in an enterprise environment. (Just make sure you check
VMware’s HCL to make sure your SAN is supported!) Since VMware
is used to consolidate machines and all space for a VMDK file is allo-
cated upon creation, you’ll need quite a bit of storage. As stated pre-
viously, VMware configures partitions for VMDK files as VMFS par-
titions. Strategies on sizing these partitions (or “LUNs” in the SAN
world) will be discussed in Chapter 4. While VMware has the capa-
bility to expand a VMFS volume by combining several LUNs togeth-
er, we strongly recommend against this. Combining LUNs within
VMware is equivalent to creating a Volume Set in windows
2000/2003. It does not provide a layer of redundancy or striping,
and if there are issues with a path or particular LUN, data corruption
is more likely to occur than if the VMFS volume were on a single
LUN.

In addition to mapping LUNs and configuring them as VMFS parti-
tions, you can map raw SCSI disks through to a virtual operating sys-
tem. What this means is you can configure a LUN that has an exist-
ing file system, such as NTFS, as a disk on the virtual guest. This is
useful in a situation where you are setting up clustering in an
active/passive configuration with the active node being a physical
server and the passive node being a virtual machine. Like using local-
ly attached storage, there are several advantages and disadvantages to
using SAN space in your environment:

Advantages of Using SAN Storage

• Multiple hosts may access the same storage space

• Provide large degree of system redundancy

• Ability to cluster virtual machines across physical hosts

• You can use VMware VMotion

Disadvantages of Using SAN Storage

• High level of management. (Many companies have separate
departments responsible for managing enterprise storage)

• Expensive to set up storage infrastructure

58 VMware ESX Server

• Slightly slower than locally attached storage (depending on
SAN configuration)

Other Pluggable Devices

In addition to the core four resources, ESX requires special consider-
ations for “pluggable” hardware components. These components are
those that may be easily added to or removed from the physical hard-
ware through either an internal or external connection. While the
console operating system may properly detect and utilize many of
these devices, a majority of them will not work for the guest operat-
ing systems running on the host. This is because special drivers would
need to be written and compiled into the VMkernel. Adding addi-
tional drivers and support in the VMkernel for a wide variety of
available hardware would defeat the purpose of a lightweight kernel
with low virtualization overhead.

SCSI

SCSI is one of the resources that’s fairly compatible with both the
console operating system and the guests running on the host. The
VMkernel provides pass-through support for SCSI devices which can
include tape backup devices and physical hard drives. The most com-
mon use for raw SCSI access is to attach a tape backup unit to a host
to either backup the local files on the service console or to have one
of the virtual machines directly accessing the backup device acting as
a backup server for the other VMs. How ESX accesses any SCSI
device is dependent on how the specific SCSI controller that it is con-
nected to is configured.

Console Operating System SCSI Device Access
As you saw earlier in this chapter, there are three different ways to
configure devices for host and guest access (dedicated to the COS,
dedicated to the vmkernel, or shared between the two). By choosing
to dedicate the SCSI controller to which a specific physical disk or
tape device is connected to the service console, you only will be able
to access the device through the console operating system. It’s impor-
tant to remember that the setting chosen is for the entire SCSI con-

Chapter 2. ESX Architectural Overview 59

troller and not individual devices attached to it. If the controller is
dedicated to the service console only, all devices attached to it will
only be accessible by the COS. In the event that a configured device
is a physical disk, you could configure additional ext3 partitions for
additional storage space for the host.

Virtual Guest SCSI Device Access
In addition to configuring SCSI devices for use by the COS, ESX also
gives you the opportunity to pass SCSI devices directly through to a
guest operating system. Due to limitations of the SCSI architecture,
each SCSI device can only be configured on one guest at a time. In
order to configure a guest to access a SCSI resource of the host serv-
er, the SCSI adapter that the device is connected to must be config-
ured for either Virtual Machine access or shared access. As you will
see when we get to installing ESX in Chapter 3, it’s recommended
that you configure the primary SCSI controller for shared access.

Configuring a guest to use an attached SCSI device can be performed
by using the “Add Hardware” button for the target virtual machine.
After choosing to attach a “Generic SCSI Device”, a list of compati-
ble devices will be listed. Once you select a device from the present-
ed list, it will become available to the virtual machine after the VM
is powered back on. Remember, hardware can only be configured on
a virtual machine if the VM is powered off. With the current versions
of VMware ESX Server, the only devices that are compatible for pass-
through to a guest operating system are hard drives and tape devices.
Other device types are not supported on virtual machines as “Generic
SCSI Devices”.

We feel it is quite important to note that up to ESX 2.1.2 there have
been reports of SCSI errors and locking occurring when utilizing a
tape drive on the primary SCSI device. It is strongly recommended
that if a tape device is required that a second SCSI controller be uti-
lized. This serves two purposes. First, this will enhance the overall
throughput of the system. If the second controller is installed on a
different system BUS than the original controller there will not be
any I/O contention on the system. The second reason for this is that
if a SCSI lock does occur it will not impact the system drive. If the
controller were to “lock” on the first SCSI controller you would be

60 VMware ESX Server

looking at a purple screen issue and downtime to recover the host
and all guests. The I/O compatibility guide should also be consulted
prior to making any decisions on adding additional controllers.

iSCSI

One of the most requested features for ESX is the integration of
iSCSI for connections to external storage arrays. VMware has been
very tight lipped up to this point on anything relating to this func-
tionality. We can verify that this functionality is on VMware’s
roadmap, but it is still not ready for implementation. ESX 2.5 does
not contain any additional code to support this. Our understanding
is that in order for ESX to support iSCSI a TCP/IP stack would need
to be integrated into the VMkernel. This would more than double the
size of the VMkernel in its current state. One of the main selling
points to ESX is its lightweight kernel that does not utilize large
amounts of CPU cycles.

Chapter 5 has a great description on kernel mode processor calls,
we’ll summarize the issue here. The amount of TCP/IP calls that
would be required for this functionality would also increase the
amount of kernel mode calls the VMkernel is required to handle. The
VMkernel would have to perform significant amounts of conversion
from the guest through to the physical hardware. The performance
hit from this does not make iSCSI a viable option at this point in time.

PCI

PCI devices within ESX have extremely limited support. By review-
ing the ESX I/O Compatibility Guide, you’ll notice that the only
devices listed are network, SCSI and Fiber adapters. One of the most
commonly sought after PCI cards, Brooktrout Fax cards, is not sup-
ported. The main reason for this is driver support. Not only would a
Linux level driver be required, but custom VMkernel drivers would
also need to be written to properly allow guest access to the resource.
This is not to say that other PCI cards will not work. PCI cards that
provide additional parallel or serial ports have been reported to
work, and work quite well at that. Before choosing a card it is

Chapter 2. ESX Architectural Overview 61

extremely important that VMware support be contacted to verify
supportability and functionality of the card in question.

USB/Firewire

While ESX does support USB devices, it only does so at the COS
level. Currently, there is no functionality built in to provide USB pass-
through to a guest operating system. For this functionality there are
several USB network devices that have received excellent reviews in
the VMware community and are compatible with guest operating sys-
tems. There is no firewire support at the COS or VMkernel level.

Parallel/Serial

Virtual machines running within ESX can be allowed to have direct
access to parallel and serial ports of the host operating system. There
are several limitations to be aware of before attempting to configure
one of these mappings. First, only one guest is allowed to access a sin-
gle port at any given time. Each guest may have access to one paral-
lel port and two serial ports. Second, there is no way to configure
these devices using the MUI. The only way to properly configure
them is to manually modify configuration files with the COS.
VMware provides this support for external serial modems and exter-
nal parallel dongles that are required for certain applications.

Configuring Parallel Ports
Parallel ports, as you will see, are more difficult to configure than
serial ports. This is because you must first configure the COS to prop-
erly see the parallel port as it is not enabled by default. Before
attempting to configure parallel pass-through you must ensure that
the port is properly configured in the system BIOS. Make sure the
parallel port mode in the BIOS is set to either PS/2 or bi-directional.
These are typically the default settings within a majority of the sys-
tems. Once complete you must add three lines to the end of your
/etc/rc.d/rc.local file:

/sbin/insmod parport
/sbin/insmod parport_pc

62 VMware ESX Server

/sbin/insmod ppdev

These lines will properly load the drivers into the COS that are
required to utilize the parallel port. These settings will take effect
on the next reboot. You can force them to take effect immediately
by issuing each of the three commands at the command line.
Once the drivers are properly loaded (you can verify with the
“lsmod” command) you will be able to modify the VMX file of the
guest that needs to access the parallel port. Shut down the guest and
add the following lines to its VMX file:

parallel0.present = “true”
parallel0.fileName = “/dev/parport0”
parallel0.bidirectional = “true”
parallel0.startConnected = “true”

When the system is powered on, it will have proper access to the sys-
tem’s parallel port.

Configuring Serial Ports
Configuring the virtual machine to use a serial port is very similar to
configuring access to a parallel port. The major difference is the COS
is already properly configured to hand over access. With the proper
virtual machine powered off, add the following lines to its VMX file.

serial0.present = “true”
serial0.fileType = “device”
serial0.fileName = “/dev/ttyS0”
serial0.startConnected = “true”

When the machine is powered on, the newly mapped serial port will
be presented as COM1 to the guest operating system. In order to con-
figure a second serial port to a guest, use the same lines as above
while swapping out “serial0” with “serial1”. The second port will be
recognized as COM2 on the guest operating system.

Chapter 2. ESX Architectural Overview 63

Resource Sharing

The greatest benefit of using ESX over any other virtualization prod-
uct is its capability to dynamically share system resources. Since the
VMkernel runs on top of and controls the hardware, we’re given high
levels of flexibility to share system resources across multiple guests.
VMware also provides us with several ways to configure sharing of
resources giving us an extremely dynamic and flexible platform. Here
we’ll discuss the various methods that ESX has that allow us to max-
imize system utilization of the core four resources.

Processor

The VMkernel was designed to provide a high level of interaction
with the processors, allowing ESX to dynamically shift resources on
the fly (and invisibly) to running virtual machines. If you have three
machines that are running in an idle state on the same host as a doc-
ument processing server, ESX will temporarily shift resources to the
highly utilized server to accommodate its immediate needs. If a
process is spawned on a low utilization server, the necessary
resources are returned to the original VM to effectively run the new
application. Generally, a good rule of thumb is to allocate four virtu-
al processors per physical processor, although we’ve worked in some
environments where seeing 5-6 virtual processors per physical was
not out of the question based on the processing needs of the virtual-
ized machines. ESX does have a hard coded limit of 80 virtual
processors that may be assigned within any single host. With larger
systems such as 8 or 16-way hosts, this limit should be considered
during the design process. This can be broken down any number of
ways mixing single and dual processor virtual machines.

If further granularity is required, ESX provides several mechanisms
for manually adjusting processor allocation. This may be useful when
one system requires a higher priority than others, such as a database
server that is handling transactions for several different applications
on the same host.

64 VMware ESX Server

Processor Share Allocation
One of the easiest ways to modify the default processor allocations of
a virtual guest within ESX is to utilize shares. Shares are a mechanism
to allocate resources relative to all virtual machines running within a
specific host and are used in several instances. Using this method, you
can assign priority to specific guests when the host becomes limited
on processor cycles. As you add more virtual servers to a host, the
total number of shares goes up, and the percentage of total shares to
a particular guest goes down. A server that has 1000 shares will
receive twice the priority when assigning CPU cycles as a host with
500 shares. The downside to this method is that with each new vir-
tual guest created, the allocation to existing machines decreases,
which will slightly decrease their performance when the host system
is under a heavy load.

Figure 2.5

A very important fact to note is that share values do not come into
play within ESX until there is sufficient load on the system. Until all
available resources are utilized, the VMkernel is happy assigning as
many cycles to running guests as they request. Since one of the ben-
efits to ESX server is to maximize hardware, it’s unlikely that this will
ever be the case, but we’ve seen hosts that are never utilized to the

Chapter 2. ESX Architectural Overview 65

point that share allocations are required. This does not mean there is
no benefit to properly assigning priority, as a runaway guest still has
the potential to devour an entire host processor. This could be dev-
astating in a dual or even quad-processor configuration.

Specifying Min/Max Percentages
Within ESX you may assign a minimum and/or maximum percentage
value for the processing resources of a virtual machine. By setting the
minimum percentage, you’re telling VMware to never allow that par-
ticular virtual machine to drop below the assigned percent of a single
host processor. This is useful if a processor-intensive application
requires a bare minimum amount of resources to effectively run.
When assigning these values, you need to be extremely careful not to
over allocate resources. If you assign eight virtual machines to run
with a minimum of 30% in a dual processor server, you will only be
allowed to turn on six machines, as three servers per processor will
utilize 90% of the resources available on each.

The maximum value is the exact opposite as the minimum. It pro-
vides a hard value that a particular virtual machine may exceed. This
would be used in a situation in which an application is known for tak-
ing as many resources as the server can throw at it. By setting this
value, you tell ESX to allocate a maximum percentage of one CPU to
the virtual machine which would provide protection from impacting
other virtual machines running on the same host. If you’re using the
virtual SMP option you can assign a value of up to 200%—the com-
bination of the max percentage per assigned CPU. For example, a
value of 140% would mean that each CPU assigned to the virtual
machine may be utilized up to 70%.

Assigning a maximum value to an unstable guest operating system
would prevent it from consuming an entire host processor. For devel-
opment guests that are being used to test new code, this configura-
tion could prove to be vital in maintaining a stable environment,
especially if multiple developers have guests on the same physical
host. Work from one developer will not interfere with work from
another.

66 VMware ESX Server

Setting minimum or maximum processor values are independent of
one another. You can choose to set only a minimum value, a maxi-
mum value, or both values. Not setting any values allows VMware to
have full control over the processor allocation of your virtual
machines. While this is sufficient for small deployments with a low
number of guest operating systems, it may be crucial to manually
change these values as the number of guests increase on a host.

Combination of Min/Max and Share Allocation
When brief periods of contention are expected, one of the best ways
to configure the resource allocation of your guests is to use a combi-
nation of share values and Min/Max specifications. Before we dive
into this theory, we must recommend that very careful planning and
utilization analysis be performed before changing any values, as
improper settings may impact the integrity of the system. As an exam-
ple consider Figure 2.6:

Figure 2.6

Guest Minimum % Maximum % CPU Shares
1 15 35 2000
2 40 60 500
3 30 40 1000

Even though Guest 1 has a lower Minimum percentage, he will
receive priority of idle shares at a ratio of 4:1 over Guest 2 and 2:1
over Guest 3. This scenario is useful if Guest 1 has a greater benefit
than Guest 2 or 3 when additional idle shares are available. With
Guest 2 and 3 having a higher minimum CPU percentage, the avail-
able cycles will provide enhanced performance on Guest 1 during
times of stress.

Until there is processor contention, the systems will run at their max-
imum allocations. Once resources become limited, ESX will begin to
remove cycles from the guests with the lowest share values to best bal-
ance them based on the custom share configurations. Based on the
chart above, Guest 1 would be the last guest impacted in this scenario
due to it having the lowest maximum CPU percentage and highest
amount of shares.

Chapter 2. ESX Architectural Overview 67

We cannot stress enough that modifying these settings should only be
done after closely analyzing your system to determine the utilization
trends of each virtual machine. While we show an extremely simplis-
tic model with 3 virtual machines, this type of resource management
is extremely difficult as the number of guests increase. You should
have a solid idea of what impact modifying the settings for a single
virtual machine will have on the host and all remaining virtual
machines.

Affinity
In addition to setting processing thresholds using one of the previ-
ously described methods, you can also specify which physical proces-
sor(s) the virtual machine can use. This gives you complete control of
the virtual machine processor usage. Not only can you specify that a
virtual machine is guaranteed a minimum percentage of processor
usage and has a high level of priority in receiving additional alloca-
tions, you can also specify the exact processor that provides the
resources. Using this methodology one would have complete control
over how a production infrastructure reacts on a box, ensuring that
every virtual machine has the proper resources and does not step on
the toes of other critical applications.

Processor affinity is not limited to specifying a single processor. By
specifying a group of processors, you can tell ESX that it is allowed
to allocate resources only from the selected processors, leaving the
remaining processors inaccessible to the virtual machine. Application
servers such as Citrix servers can be pinned to different processors to
prevent kernel level calls from interfering with each other. Support
servers may then be pinned to the remaining processors and be
allowed to share those resources. This allows for a layer of isolation
for resource allocations. Typically as shares are granted and removed
from the entire pool of processors, every guest on the host is impact-
ed. By utilizing processor affinity, the support servers may dynami-
cally adjust their processing resources while the Citrix servers react as
if business is normal.

68 VMware ESX Server

Memory

Like processing resources, ESX has the capability to dynamically opti-
mize utilization by several techniques: transparent page sharing, bal-
looning and swapping. These various techniques allow memory of a
host to be over allocated, meaning that you can assign more memory
to virtual machines than the physical host contains. While we recom-
mend only using sharing and ballooning for production systems,
swapping can be utilized to further maximize development hosts and
allow more guests. Using the following techniques, it’s not uncom-
mon to achieve over allocation of 20-30% in a production environ-
ment and up to 100% in development.

Transparent Page Sharing
When a guest operating system is loaded, there are many pages in the
memory space that are static and that contain common pages found
on all similar operating systems. The same can be said about applica-
tions that run on the operating systems. The transparent page tables
provide a mechanism to share this space among several virtual oper-
ating systems. By mapping identical virtual page numbers back to
physical page numbers, guests that are using identical space in the
machine page space can share these resources. This lets the system
free up memory resources for over allocation without impacting any
guests. This is the only memory allocation method that takes place
without the host running at maximum memory use.

Idle Memory Tax
When memory share allocation takes effect, VMware provides a
mechanism to prevent virtual machines from hoarding memory it
may not be utilizing. Just because a particular server has four times
the memory share priority than another does not mean it requires it
at the time allocation takes place. VMware has a process that applies
an idle memory tax. This associates a higher “cost value” to unused
allocated shares than it does to memory that is actively used within a
virtual machine. This allows the virtual machine to release it for use
on other guests that may require it. If the virtual machine in question
has a need for the memory, it still has the proper authority to reclaim
it as it still has priority over the memory space. A default value of 75%
of idle memory may be reclaimed by the tax. This rate may be adjust-

Chapter 2. ESX Architectural Overview 69

ed by modifying the “MemIdleTax” advanced option. The polling
rate of the memory tax may also be adjusted by adjusting the
“MemSamplePeriod” advanced option which is set to 30 seconds by
default. These values are configured in the advanced options of the
ESX host.

Ballooning
VMware has provided functionality to let the guest operating system
decide what memory it wants to give back when the system is plagued
by high utilization. This is made possible by using a memory reclama-
tion process called “ballooning.” Ballooning consists of a vmmemctl
driver on the virtual operating system that communicates with the
vmkernel. What this driver does is emulate an increase or decrease in
memory pressure on the guest operating system and forces it to place
memory pages into its local swap file. This driver differs from the
VMware swap file method as it forces the operating system to deter-
mine what memory it wishes to page. Once the memory is paged
locally on the guest operating system, the free physical pages of mem-
ory may be reallocated to other guests. As the ESX hosts sees that
memory demand has been reduced, it will instruct vmmemctl to
“deflate” the balloon and reduce pressure on the guest OS to page
memory.

If the vmmemctl driver is not installed or running on the guest, the
standard VMware swap file method is utilized. The vmmemctl driv-
er is the preferred method of memory collection as the guest operat-
ing system gets to call its own shots. The amount of memory
reclaimed from a guest may be configured by modifying the
“sched.mem.maxmemctl” advanced option.

Paging
ESX has its own application swap file. This file is independent of
both the console operating system and page files setup within the vir-
tual guest operating systems. VMware recommends that this swap file
capacity be set to the total amount of memory that will be allocated
to all virtual machines. This allows up to a 100% over allocation of
memory resources using paging. This is not recommended though, as
paging large amounts of data requires additional CPU resources and
tends to have a negative impact on the host. When an ESX system

70 VMware ESX Server

becomes over allocated, it takes guest memory that is infrequently
used and stores it in the swap file. If VMware requires the resources,
it retrieves the memory from the swap space and brings it back into
local memory. It may be useful in the development environment,
where paging will have less of an impact on the solution, but should
be avoided at all costs on a production host.

Network

Each virtual machine configured in an ESX environment shares the
combined bandwidth of a virtual switch. In its default configuration,
ESX provides limited load-balancing across each physical connection
of a virtual switch. If there is only one physical adapter that makes up
a virtual switch then you won’t gain any benefit from load balancing.
The reason we called VMware’s default load balancing mechanism
“limited” is because of the way it actually functions. We’ll go into
more detail in Chapter 4, but will briefly summarize here: Each vir-
tual NIC that’s assigned to a virtual machine is assigned a virtual
MAC address. When a virtual NIC is activated on the guest, the
VMkernel ARPs the virtual MAC address for that adapter down one
of the physical paths of the virtual switch. The algorithm used for this
does not take network load into consideration so it is possible that
one path of a virtual switch may become heavily loaded. This behav-
ior limits the sharing benefit gained from load balancing.

ESX provides a single method for throttling network bandwidth.
While this may seem limited, the tool used is actually quite powerful.
VMware provides the nfshaper module, which allows the VMkernel
to control the outgoing bandwidth on a per guest basis. This module
only limits outgoing traffic since there is no way (at the host level) to
configure how much bandwidth is received by the system. This mod-
ule is not enabled on a global basis, so must be configured for each
virtual machine that you wish to throttle. It’s extremely useful if there
are a limited number of physical adapters in a system configured with
low bandwidth uplinks. A server that’s network intensive that will uti-
lize all resources given to it can be limited to allow multiple guests to
have access to the networking resources they need.

Chapter 2. ESX Architectural Overview 71

The nfshaper module can be configured by utilizing the MUI. After
logging into the MUI and opening the properties for the target guest,
navigate to the “Network” tab. The machine may be in any power
state to perform this action. In the right column, the “Edit” button
will be active. Clicking on it will present several options.

• Enable Traffic Shaping. This one is pretty much a no-brainer.
This enables and disables the nfshaper module.

• Average Bandwidth. This setting is the sustained throughput that
you would like the nfshaper module to maintain for the guest.
Remember, this is only for outbound bandwidth. There are
no controls to limit how much information a guest receives.

• Peak Bandwidth. This is the maximum amount of throughput
allowed by the nfshaper module. A guest may hit its peak
bandwidth to assist in properly processing all data that needs
to be sent. Peak bandwidth is often configured to double the
value of average bandwidth. This allows the system to prop-
erly send all packets when the system comes under load.

• Burst Size. The amount of data that the system may send while
hitting its peak bandwidth. If the burst amount is hit, the
nfshaper driver will drop below the peak bandwidth until the
next burst cycle is available. The burst size should be config-
ured as a byte value of 15% of the average bandwidth. This
should be more than enough data to properly fill the peak
bandwidth rate.

If the application or guest operating system being filtered starts to
display errors such as dropped connections or failed ICMP requests,
you should consider increasing these values accordingly.

Disk

Like processor and memory resources, the VMkernel applies a share-
based allocation policy to disk access. (Note that we’re talking about
disk access here, not disk space usage.) The way ESX determines disk
access resources is by tracking what VMware calls “consumption
units.” Each SCSI command issued to a disk resource uses one con-
sumption unit. Depending on the amount of data transferred in the

72 VMware ESX Server

request, additional consumption units are allocated to the guest.
When disk resources become stressed on the host system, the share
values will determine how many consumption units a guest can uti-
lizes at a given time. After share allocation kicks in, it acts no differ-
ently that it does for CPU or memory resources, so we don’t need to
discuss it again. When choosing the default settings provided by
VMware, the following values are used: Low = 500, Normal = 1000,
and High = 2000. There are several options available that we’ll dis-
cuss in Chapter 4 that maximize the utilization of disk resources and
yield the best performance available.

Summary

If you managed to get this far then you have more than enough infor-
mation to build and configure your own ESX server. By understand-
ing the various components of ESX and how they operate, you’re
well on your way to managing an ESX host. In the next chapter we’ll
take this information and apply it to the configuration of your first
ESX server. By knowing the information presented in this chapter
you’ll have a good understanding of the various options presented to
you during the installation process and why we make the recommen-
dations that we do. Whether you’re planning an environment of 2
hosts or 50, the information in this chapter will act as a reference
baseline for the rest of this book.

Chapter 2. ESX Architectural Overview 73

