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Abstract

Single walled carbon nanotubes as all-carbon molecules of tubular form exemplify modern nanometre scale material
structures, where the number of atoms range from less than a million up to few millions. Such system are quite ideal for
computational studies like Molecular Dynamics simulations because the studies can be done at the realistic limit, rendering
them in a way predictive. This point of view we try to explore through simulations of novel ring-like carbon nanotubes, observed
experimentally. Whether these structures are toroidal or coiled is under debate. To this question we seek insight by studying the
structure, the minimum energy configuration, and the thermal stability of large toroidal nanotubes of(n,n)- and(n,0)-helicity
using large scale Molecular Dynamics simulations based on the interaction potential by Brenner. The system sizes of the studied
tori range one and half orders of magnitude, in diameter from about 22 nm up to 700 nm, where the latter corresponds to the
sizes of experimentally observed ring-like structures. Our simulations indicate that the toroidal form influences strongly the
structure of the tubes for small tori while for the larger tori the structural changes are extremely small. We also find that there
exists a critical tube radius dependent buckling radius at which the torus buckles. This was also found to be helicity dependent.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recent development of microsystems has shrank
them in many cases to nanometre scale showing in
some cases novel material features. Over the past
decade such a development is exemplified by the dis-
covery [1] and then the vigorous research activity on
carbon nanotubes. These tubular all-carbon molecules
in their single walled form have the tube diameter
ranging from as small as 0.4 nm to typically of a
few nanometres and in length up to several microm-
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eters. Thus the number of atoms these systems typ-
ically include ranges from less than a million up to
few millions, which renders these systems quite ideal
for studying some of their structural properties accu-
rately with computational techniques like Molecular
Dynamics simulation. Thus these studies can be done
at therealistic limit and their accuracy depends on how
well the interactions between atoms are described and
on how long the simulations could be run. The former
is dependent on the development of atomistic poten-
tials and the latter on the development of computers
and especially on computing methods and algorithms.
These developments together with the fact that various
modern material systems are shrinking to nanometre
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scale are bound to make computational studies more
and morepredictive. Although it seems that such de-
velopment would let us free from finite size consid-
erations in the study of nanoscale material systems it
does not do so from any other considerations of statis-
tical physics.

With these in mind we focus here on studying some
carbon nanotube structures. Although many of them
seem to remain as pure speculation, Liu [2] and Mar-
tel et al. [3,4] have reported single walled carbon nan-
otubes and ropes of them forming ring-like structures,
some of which suspected to be toroidal. Such toroidal
structures are very interesting, for example because a
nanotorus system has been theoretically shown to pos-
sess unusual electronic and magnetic properties like
serving as a prototype for quantum wire ring [5,6].

Apart from some recent experimental studies of
nanotori [2–4,7] very little is known about their struc-
ture, for example, how the torus curvature influences
its local structure. In order to address this question
we have performed large scale molecular dynamics
simulations, which we also expect to give some in-
sight to the structure of carbon nanotubes under uni-
form bending strain. In the previous numerical stud-
ies the systems have consisted of a few hundred, or
at most a few thousand atoms [5,8–13]. In these very
small systems the curvature of the structure is induced
by locally adding pentagons and heptagons into the
structure [8–12], or by combining nanotubes of dif-
ferent helicity [5,13]. However, in the experimental
studies the diameters of the observed ring-like struc-
tures seemed to be much larger, typically between 300
and 500 nm [2,7] and 600 and 800 nm [3,4]. The-
oretically this issue of torus diameter has been ad-
dressed by Meunier [6] from the elasticity theory point
of view, suggesting that the curvature in large tori
is more likely due to uniform bending than due to
pentagon–heptagondefects. Apart from very small tori
with (5,5)-, (8,8)-, and(10,10)-helicity and diame-
ter less than 60 nm studied by Han [14], to our knowl-
edge nanotori of sizes equivalent to those experimen-
tally observed have not been studied before with atom-
istic scale simulations. For this reason, and in order to
shed more light to curvature generating mechanisms
in nanotorus structures we have conducted large scale
molecular dynamics simulations in systems with the
number of atoms equivalent to the numbers in the ex-
perimentally observed structures.

This paper is organized as follows. Next we briefly
introduce the molecular dynamics simulation method,
with the choice of atomistic potential. With this model
we first investigate minimum energy configurations of
relaxed nanotube and nanotorus structures. Then we
look in detail at the deformation in the cross section of
a nanotorus as a function of the torus diameter. This
is followed by a study of thermal stability of various
torus structures. Finally, we draw conclusions.

2. Simulation method

In this work we have employed a classical molec-
ular dynamics method, where the atomic interactions
are described by the potential energy function of the
form of a reactive empirical bond-order hydro-carbon
potential formulated by Brenner [15]. This model was
chosen because it has provided a good accuracy in the
simulation of various carbon structures and because
simulations with large system sizes are feasible with
it. In comparison to another much used empirical po-
tential energy model, namely Tersoff’s model [16],
the chosen model avoids the overbinding of radicals
of which Tersoff’s model suffers [15]. It should be
noted that this formulation was originally developed
for the study of chemical vapor deposition of diamond,
but it has proven to be successful also in describing
toroidal [10] and straight carbon nanotubes [18]. It is
noted that Brenner’s potential also reproduces the ther-
mal properties of carbon accurately [19].

In this work we will use Brenner’s first parameter-
ization presented in Ref. [15], which has been found
to provide a good description of bond-lengths but on
the other hand yields too small stretching force con-
stants. The second parameterization also provided by
Brenner in Ref. [15] reproduces force constants that
are in better agreement with experiment but with bond
lengths seemingly too long. Since in the present study
the torus structure is expected to be very little distorted
for large tori, the first parameterization has been used.
Because of the choice of the potential parameteriza-
tion, the observed structural distortions might be en-
hanced slightly.

In order to find a relaxed minimum energy configu-
ration for the tori, a reasonably fast relaxation method
is required in the computations. For this we have cho-
sen a gradient cooling method, in which the velocity
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components of each particle are manipulated depend-
ing on the components of the gradient of the potential,
the particle acceleration. In this method the directions
of the components of the acceleration and the veloc-
ity of the particle are checked at each time step. If the
components are in the same direction, the velocities
are left intact but if they are in the opposite directions,
the velocity is scaled down by a factorα. In prac-
tice, for each component a check whethervi · ai < 0
is true is performed. The closer the value ofα is to
zero the faster the cooling process is but if the cooling
is too fast, the particles get easily stuck into a local en-
ergy minimum. In the simulations we choseα = 0.8
based on test runs and as a compromise between con-
vergence speed and accuracy.

3. Minimum energy configuration

First we remind that in the characterization of
nanotube structures the(n,m)-indexing is generally
used. In this the circumference of a cut-open and
unrolled tube is expressed by a vector that is a sum of
integer multiples of two base vectors of a hexagonal
2D-lattice, i.e. �C = n�a1 + m�a2, for more details see
Ref. [17]. In our study the initial atomic configurations
of nanotubes were obtained by creating the planar
hexagonal carbon atom network corresponding to
an (n,m)-nanotube cut open axially. The nearest
neighbor distances between carbon atoms were set to
that of graphite, 1.421 Å. This plane was then mapped
onto a 3D-cylindrical surface to form the tube and
from this configuration the tube was further mapped
to a torus as discussed next.

According to Meunier [6] and Han [14] the torus
configuration in which strain is uniformly distributed
is more stable for large toroidal structures than the
configuration in which strain is localized to defects.
This is supported by the experimental observations
of Liu et al. [2] and Martel et al. [3], because the
size of the observed rings is restricted to a well
defined diameter range—the ring formation appears
to be a thermally controlled process. Therefore, for
our simulations we have chosen to generate the initial
toroidal configurations by mapping the straight tube
configuration in space so that the tube ends come next
to each other to form a closed torus. The initial torus
size is chosen such that the average of the inner and

outer diameters of the torus is the length of the tube
forming the torus, if unbent. This quantity is also used
to describe the torus size, i.e. the average of the inner
and outer torus radii, or, in other words, the average
particle distance from the center of mass of the torus.

Since in the study of the torus minimum energy
configuration we will compare the toroidal nanotubes
with relaxed straight tubes, some observations of
the potential energy model of the unbent tubes will
be discussed first. The minimum energy values of
straight tubes were obtained by relaxing the initial
tubular configuration both axially and radially while
periodic boundary conditions were employed in the
axial direction. The relaxation gives a difference of
less than 0.2% for the relaxed tube length and for the
initial regular hexagon based length. The change in
the axial bond length is found to be largest for the
tubes small in diameter. On the other hand the helicity
seems to influence the sign of the change: relaxed
configurations of the(n,n)-tubes are a little longer
while the configurations of the(n,0)-tubes are a little
shorter than the initial configurations. The difference
is, however, very small. The change in the radial
dimension from the regular hexagonal configuration
is somewhat larger: for the smallest simulated tubes,
that is,(9,0)- and(5,5)-tubes, the relaxed diameter is
approximately 1% larger than the initial one and the
change decreases to approximately 0.1% for the large
tubes. This can be understood on the basis that a large
curvature changes more the bond lengths from the
regular hexagonal configuration of a graphene plane.

The toroidal structures that have been studied in
this work are of(n,n)- and (n,0)-helicity and have
diameters of approximately 22, 220, and 700 nm,
where the largest size corresponds to what has been
found in the experimental studies [2–4,7]. These torus
sizes correspond to tube lengths of 0.07, 0.7, and
2.2 µm and the number of atoms in the simulations
ranges from 5680 to 412960. For the study of the
torus structure and its minimum energy configuration
the toroidal initial configurations were relaxed using
the gradient cooling method. In the beginning of
the simulations the velocities of the particles were
set random both in magnitude and in direction, in
such a way that the distribution obeyed the Maxwell–
Boltzmann distribution. The initial temperature of the
system was set to 100 K.
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In Fig. 1 we present the potential energy values per
particle for the relaxed toroidal structures. The figure
shows that there is very little helicity dependence in
the bonding energy of the tori. The tube diameters
have been defined by determining the center of mass
axis of an unbent relaxed tube and calculating the
average distance of the mass points representing the
atoms to the axis. In other words, if the values are
compared with experimental ones, the thickness of the
nanotube wall must be added.

Fig. 1. Potential energy curve of relaxed toroidal structures as
function of tube diameter for different torus diametersD. At about
1.35 nm tube diameter there appears a small kink for tori 22 nm in
diameter.

A small kink can be distinguished in Fig. 1 in the
potential energy for the tori with a diameter of 22 nm.
This kink in the potential energies corresponds to a
structural change in the minimum energy configura-
tion of the torus due to the fact of becoming buck-
led, as demonstrated in Fig. 2. In this set of figures
the length of the tube forming the torus is unchanged,
i.e. 70 nm, but the tube radius changes increasing from
Fig. 2(a) to Fig. 2(d) and from Fig. 2(e) to Fig. 2(h).
The observed buckling pattern, meaning the number
and the size of the buckles, depends on both the torus
and the tube radius but also on the initial velocity dis-
tribution and on the cooling method. This can be ob-
served close to the buckling radius, where the struc-
tures of Fig. 2 seem to exhibit some periodicity. Using
a different seed value for the random number genera-
tor in setting up the initial velocity distribution of the
atoms or starting from a different initial temperature
results in a different buckling pattern. The configura-
tions shown in Fig. 2 correspond to only one energy
minimum amongst many minima close to each other
in energy.

The critical buckling diameter of a torus was
studied also by varying the tube length, i.e. torus
diameter, instead of the tube diameter. Fig. 3 shows the
results. Also in this case there is a kink in the potential
energy at the critical buckling radius. The results
are in excellent agreement with the ones reported by
Han [14]. In our calculations an(8,8)-torus seemed to

Fig. 2. Minimum energy configurations of nanotori 22 nm in diameter for different tube diametersd . (a) (17,0)-tube, d = 1.33517 nm;
(b) (18,0), 1.41328 nm; (c)(19,0), 1.49130 nm; (d)(20,0), 1.56938 nm; (e)(8,8), 1.08789 nm; (f)(9,9), 1.22300 nm; (g)(10,10),
1.35828 nm; (h)(11,11), 1.49344 nm. When the tube diameterd increases a structural change is observed. The onset of buckling appears
as a small kink in the potential energy curve of Fig. 1.
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buckle at a diameter of approximately 13 nm, which
is to be compared with the buckling diameter value
being between 8 and 16 nm reported by Han. It should
also be noted that in our studies the tubes were chosen
so that the radius of an(n,0)- and the corresponding
(n,n)-tube match as well as possible. This enables us
to see if helicity influences the buckling. The results
indicate that the critical buckling diameter is smaller
for the (n,n)-torus than for the(n,0)-torus with the
same tube diameter.

In order to find out how the strain is distributed in
the buckled torus we have computed the potential en-
ergy distribution. As expected the strain was found to

Fig. 3. Critical buckling diameter of(6,6)-, (8,8)-, (11,11)-,
(10,0)-, (14,0)-, and(19,0)-tori. The buckling radius is marked by
a vertical dotted line marked by the symbol representing the tube.

be localized to the folding corners, which raises the
question, whether the hexagonal bonding configura-
tion is still maintained or whether bond reorganization
has taken place. Fig. 4 shows samples of a(10,0)-
torus and an(8,8)-torus with buckling. In these sam-
ples it is seen that the hexagonal bonding configuration
is deformed but no actual bond breakage has occurred.
However, if the torus size is decreased, eventually
bond breakages will take place as the strain becomes
larger. Previous studies have indicated that it is ener-
getically favorable for the curvature in tori this small to
be induced by creating pentagons and heptagons [14].
Then a question arises why have we not observed them
in our simulations. The answer lies in the formation
energy barrier of defects such that there is not enough
kinetic energy for the defects to be formed as the initial
configuration does not contain them. We have looked
into this by exposing a torus to a heat bath and found
that thermal energy enables bond reorganization and
strain relaxing defect formation, especially combina-
tions of pentagon–heptagon pairs. This issue we will
investigate in more detail in the future.

4. Cross section deformation

Now we will discuss how the bending of a tube to a
toroidal form deforms the tubular cross-section. In the
study by Han [14] the quantitative behavior of(5,5)-,
(8,8)-, and(10,10)-tori of a diameter less than 60 nm
was discussed. There the bending strain was found

Fig. 4. Sample bends in buckled nanotori of a(10,0)-torus with 1560 atoms ((a)–(c), side, inside and outside views, respectively) and similarly
an (8,8)-torus with 4608 atoms ((d)–(f)). The hexagonal bonding configuration is deformed but otherwise intact. The images of the(10,0)-
and the(8,8)-tube sections are not in the same scale because of different diameters.
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to deform the tubular cross-section to an ellipsoidal
shape with the major axis perpendicular to the plane
of the torus. It was also reported that if the strain was
large enough, the tube was found to buckle and for
still larger strain values bond breakages were found
to occur. Here we will discuss these issues in more
detail and for a larger variety of tubes of both(n,n)-
and(n,0)-helicity. We have studied torus deformation
under various bending conditions systematically as a
function of the tube diameter for tori of three different
diameters: 22, 220, and 700 nm.

We have calculated the amount of cross-sectional
deformation by first defining the center of mass for
the relaxed torus. To do this the torus was divided into
N equal sectors, where the value ofN was defined
so that each sector consisted of a little over one unit
cell of an unbent tube. The amount of atoms in a
unit cell for tubes of both(n,n)- and (n,0)-helicity
is 4n [17]. Therefore values ofN = 540,N = 5000,
and N = 16000 were used for the(n,n)-tubes and
correspondinglyN = 270,N = 2500, andN = 8000
for the (n,0)-tubes. In each sector the atom with the
largest and the atom with the smallest radial distance
from the center of mass were searched, to represent
the outer and the inner radius of the torus in that
sector, respectively. Their difference represents the
radial cross section diameter. The non-radial cross
section diameter in each sector was defined as the
distance between the atoms that were furthest from
the plane of the torus. Then the average over the
sectors was used as the characteristic value for the
whole torus. This method is expected to give a good
estimate for the diameter because of the regular carbon
nanotube structure and because we have not seen any
bond breakages or stray particles in the simulations.

As a further analysis of this method we calculated
the standard deviations for the radial and non-radial
cross section diameters over the different sectors of
the tori to serve as a measure of how symmetrical the
atomic configurations are and how well the method is
able to define the diameters. We also varied the values
of N and observed that the aboveN values were seen
to be justified because the standard deviation for them
was minimized. The structures, except for the buckled
configurations of Fig. 2, are highly symmetrical and
standard deviation of the defined diameters is very
small, of the order 10−2.

Fig. 5. Relative tubular cross section deformation of nanotubes bent
into a torus 22 nm in diameter.

In Fig. 5 we present the relative tubular cross
section diameter values for the tori 22 nm in diameter.
This figure shows that the tubular cross section can
deform as much as 20% before buckling occurs.
The helicity of the tube structure was not found to
influence the cross sectional deformation significantly.
The analysis of this deformation in the case of large
tori showed that it is very small, in fact less than 0.1%
for the tori with diameter of 220 nm and seem to
vanishes completely for the tori 700 nm in diameter.

5. Thermal stability

Now we move on to look at the thermal stability
of these nanotori. This we have done quite coarsely
by simulating the time development of the minimum
energy configurations of atoms of the torus at a
finite temperature. The initial velocities of the atoms
were set at random following the Maxwell–Boltzmann
distribution. The average system temperature was first
kept at the chosen value for 300 fs, that is, 300
simulation time steps, by scaling the atomic velocities
after each time step. After that the system was let to
evolve free of constraints for 3000 fs.

Using this approach we have observed that al-
though the interaction model used in this work re-
produces thermal properties of carbon nanotubes rela-
tively well [19], it predicts a somewhat higher melting
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Fig. 6. Two(8,8)-tori with different diameters simulated for 3000 fs at different temperatures. (a)D = 22 nm,T = 1500 K; (b)D = 220 nm,
T = 5500 K. In (a) bond breakages can be seen but the structure remains toroidal. If the temperature is raised more, the toroidal structure breaks
apart. In (b) bond breakages have evolved further and a part of the torus has already dissolved.

temperature than observed experimentally. Similar ob-
servations are reported also in Ref. [19]. The melting
temperatures for the large tori turned out to be higher
than experimentally observed for bulk graphite even
though the extra strain due to curvature should de-
crease the melting temperature. In addition we have
found that the tube diameter influences the melting
temperature much more than the torus diameter would
do. For the tori 22 nm in diameter and made of nan-
otubes very small in diameter, the toroidal form main-
tains up to the temperature of 1000 K, whereas the tori
formed of larger tubes with tube diameters ranging be-
tween 1.1 and 1.6 nm hold up to almost the tempera-
tures of the larger tori. Despite the fact that the poten-
tial energy curves of the tori show a downward kink at
the buckling radius, the buckled tori are thermally less
stable than the ones with an elliptical cross section.
This is due to the local, unevenly distributed buck-
ling strain. Large tori hold their form upto the simu-
lation temperature of approximately 5000 K depend-
ing on the tube radius. There does not seem to be any
significant difference between the results of the tori
220 nm in diameter and of the tori 700 nm in diame-
ter. In Fig. 6 we show two images of tori simulated at
high temperatures. The given temperature values are
averages, as can be seen in Fig. 6(b), where the tem-
perature is distributed unevenly and is higher in the
dissolved section than in the other parts of the torus.

In these finite temperature simulations we have also
observed that there appears a some sort of strong
collective motion behaviour in the tori. This behavior
of the torus circumference resembles of a snake that

has eaten something too large—thinner and larger
lumps seem to propagate along the circumference.
When these lumps become too large, bond breakages
start to occur and the torus start to evaporate. Such
a collective motion behavior is either an inherent
property of carbon nanotori or it is a feature arising
from the use of the minimum energy configuration as
the initial configuration. In the latter case the coupling
with a heat bath could cause thermal expansion in the
structure and induce collective motion.

6. Conclusions

Large toroidal carbon nanotubes were studied using
molecular dynamics simulations. Our studies indicate
that the experimentally observed rings are thermally
stable and that the curvature does not cause significant
structural changes in the tori with the size similar
to those observed experimentally [2–4,7]. For tori
significantly smaller than that the cross section was
found to deform elliptically, before reaching a critical
radius, below which, the torus was found to buckle.
This buckling does not change the hexagonal bonding
configuration although the bonding angles change to
account for the buckles.

Nanotori of(n,n)-helicity seem to have a smaller
buckling radius than the corresponding tori of(n,0)-
helicity. This may have important consequences from
the point of view of applications. Buckling induces
more drastic changes in the conductivity properties
than an elliptical deformation and therefore a differ-
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ence in the buckling radius is significant for those elec-
tronics applications in which uniform bending strain
can be expected.

These results and the discussion can be extended to
bent nanotubes, because such structures could be un-
der similar local strain conditions as the toroidal struc-
tures. Experimental observations of nanotube bends
[20,21] seem to show similar buckling behavior as we
report here.
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