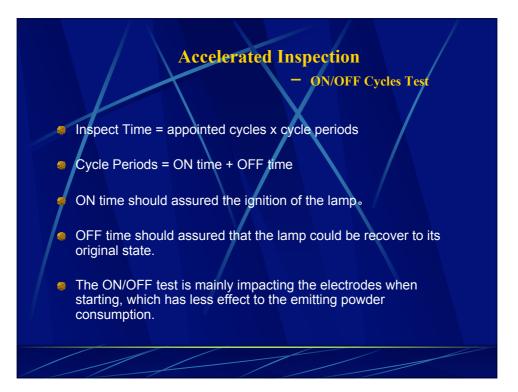
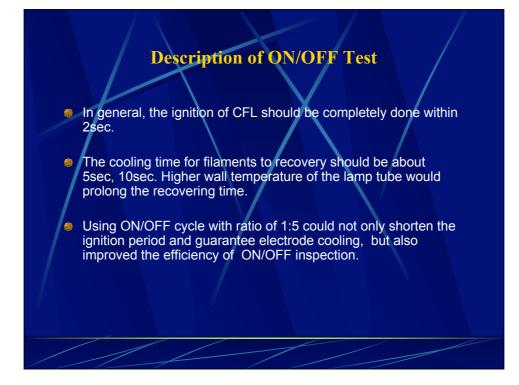


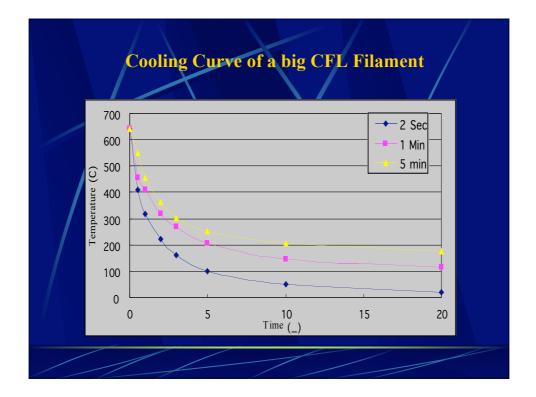
The problems of existing inspections methods for CFL reliability & Lumen efficiency performance The existing life test methods are time consuming, and are expensive; With the improvement of CFL products, the measurements have become more difficult. The uncertainty of relationship between ON/OFF cycle of lamp life.

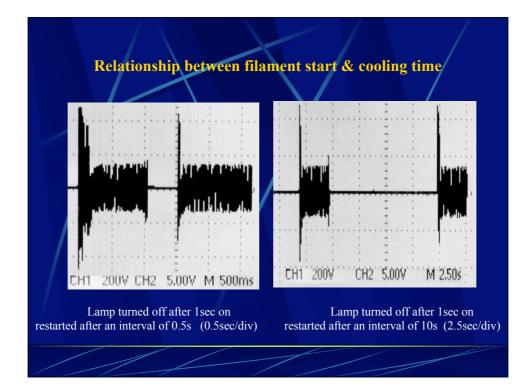
- Light depreciation takes a long time to determine. Inaccurate inspection methods & the standard maybe easy to conclude the wrong judgment,
- There is a lack of the standard to inspect the life reliability of CFL, whose life is over 10,000hrs.

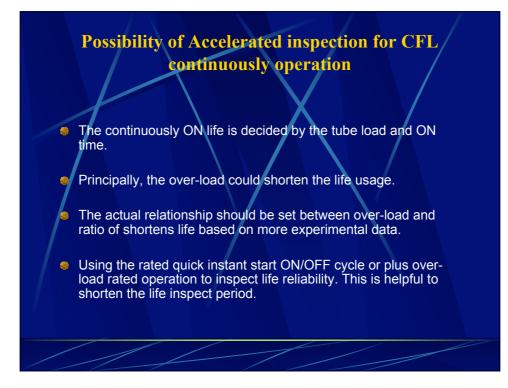
	Performance				
	characteristics	Energy Star	EST	ELI	GB/T17263
	Average rated	6000h, 10000h	10000h, 5000h	6000h	5000h
	lamp life	IEC 60969	IEC 60969	IEC 60969	IEC 60969
	Lumen maintenance	1000h life _≥ 90% 40% of model's rated life≥80%	L 2000h ₂ 88% S 5000h ₂ 75% N 2000h ₂ 80%	2000h <u>≥</u> 80%	2000h _≥ 80%
	Starting time	$\leq 1.0 \text{ sec}$	$\leq 2 \text{sec}$	$\leq 1.5 \text{sec}$	≤ 4.0 sec
	Rapid cycle stress test	5min on, 5min off	0.5min on, 4.5min		10-15min off,
		1	off until 50% sample failure. ≥ 2 times of life	5min on; 4.5min off until 50% sample failure	10 min on

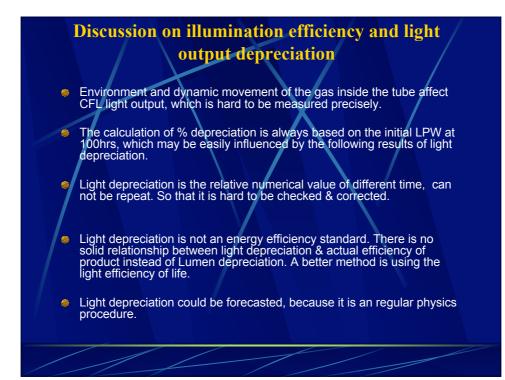


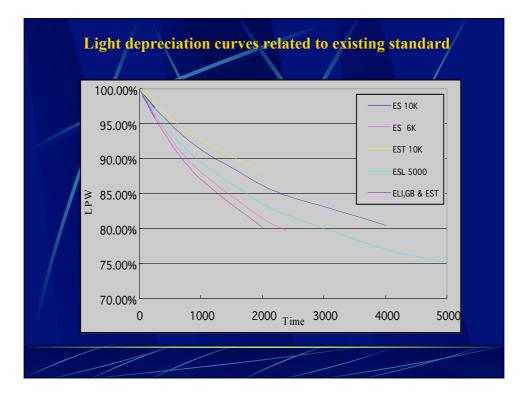


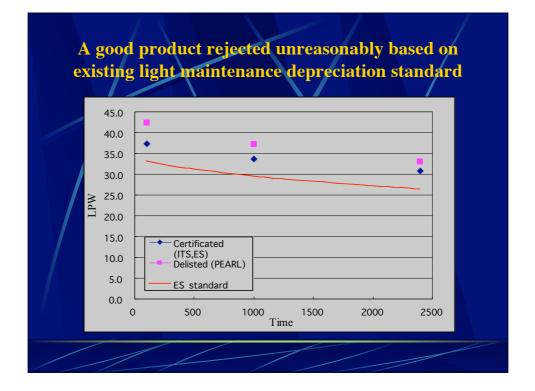

ne break	ofre	gular l	ife tes	t prod	cedure	•
Rated life	On	Off	Cice	Total On	TotalOff	Test Time
Hrs	Min	Min		Hrs	Hrs	Day
10,000	- 180	180 20	3,000	9,000	1,000	417
6,000		20	1,800	5,400	600	250
10,000	> 10	10/15	N/A			417
6,000	>10	10713	N/A			250
	Rated life Hrs 10,000 6,000 10,000	Rated life On Hrs Min 10,000 180 6,000 >10	Rated life On Off Hrs Min Min 10,000 180 20 6,000 10,000 10/15	Rated life On Off Cicle Hrs Min Min 10,000 180 20 3,000 6,000 180 20 1,800 10,000 >10 10/15 N/A	Rated life On Off Cicle Total On Hrs Min Min His 10,000 180 20 3,000 9,000 6,000 180 20 1,800 5,400 10,000 >10 10/15 N/A Interview	Min Min His His His 10,000 180 20 $3,000$ $9,000$ $1,000$ $6,000$ 180 20 $1,800$ $5,400$ 600 $10,000$ >10 $10/15$ N/A $$

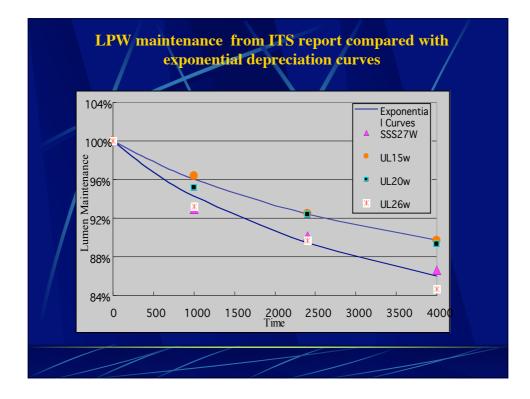

The inspection were composed by two parts: ON//OFF cycles & continuously ON


	Tim	e Break	of dif	feren	t circ	le test	proc	edur	e /	
		Rated life	On	Off	Circles	Total On	TotalOff	Test Time	Equivalence*	
		Hrs	Min	Min		Hrs	Hrs	Day	Hrs/circle	
	ГО	10,000	5	5	5,000	418	418	35	4.3	
	Energy Star	6,000	X	5	3,000	250	250	20.4	4.3	
	ELL& ET	10,000	0.5	4.5	20,000	166	1500	69.5	1.8	
		6,000	0.5	4.J	12,000	100	900	40	1.8	
	Suggestion		Sec	Sec						
	Pre-heat	10,000	5	25	10,000	13.9	69.5	3.5	1.6	
		6,000	5	23	6,000	8.3	41.7	2	1.6	
	Rapid Start	10,000	2	8	10,000	5.6	22.2	1	1.6	
		6,000			6,000	3.3	13.3	0.5	1.6	
	* Functional equivalence: Each circle added is equivalent to hrs operation while switching test is compared with									
regular life test.										







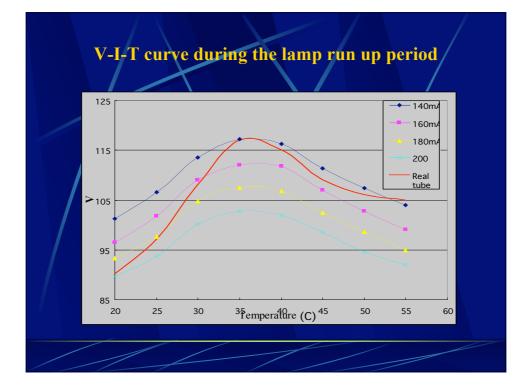

				Circle (On//Off)		
Sample	2//10	5// 25	30 // 90	EST_ 30//270	ES_ 300//300	_ ES_ 300//300
1#	11134	9569	8898	11702	5700	
2#	13208	11549	9983	13186	12150	12150
3#	9895	14403	13025	8764	11386	11386
4#	9764	12309	14027	10059	10356	10356
5#	10052	10567	11750	12227	9630	9630
	10811	11679	11537	11188	9844*	10881**
Deviation	1446	1839	2112	1767	2509	1111
Circle Time with each 10000hrs (Day)	1.3	3.5	13.8	34.7	69.4	
*With one abnormal record lamp						

LPW reducing by the life time

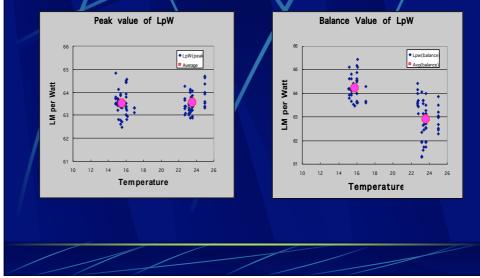
The actual LPW depreciation was coincides with theorical depreciation inference.

LPW depreciation could be forecasted according to the theorical curves.

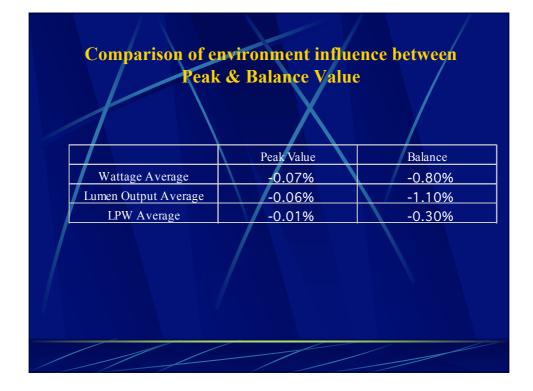
The forecast ability will depend on the accuracy and errors of LPW measurement.

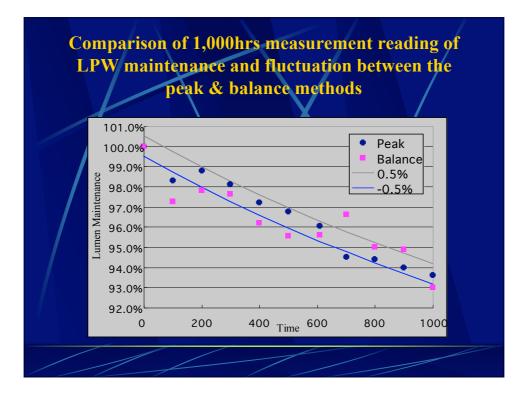

If the accuracy could be controlled within <u>+0.5%</u>, the difference of existing standards can be distinguished,, and after 1000hrs measurement.

ES 20K 96.30% 93.50% EST/L 10K 95.80% 92.70% 88% ES 10K 95.10% 91.40% 80%	80%
ES 10K 95.10% 91.40% 809	
	é l
EST/S 5000 93.90% 89.50%	75%
ES 6K 93.20% 88.30% 80%	
ELI,GB & EST/N 92.40% 87.10% 80%	


Lumen maintenance in first 1000hrs based on existing standard

Improvement of LPW measurement


- Light output of CFL fluctuates and is unstable, it's affected by many factors..
- The accuracy of measurements is not only decided by the accuracy of the equipment, but also depends on the environment condition control.
 - The present methods try to control the products under the stable condition.
- CFL's light output has a stable & inherent peak. Measure the peak value could avoid the influence of environment, and have higher repeatability.
- The forecast of light depreciation should be based on the LPW measurement.



The data distribution of the multi-measurement reading from same sample group under two different controlled temperature conditions

Con		Reading Accurac Id Balance Value	
1			of the 180 readings.
	Wattage	Peak Value 0.80%	Balance 1.70%
/E	Lumen Output LPW	0.40%	2.40% 1.20%

Conclusion

- Time consuming, high in cost, impracticable are the disadvantages of existing CFL inspection. A more effective method should be sought.
- It could short the procedure of inspection, if we use the improved accelerated rapid inspection & over-load continuously ON method to test life reliability instead.
 - The existing LPW measurement is hard to be precise because of the environment, but Peak-Value could get the better results.
- The Life Efficiency is more reasonable than the existing method of LPW depreciation calculation. It could avoid the initial test errors.
- Using the methods of index curve and following initial measurement with higher accuracy could forecast the light depreciation and improve the efficiency.

