=0

HOW TO DESIGN USABLE SYSTEMS
(EXCERPT)

John D. Gould

P. O. Box 704
IBM Research Center -- Hawthorne
Yorktown Heights, New York 10598

ABSTRACT

This paper describes a process of system design that, if you follow it, will help you design
good computer systems for people -- systems that are casy to learn, easy to use, contain the right
functions, and are liked. There are four key points in this usability design process: early focus on
users; empirical measurement; iterative design; and integrated design, where all aspects of usability
evolve together from the start. This paper focuses upon 20-30 informal methods to carry out
these four points. Many of the methods can be used without extensive training in human factors.
This is important because usability is so broad and so deep that there is not enough trained
human factors people to work on it. Use of these methods is contrasted with other approaches
frequently discussed today, including user interface standards, handbooks and guidelines, and

formal models.

INTRODUCTION

The focus of this paper is on designing
computer systems. It is aimed at system design-
ers who want to know more about how to
design uscful, usable, desirable computer systems
-- ones that people can casily learn, that contain
the functions that allow people to do the things
they want to do, and that are well liked.
Throughout, “good computer systems” mean
ones with these characteristics.

The intended audicnce, or users, of this paper
are expected to be (1) human factors people
involved, or getting involved, in system design;
(2) experimental psychologists and other discip-
line-oriented people who may want to learn how
to do behavioral system design work; and (3)
system designers who are not trained in human
factors but who are concerned about usability of
systems. This latter group is particularly impor-
tant since it is impractical for trained human
factors people to work on all aspects of usability.
There are not enough of them. Usability is too
broad. And, besides, as a result of reading this
paper, systems people can leamn how usability
people ought to work.

Reprinted, with some additions, from Martin
Helander (Ed.), Handbook of Human-Computer
Interaction. North-Holland:™ Elsevicr, 1988, pp
757-789.

“There is no comprehensive and generally
accepted manual on how to design good human
factors into computer systems,” wrote Shackel
(1984). While not comprehensive, we hope this
paper will at least be useful. It is intended to be
tutorial, to identify and explain the main things
you must do to design a good system. [t
provides indications of where to go for more
information, and what you can expect to find
when you get there. It is not a critical review of
the literature, nor an examination of small tech-
nical differences. It brings together material
from diverse sonrces that previously may have
existed fairly independently of each other.

Overview

In this Introduction, we first note that usabil-
ity consists of many pieces. Second, we briefly
mention a_process for svstem design which
addresses all these pieces. We believe that the
four key points (“principles”) of this process are
the required comerstones for designing good
systems. Third, as a means of showing where
these principles fit into system design, we divide
the design process into four rough phases. Next,
in the main section we describe many methods
to be used in carrying out this process of design-
ing for usability. Tn sections at the end, we
discuss tips on how to get started designing your
system and various resources available 10 vou;
and we describe in more detail the status of user

Excerpt from Baecker, R., Grudin, J., Buxton, W., and Greenberg, S. (1995) Readings in Human Computer Interaction:

Towards the Year 2000 (2nd Fdi). Moraan Kaufmann

interface standards, guidelines, development
manuals, and formal models.

TABLE 1. Componcnts of usability.

System Performance
Reliability
Responsiveness

System Functions

User Interfaces
Organization
I/O Hardware
For end-users
For other groups

Reading Materials
End-user groups
Support groups

Language Translation
Reading materials
User interfaces

Outreach Program
End-user training
On-line help system
Hot-lines

Ability for customers 1o modify and
extend

Installation
Packaging and unpacking
Installing

Field Maintenanee and serviceability

Advertising
Motivating customers to buy
Motivating user to use

Support-group users
Marketing people
Trainers
Operators

Maintenance workers

Usability Has Many Aspects

There are many aspects to usability which
must be taken into account if a system is to be
good (Table 1). Generally designers focus on
only one aspect of usability, e.g., knitting pre-

given functions together into an user interface.
This narrow focus almost guarantecs missing the
point that usability is made up of many impor-
tant factors which arc often mutually dependent
(sec Boies, Gould, Levy, Richards, and Schoo-
nard, 1985 for a detailed example).

To illustrate the importance of the various
aspects of usability, consider several of those
shown in Table | that are perhaps least
discussed in the literature.

System reliability and responsiveness
are the sine qua non elements of usability.
If the system is unavailable, it cannot be
used. If the system is unreliable, users
will avoid it regardless of how good it
may be when it works. A survey of 4,448
computer users found that response time
was the most important variable affecting
their happiness (Rushinek and Rushinek,
1986). With increased system responsive-
ness user productivity goes up (Doherty
and Kelisky, 1979; Doherty and Thadha-
ni, 1982; but see Martin and Corl, 1986).
Usability factors go deep, as well as being
broad. System reliability and responsive-
ness go to the heart of system configura-
tion.

It is often alleged that people buy
systems for their functions, rather than for
their user interface characteristics. (While
this is probably historically true, the
popularity of Maclntosh reflects the
increased value users place on user inter-
faces.) In the Usability Design Process
section below we address how to deter-
mine required functions.

Language translation is a serious and
time-consuming process. Just the usabili-
ty detail of putting all the messages in one
file, rather than burying them in the code,
eases the language translation process --
even makes it possible (see Boies et al.,
1985 for a behavioral approach to
language translation).

Unpacking and installing computer
systems have been greatly improved and
speeded up by work of human factors
psychologists (Comstock, 1983; Granda,
Personal Communication, 1980; Green,

1986).

What we call outreach programs,
which include user training, reading mate-
rials, on-line help, and hot-lines,

and quantitatively.

ITERATIVE DESIGN

Testing cycle is repeated.

INTEGRATED DESIGN

TABLE 2. Usability Design Process -- The Four Principles.

EARLY -- CONTINUAL -- FOCUS ON USERS
Direct contact -- through interviews, observations, surveys, participative
design -- to understand cognitive, behavioral, attitudinal, and
anthropometric characteristics of users -- and their jobs.

EARLY -- AND CONTINUAL -- USER TESTING
Early on, intended users do real work with simulations and prototypes;
their performance and reactions are measured qualitatively

System (functions, user interface, help system, reading material, training
approach) is modified based upon results of user testing.

All aspects of usability evolve in parallel;
All aspects of usability under one focus.

often do not reflect the general observa-
tion that people learn by doing and by
observing others doing.

It is easy to overlook the fact that
several other groups, besides the primary
users, also need user interfaces, reading
materials, and training. These include
user trainers, system operators, mainte-
nance workers, and salespeople. Ulti-
mately, usability is seriously affected by
the usability of what these people are
taught and given. We have observed sales
people who avoid giving demonstrations
of even simple products (dictating equip-
ment was one example) because of uncer-
tainty about how the products work.

Usability Design Process -- The Four Principles

To design good systems, we believe that you
must follow the four principles of system design
shown in Table 2 in addressing each aspect of
usability. These steps have been developed at
IBM Research (Boies et al., 1985; Gould and
Lewis, 1983; 1985). They will be discussed in
the next main section.

Usability Design Phases

As a chronological framework for discussing
what you must do to carry out the four steps in
Table 2, we divide the work roughly into four
phases: a gearing-up phase, an initial design
phase, an itcrative development phase, and a
system installation phase.

Gearing-Up Phase. This is mainly an infor-
mation gathering and conceptualization phase.
Here you look for good STARTING POINTS,
e.g., learn about related systems. You familiarize
yourself with existing user interface STAND-
ARDS, GUIDELINES, and any DEVELOP-
MENT PROCEDURES your organization may
have. Each of these resources in capital letters is
discussed in scparate sections below.

Initial Design Phase. Iere you need to make
a preliminary specification of the user interface,
drawing upon existing and leading systems, stan-
dards, and guidelines where appropriate; collect
critical information about users and their work;
develop testable behavioral goals; and organize
the work to be done. Early focus on users takes
center stage here. Integrated design, in which all
aspects of usability are considered at the outset
and evolve together, begins in this phase and is
carried into the iterative development phase. All
of this is elaborated on below.

Iterative Development Phase. With testable
behavioral goals and ready access to user feed-

hack‘ csl;hlishcd. continuous evaluation and
modification of all aspects of usability can be
achieved, as described below.

TABLE 3. Comments we have informally
heard from system designers.

“We didn’t anticipate THIS.”

“But that’s not how I thought it
worked.”

“What do users REALLY want”?

“I'm too pooped to change it now -- it
took so long to get here.”

’T'Iu; manual and the user interface are
different™

“Even simple changes arc hard.”

“Why is user testing so late”?

“Why does user testing take so long"?
“Why don’t we do user testing”?

"I would've tested, but....”

"We are surprised that...”

“It worked before...”

“The manual will take care of this...”
“The help system will take care of this...”
“A hot-line will take care of this...”
“We'll take care of it in the NEXT release.”

“It's not broken; that’s how it’s supposed

now receives the ultimate test. For most
systems, delivery to the customer should not
signal the end of the road, since there are the
inevitable follow-ons. Thus, it is just another
iteration. If data logging programs to record
user performance and acceptance have been
incorporated, they will prove useful here. This
phase is not discussed further in this paper.

USABILITY DESIGN PROCESS

Beyond Standards, Guidelines, Ete.

Table 3 contains revealing comments made
by system designers. Behind them is the realiza-
tion that relying on a blend of designers” own
experiences and following standards, guidelines,
or various rational and analytic design philoso-
phies is not sufficient to arrive at good computer
systems. Too many systems end up being hard
to learn and use, have arbitrary inconsistencies
with other systems, and lack the sparkle of
insight into what users could really benefit from.
From these experiences, several general points
shown in Table 4 emerge.

to work.”

System Installation Phase. Ilere concen-
tration centers on techniques for installing the
system in customers’ locations, introducing it to
users, employing the training materials you
developed earlier, ascertaining and assuﬁng
customer acceptance. (In the case of vendor
products, this phase assumes successful market-
mp has occurred.) The work done on installa-
hon, customer support, and system maintenance

TABLE 4. General observations about
system design.

Nobody can get it right the first time.
Development is full of surprises.

Developing user-oriented systems requires
living in a sea of changes.

Making contracts to ignore them does not
eliminate the need for change.

Designers need good tools.

You can have hchavioral design targets,
Just as you have other capacity and
performance targets for other parts
of the system, e.g., memory size,
calculation time (Gould and Lewis,
1985).

Even if vou have made the best system
possible, users -- both novices and
experienced -- will make mistakes

using it.

How to Design Usable Systems 97

TABLE 5. Generally required steps in
designing good systems.

Define the problem the customer
wants solved

Identify tasks users must perform
Learn user capabilitics
Learn hardware/software constraints

Set specific usability targets (in behavioral
terms)

Set specific usability targets (in behavioral
Sketch out user scenarios

Design and build prototype

Test prototype

Iteratively incnrp_omtn changes and
test again until:

Behavioral targets are met
A critical deadline is reached
Install systemn at customer location

Measure customer reaction and
acceptance

sponse to these problems, several human
fncig:'sm[é’oplc, apparently working mdeptinq:nlt-
ly, have in the last few years written rcallgtt:y
similar recommcnd%linns a}:;}st.: hr.gr;l ;?’ ai;i’s 1:5
ett, 1984; Bury, 5 apa d
gﬁiﬂe‘:ﬂs. e.g., Sullivan and_ChapamT.. 13’1953:
Damodaran, Simpson, and Wilson, I_‘JR) cmd
ter, 1986; Reitman-Olson, 1985; Rubu_u_ylen}:i anﬂ_
Iersh, 1984; Shackel (1984), the Usat_nhlyw hriF
neering group at DEC, e.g., _Gnod. Spll“:‘{/!.i’ 2 ‘df:
side, and George, 1986; Wixon and Whitesi o
1985; a group at IBM Research, Boies, e]tgsf:
1985; Gould and L;ewis, 1985. ShackeiM(I 1hi1
has provided a historical summary. ’ 1‘._
work represents a coming togelherrof many car 1f
er experiences. For example, the "application o
empirical methods to computer-based lsyslemr
design” was the title of an expenmenta I;:;g:’c
more than twenty years ago (Grace,)).
These principles of system design have much in

common with the characteristics of succt:sshﬂ
businesses, as obscrved in In Search of [l:,xcc‘
lence and A Passion for Excellence by dcmc‘;
and collcagues. These books contain hun gz 5
of examples describing the value of responding

to the needs of customers (users).

There are many common procedural steps Iin
the recommendations of all these peng-:e.
summarized in Table 5, which should be used in
carrying out the usability design process.

Principle 1. Early -- And Continual -- Focus On
Users

‘our Job. Your job is to design a system
lhat“ I?:; the right functions in it so peo'p]ie‘ can
do their work better and like it. You can't ']]%uc;g
out what people want, need, can do, and wi
without talking wi‘lh them.

Decide Who the Users Will Be. A first st;:p
in designing a system is to decide (a) whg the
users will be and (b) what they will be (:l;:::%
with the system. This should be done ei o
before starting to design the system, or ::ld a_;m,ﬁ
carly stage after obtaining some genc : |d c«:;i:
about it. Ilaving done this, subsequen o
sions, e.g., about system orgamzation, mqulz: A
functions, user interface, must reflect s
answers. The user population may uhm‘lall: y =
broader or more heterogencous. If so0, lﬂlcr; oy
no a prion rule for aiming at the lo e.r
common denominator” or at the aver'aglch us::1 d
Rather, your system will have to be tzu]?1 " a
tested for the other groups as well, and e5|g1:
tradeoffs may be required. But _cstab];slz‘;ng' c;g"
user set is much better than letting this ecu;ha‘
continue to slip, as it forces design dccxs[lionfs Pt
otherwise remain open too long. Open e:c:smol
about the intended users reflect slippeniness, nm
flexibility. We believe that the single chl Iway o
move advanced technology toward usefu appu-
cations is by defining an intended user pop!
lation and what they will do with it.

Designers Often Avoid This. W? have
observed two serious types of reluctance: (;lnc ;
reluctance to define the users, and 1hT ot]srs‘
reluctance to take the dcﬁnllmr} scrmusiy. \:r id|
as strange as it may seem, dcsxg;l’lcrs oflenha ?hc
coming to grips with the question o hw c: ;i
users will be. This is due in part lo_lI ;s’roas
(and appropriate) effect the answer will have ”
subsequent design _decisions. For jxqmpn;
designers cannot maintain that they are cglgn;ks
a toolkit system for non-programmers an Thcir
it so complicated (“powerful”) that ;ven il
programming colleagues recognize t c}c;‘n i
diction. Reviewers have suggested tha s

example is a paper tiger -- that no one would
believe it. We did not make it up. The reluc-
tance scems to be greatest in rescarch environ-
ments, where people’s goals are often mixed,
e.g., advance the discipline of speech recognition
versus build a listening typewriter, advance the
discipline of expert systems versus build one to
aid human operators or schedulers.

Second, even where designers define early
who the users will be, the implications of this
decision do not always drive subsequent design
decisions in as powerful a way as they should.
For example, setting out 10 design a picture
editor for secretaries is laudable, but then build-
ing it so that only programmers can use it is
inappropriate. We know of one advanced tech-
nology interface that is being developed for a
specific list of executive users. Yet the designers
have never talked with or visited the offices of
these executives -- even though they work in the
same building as they do. There is little relation
between what the designers are building and
what the intended users are likely to ever use.

You Can't Rely Upon Descriptive Data.
Even if a description of the intended users were

as complete as it possibly could be, it would not
be an adequate basis for design. It would not
substitute for direct interaction and testing.

Methods To Carry Out Early Focus On Users

Several methods for carrying out these princi-
ples apply to more than one principle. For
convenicnce, however, we have grouped meth-

ods under the principle to which they are proba-
bly most relevant.

Talk with Users. Talk with the intended
users. Ask them about their problems, difficul-
ties, wishes, and what works well now. You
may learn, for example, that morale is very low
and that participative design, where some of the
workers serve on the design team, is necessary
for subsequent acceptance of your system. Tell
them -- better, show them if you can -- what
you have in mind and get their reactions. They
may help you learmn about other possible user
groups. John Couch, a Ph.D. in Computer
Science, worked cach weekend incognito in a
retail computer store while designing much of
the software for the Lisa computer system. "I
camed about the fears and frustrations of the
wverage user and the more sophisticated ones
irsthand. 1 believe it was the single most signif-
cant source of what we we came up.” (Peters
ind Austin, 1985, p. 9).

You can't expect users to invent radically
new ideas. Most users are not trained to think
through a design -- but they can comment on
your new ideas if you show the ideas in an
appropriate form. Their reactions will be partic-
ularly helpful to the extent you can make these
examples as concrete and relevant as possible.
You may learn, for example, that they do not
want menus -- they will only avoid them; or that
English is a second language for a significant
fraction of the intended users, which has serious
implications for the design of the reading materi-
als. You may learn how naive you have been
about what handicapped people really want.
Boies et al. (1985) provide further examples of
this method, as well as of other methods
mentioned below.

The intended users are the “experts,” not, for
example, their managers. To illustrate: reviewers
of this chapter who were primarily system
designers (a main intended user group) provided
different recommendations on the topics to be
covered, organization, and emphasis than did
professional human factors people (more inter-
ested in the thoroughness and choice of refer-
ences, for examplc) or the Handbook's editors.

Interviewing users focuses the design team’s
energy on people and not in other directions.
You will encounter a dilemma: on the one hand,
if you wait for a while to interview users you can
ask them more pointed questions; on the other
hand, you may be too far down the road to take
advantage of other (perhaps more important)
insights such interviews provide. The solution is
to carry on these discussions throughout the
development cycle. Schedule meetings in the
users” areas. Put pictures of users, in their own
work environments, in designers’ offices. Where

appropriate, move a designer’s office to a user
area.

Achieving direct contact with potential users
is much better than exclusively relying upon
intermediaries, such as marketing research
people. Something is lost in the translation.
Direct contact helps to reduce the ofic::
mentioned problem that designers and users do
not speak the same language. Direct contact
provides an “insider's view.” One Levi exccutive
spends one Saturday a month on the sales floor
of a major retailer selling blue jeans. The exccu-
tive reports that it provides a different vicw from
the market research data. “It was quite an eye-
opener for me to sell our own, to watch people
buy other people’s jeans.” (Peters and Austin,
1985, p. 11). Many developers (ironically, rather
than users) cannot seem to find time for this,
however. We know of one group that was creat-

ing an “expert system” to aid computer opera-
tors, but members of the group were not
planning to interview the operators or watch
them work. Visiting dircetly with hungry or
unemployed people has morc impact on a
person than reading about them. You may not
have any idea about what you need to know
about users and their environments unti] you see
them. Imagine yoursclf designing a system to be
used by inhabitants of the moon. Certainly you
lack familiarity with these users, and need to
learn much about them. You will not go wrong
if you assume that you lack as much information
about the potential users of your own system.

Visit Customer Locations. Visit potential
locations for your system, particularly if these
environments are new to you. More than a
decade ago, Dick Granda (personal communi-
cation) wisited IBM customer locations and
watched them install very large computer
systems (IBM 7090 systems). e observed, in
the two weeks or so that it took to install such a
system, all kinds of unnecessary but tolerated
confusion and difficultics. ITis behavioral obser-
vations led IBM to make a number of changes,
including color coding the cables, shipping the
manuals in the cartons with the boxes they
described, and reorganizing the packaging.
These changes cut installation time to 1/5 of
what it had been.

The Reverend Wyatt Tee Walker was Martin
Luther King's trusted licutenant in the American
civil rights marches of the 1960's. “Before King
demonstrated to desegregate public housing in
Albany, Ga., in December 1961, Walker meticu-
lously examined the area of the planned march,
even sending a youngster, a middle-aged man
and an elderly woman along the route days in
advance to fest whether it was manageable.”
And before the Birmingham, Alabama sit-ins of
1963, Walker “carefully planned the protest,
learning as much as he could about the eateries
by speaking to blacks in the area.” (Waga,

1988.) The point here is that in designing a
system to desegregate the South, Walker visited
the customer’s location and simulated what he

intended to do.

Joseph Esherick, recipient of the the Ameri-
can Institute of Architects highest award -- the
1989 Gold Medal -- and famous for the design
of San Trancisco’s Cannery and Monterey Bay
Aquarium, says “If you want to design a restau-
rant talk to waiters, see if they'll let you get back
in the kitchen. Youll learn how to ask ques-
tions and how to listen.” “You ought to pay
attention to how things work.” (USA Weekend,

1989).

Customers’ environments almost always

contain surprises for designers. The president of
Broadway Stores, a large up-scale retail chain,
spends 40% of his time on the sales floor (as
told to Stephen Boies, 1989). The 1984 Olym-
pic Message System (OMS) was a voice message
system used by Olympians from all countries
(Boies, et al., 1985). In a field test of OMS
conducted at the desert location of one of the
events, it was learned that bugs (the living,
multi-leg type) crawled into the computers at
night to keep warm. Protection was required or
damage could result. 1f you are designing sclf-
service terminals, you may observe in public
places that inexpericnced customers are hesitant
10 insert their credit card for fear of losing it or
getting unwanted bills. In factories you may
learn that your system must be impervious to
grease, dirt, vibration, and caustic materials. In
schools you may learn how naive you are about
today’s learning problems and achievements. In
offices you may learn about the sociology that
affects the use of a system. A large insurance
company that wanted its thousands of quasi-in-
dependent ficld agents to purchase and use
terminals lcarned that the agents would use them
only if they were quiet and did not gencrate
much heat in their typically small offices.

Observe Users Working. Visit the workplac-
es of users. Most systems are follow-ons to
existing ones. Learn what is hard about the
existing work so you don’t make the same
mistakes. Observe potential users doing their
jobs. You may feel self-conscious at first. Ilang
out. Blend in with the woodwork. Ask non-
threatening questions as workers become less
sclf-conscious. 1t will all go well. You may
learn that operators avoid changing tapes and
ribbons or adding paper to machines; that secre-
taries avoid transferring calls for fear of making
an error. You may learn that space is very limit-
ed, or that workstations must be shared, or that
no one comes to training sessions, or that no
one reads manuals. You may learn what users
do when they don’t know something or get in
trouble, which should help you in designing your
outreach program. Sce what they have difficulty
with and what they dislike. You may learn that
construction workers don’t wear their reading
glasses and don’t want to press small keys,
particularly while wearing heavy gloves; that
office workers will not use an_clectronic mail
system that automatically recognizes their speech
if they have to wait thirty seconds to activate it
before each usage; that the operators expect that
the new system will respond much faster than
the present one (had you planned to make it
that way?); that airline passengers lose their cred-

;; c;rds‘t_l}' mserting them in the wrong place
(ticket dispenser); that management has |

intention of buying any manuals, The lrll‘0
cations of these findings must then be i
rated into the design of your system. it

- rngﬁsgiggsc Users l‘:\’orking. Make a videotape
15 working, and show it to
ing, : oth
E.ci::r;b(;rs of the design team or n*umagcrm:nclr
ggald urlE?t) ':_ldcnta?t:s of users having difficul-
strations of home-made remedi
' llust . 7 ies t
ls:;l;;] :icsnﬁn inadequacies carry more punch will‘:
= who count than do tables wi
numbers. The tables, ; gl
| ¢ s, incidentally
obtained only with much more effort s

. Ifrﬁnll-. ait?oyt the Work Organization. [ere
e g;f 11-:5 1s upon understanding the organ-
Zaion T;_wqu lha! your system is intended
R pciil“f 15 15 particularly important where
izl cicgr;gt] user groups arc involved (see
B th-u‘ :). A system with an user inter-
rcportcd. - was adequate and well liked, as
s tm one case study of an IBM hospital
I]enm}fr]:E:‘rnlg(ﬁlzl)ne;. Brownbridge, Garber, and
Herzmark; , was n il

ﬁis :1115 . t}:zobcinstal]alinn: V(];T‘clz:l!lizs l:;s:::r.l:rl:tm:

atc tw 5 izati
the hospital org:;??:::qi‘;nﬁys‘em oreanization and

Think; -
al(mdu;r:utr;]ge“’moud(,i Have potential users think
i A are doing their actual work (see
ing their jn)l; rrr);::rng;galg ‘Z-"f?“ feially phutonme
; y yi ifferent insi
i:’ailxlrmbge lhenl'l reflect on their work la!e%tST'm::‘:
o "I‘;C.'l time comments that may provide
e portant for_all' the little decisions you
ke everyday in designing your system. Lik
Fohhman who visits his cc'nslitucncy }oﬁl \:il?
t;:am what the real issues are. You ‘may learn
: 1112:: klhf:d sales clerks dor}‘t want to fold clothes
coumcl s, have long lines at their check-m.‘lt’
C:,momrs, fur ma_ke chapgc because of the impli-
i .wgmp?sslbfe mistakes; that bank tellers
Bl lho share' workstations or have it
e bk ey cant work with fractions; that
o se workers will probably avoid using a
workstation if they have to walk a long “;avgur

wait for it to waj i
o rm up each time they need to

mwg_r&_r»; It Yoursell. Somctimes it can be
o icar:-ﬁ l](':, l.lry a wlorkcr’s job yourself. You
I : cxample, that glare he
is really bothersome, a okt
7 : . a slow system leads t
V Sy 5 to rud
;Esttc])mgrs, your arms get tired, you can’t handIg
cmeﬁ]:f: l:?llelrrupm;ns. Of course, you must be
1 1o confuse your expertise wi I
1) 3 se with the
the intended users. We have been told wlllhgtr

Kentucky I'n
ICKY] -MICKer IVEs arc Icqullcd
tucky Iried Ch anE executives
to work for a PCTIHd in retail outlets.

panl’:rl)r;n‘ill-lgalg':_l)csngn, Make intended users
g s cl: esign team. This is particularly
e w mr}! designing an “in-house” system
il ou will be responsible for introducing
e rls completed, e.g, a quality control
ystem for your factory, a data entry system [
g'(;uryndl:str;ll?qllpn center, an autuma{éd libra:')':
or r division. Mumford (e.g., 198 Y
;:::liz?pailc::rzim;;perﬂ o‘n'paﬂicipative (Iigsilglff
pa 3 1s not just a good thi

;Jnno r[;nl;l}l)t('?lly. Experienced wnrke%s kno“:nagig:
o= & UIDWh:':ﬂ they do than do drop-in
wr;rli!lthaAn (f on’t you know more about your
il or em_}mplc. a consultant to your
van‘ougs r{.)lmnnagcr.) Glasson (1985) describes
i :fg ;Zersdzi:?rn ;:;I.?ty hgre, Eason (1982)
et By tculties in accomplishing

- ;z;)tglc(ie;'titr;v?lvcqun_l in design allows workers
¢ ate in decision-making about i
tions that affect their work [Sestos oot
i rk lives. Besid i
to better systems, thi . s oy
! T systems, this process leads t
l)nr::::nse N;n %nde. s;ll'—cslcem, and perhaps a(l.:m:n
Y. Maybe productivity too. P 5
be actively involved j Mg il
ac ed in their work i
decisions that affect thei il
S their work live 1
people have to be helped here, mojéhSomeumcs
con]szuxil &%c?iiiiip 1[:13"1':1 f ((JJSiMng g
! am o S, in that
tah::c:'m‘ ex-Olympian, was valuable in n:l(:sig;iar‘:,e
] voice message system (Boies et al. 1985)g
ﬂedhcgcrmn was a consultant and not a full-
! B f member of the design team. In some
ﬂ:]licféaor tc:‘::lmplnz having a physician as pa}t of
P bn; nclnu;f:srg? ab{)at_:_cnl monitoring system
k valuable if the person is commit-
;icﬁ tlo seeing the project to completion and?c:l
dm_py a consultant. Putting experts on th
design team is simply another way to phr :
participative design.” The term is somgti::sc
iusc:iz‘d’_évhen the intended users are highly skill:j
v!:h :ldléal?éjw'(ﬂepk{]l} mind, however, that people
er skill jobs
SNt T b] are nevertheless the

wnr{:;k Analysis. Probably the most formally
Jpeas :ml mlcthod_ of learning about users’ jobs
Pm;ﬁ na éfsrs, 'Iask‘analysis is an analytical
P ui;csdust? to determine the specific behaviors
g ;;rcc : ? people in a man-machine system (Ai;
g cfinition). Fn:maf task analysis is usual-
vl perator-oriented,” rather than “discretionar-
y-user-oniented.” This reflects the nature of

jobs in which it is used. Task analysis goen
Drury (1983) in a tutorial, is a cn::"\:t]:;:'a.ﬁ?ny:

between the demands the task places on the
human operator and the capabilitics of the oper-
ator to deal with them. It is the process of iden-
tifying and reporting the significant work
activities, requirements, and technical and envi-
ronmental conditions. Tt is usually carried out
through observation, interviews, or question-
naires. A formal task or job description results.

Formal task analysis is regularly conducted
by the Armed Services and government, and
their contractors. This formality reflects the
division of labor that often occurs in large
system projects, ¢.g., a new, multi-person space
system or a defensive missile system.
Descriptions of pieces of a proposed system, e.g.,
the “personnel subsystem,” are collected by one
group and passed to another group, who passes
them to yet another group. The literature on
task analysis of government-funded systems (e.g.,
Kloster and Tischer, 1985; Meister, 1986) and
the literature from the civilian computer industry
(as illustrated, for example, in the CIHI
proceedings) have developed independently, it
appears. Therc arc many variations in task anal-
ysis. Mentemerlo and [ddowes (1978) reviewed
many, and concluded that it is not possible to
have a single cookbook approach that is
universally applicable. While formal task analy-
sis is valuable, the division of labor noted above
can provide layers of insulation between the ulti-
mate users and various designers along the way.
It should not be carried out without having
designers talk directly with uscrs.

There are many informal, valuable informal
task analysis approaches. At IBM Boca Raton,
Iapp and human factors colleagues (personal
communication) have designers and users write
each step that they believe is necessary to
complete a task on a separate slip and put it on
a wall. Ilapp reports that the design (with its
flaws) comes to life, and that they discover
multiple steps, confusions, left out operations,
and cxceptions. What results is an improved
early conception of what will be required. In a
different approach, not aimed at system design
but aimed at identifying what executives do,
Mintzberg (1976) followed cach of several exccu-
tives for two weeks, carefully observing and
measuring their daily activitics and talking with
them about them.

Surveys and Questionnaires. ~ The data
obtained from surveys and questionnaires can be
useful. Talking with a group of users first, and

with other members of the design team, is neces-
sary to know what questions to ask. Sometimes
answers 1o questions can seem sterile, e.g., aver-
age years education, employee turnover. But the
implications of these answers are powerful. 1f
the users have relatively little education and high
job turnover, then training must be brief and
inexpensive.

‘I'estable Behavioral Target Goals. Most new
systems specily in advance physical performance
and capacity targets, e.g., memory swap time,
MIPS, mean time to failure estimates, instruc-
tion times. Txplicit behavioral targets that new
systems must meet can also be established (c.g.,
Bennett, 1984; Carroll and Rosson, 1984; Gould
and Lewis, 1985; Shackel, 1985, Wixon and
Whiteside, 1985). An cxample target goal is:
business professionals with no experience using a
new office services system must be able to
retrieve and rcad lhree brief clectronic messages
from their system mailbox and reply to each
within twelve minutes. They can ask the exper-
imenter (a simulated “hot-line”) for help no
more than once. These explicit behavioral
benchmarks go heyond general expectations,
often implicit only, that a new system should
not require more time or lead to more errors
than the old (manual?) Table 6 provides addi-
tional partial examples of testable behavioral
specifications.

Measurable behavioral targets, and where
your developing system stands with respect to
them, give management a metric to understand
what progress has been made, and what is still
required. This makes it possible to judge usabil-
ity on the same basis as other system compo-
nents.

Behavioral targets give phrases like “user
friendly” or “easy to use” a technical basis.
Wixon and Whiteside (1985) have worked out a
methodology called “usability engineering” in
which specific behavioral goals play a key role.
The time requircments, the number of errors and
help attempts, and the user acceptance ratings
that form the behavioral targets are arrived at by
discussions with users, discussions among the
design team, and the characteristics of the exist-
ing systems that will be improved upon. Meas-
urabie usability targets stated in behavioral terms
are required to determine whether the finished
product fulfills its usability goals (Good, Spine,
Whiteside, and George; 1986)

TABLE 6. Additional examples of testable behavioral specifications.

- butEZ:mani?l'L Twenty experimental participants, familiar with the IBM
ntamiliar with query languages, will receive sixty minutes training

using the new on-line query trainin i
. : g system for no ‘ i
perform nine experimental tasks. : TR

On Task 1, 85™ of these tested users mus i
k1, : tes st complete 1t success 1
le:,;s than |5 minutes, with no help from the experirnen]:cr. Thevc:':::lesjgziﬁ
re]er(c:?g:t::;d help matc]nalj. but no hot-lines. Task 1 consists of six-stcps'
. query on the displayed que i i -
e gL played query panel using the table
2. Delete all column names except COURSE and TITLE
3. Save the current query with the name CTITLE .
4. Run it once. -
gu g]c! the current query panel displayed.
- Clear the current query panel so that it contains nothing.

encounﬁxmglg_ le h& For this integrated editor, any displayed messages

- rfl bm the process of creating documents, tables, or drawings will be

e rs 03 y secretaries with one or more years of word processing experi-

cm:{:ﬁ?& tc;]Tonslmted by tl}leihablhty of at least 90% of them to paraphrase
rrectly Se messages. e system will provide error ct

‘ { Or recove -

anisms suitable for these users, as evidenced by the ahility of at]cas?RSm"chf

them to exccute successful 1es i
_ s ssful recovery strategies in seven of the : i
scenarios (adapted from Carroll and Rosson, 1984). B

EngtishExr:Sthlebclab]?i?; 3!‘ :]t(cn par:ijcipants. whose first language is not
h, must b alk up and use this vending machi
target item within twenty seconds, and get the correct chfnge. C'I'}r:jcs’ rflf]lstﬂb’g

dOllC w hout tCh b pc o
it wa mng anyone CISQ use 1t a“d “'lt]lout askmg lhc €X T

- cc?:lﬁt%lresg;rc::?tt] panici;_)ﬁfnts. a random sample from customers in
ho are willing to participate in thi i
be able to unpack this p i e
_ prototype home computer and co he di
printer, mouse, keyboard, and speci e e
) i pecial-cffects card. They must initi
system and then set the date and time it b o
‘ on the computer. Thi k
completed by at least 17 of the 20 ici i i ki
¢ t cast | participants in 60 m i
instructions contained in the manuals in t%e boxes. SRR

A Checklist. Table 7 is a checklist to help
you carry out early -- and continual -- focus on
users.

TABLE 7. Checklist for achicving
Early -- and Continual -- Focus on
Users.

We defined a major group of poten-
tial users.

We talked with these users about
the good and bad points of their
present job (and system if appro-
priate).

Our preliminary system design
discussions always kept in mind
the characteristics of these users.

We watched these users doing their
present jobs.

We asked them to think aloud as
they worked.

We tried their jobs (where appropri-
ate).

We did a formal task analysis.
We developed testable behavioral

target goals for our proposed
system.

Principle 2. Early -- And Continual -- User Test-
ing

Your job is to design a system that works
and has the night functions so that users can do
the right things. You won't know whether it is
working right until you start testing it.

From the very beginning of the development
process, and throughout it, imendcd.users 5hot}ld
carry out real work using early versions of train-
ing materials and manuals, and simulations and
prototypes of user interfaces, help systems, and
so forth. The emphasis here is upon measure-
ment, informal and formal. The basic premise 1s
that you cannot get it right the first time, no
matter how expericnced or smart you are. This
observation is not limited just to computer
system designers. Ileckel (1984), in writing

about software design, asks “If Ernest 1leming-
way, James Michener, Neil Simon, Frank Lloyd
Wright, and Pablo Picasso could not get it right
the first time, what makes you think you will?”
Heckel quotes others: “Plan to throw one away”
(IFred Brooks). Rewrite and revise...it is no sign
of weakness or defeat that your manuscript ends
up in need of major surgery” (William Strunk
and E. B. White). "The two most important
tools an architect has are the eraser in the draw-
ing room and the sledge hammer on the
construction site” (Frank Lloyd Wright). If you
measure and then make appropriate changes you
can hill-climb toward an increasingly better
system.

Methods To Carry Out Early -~ And Continual
-- User Testing

Printed or Video Scenarios. As a starting
point, sketch out a few user scenarios on paper
and show them to members of the design team.
Provide exact details, e.g., the exact layout and
wording on the screen, exactly what keys users
must press, and the response of the system.
These details will of course change -- but this
presumptive exactness stimulates the right level
of discussion. Members of the design tcam now
must react to a pioposal; removed is the
misleading comfort of not realizing the design
conflicts that lic hidden when these details are
missing. These scenarios do not just lead to
arguments about surface charactenistics of an
user interface. Since they inherently specify
functions, it is our experience that they lead to
discussions about required functions, and how
they should be organized. This_in turn will
quickly identify deep systems organization 1ssucs.

Then carry the process one stcp further.
Type up these scenarios, or perhaps make a bricf
video demonstration of them if you are designing
a system where graphics, animation, or color is
dominant. They are now in shape to be shown
to prospective users for their reaction. In the
meantime, other members of the design team
have devcloped some shared realization of what

the entire project is trying to create.

What you have done with this procedure is
to identify and organize functions in a way that
intended users can understand and react to. You
are quickly getting informal data before even
writing a line of code. You are designing the
system from the users’ point of view.

Carly User Manuals. Begin writing the user
manual before any code is written. Intended
users can react to this helpfully, since the system
is being described in the appropriate fashion. 1f

you get inappropriate reactions, start re-writing
the manual. When people ask questions, you
have new items for the manual. The printed and
graphic scenarios, prepared as suggested above,
can be included as examples. This works,
Designers at Digital Tiquipment Corporation
wrote the user manual simultaneously with
beginning to design an user interface for a work-
station. They found, from informal evaluation
of their user manual, that they were making their
system too complicated, and modified it while
there was still a chance to do so (Rubinstein and
Hersh, 1984). Of particular significance, they
also found that the user manual became their
definitive design document -- in spite of the fact
that all the traditional documents were also
available. Cowlishaw (1984) first wrote and
circulated for review the documentation for each
major section of the the successful REXX
language before he implemented that section.
(REXX is an IBM interpretive language often
used for command and macro programming,
prototyping, education, and personal program-
ming.) Ile reports that “The writing of
documentation was found to be the most effec-
tive way of spotting inconsistencies, ambiguities,
or incompleteness in a design. The majority of
usability problems were discovered before they
became embedded in the language.” In making
OMS, designers at IBM Research wrote the user
guide first (Boies et al,, 1985). Based upon
people’s reactions to it, they made changes to
the planned system functions and organization.
The designers put immediately into the user
guide details that people suggested ought ulti-
mately to be there.

With this approach early manuals continually
evolve, with their final version being very differ-
ent from their first versions. In contrast, writing
manuals today is usually donc sometime after
the system has been designed and implemented
-- and by people in a different department. In
just this situation, an IBM manual writer took
the initiative to write part of a manual early. In
explaining how to tumn on the system, the writer
made up a procedure, since the designers had
not yet settled on one. A hardware designer read
the manual, liked the “solution,” and adopted it.
The point: manuals can influence what other
designers do. An experimental case study of
re-writing an existing text editor manual provides
several good leads on how to go about writing a
user manual (Sullivan and Chapanis, 1983).

Mock-ups. - Seminara (1985) discusses the
advantages of mock-ups and models in develop-
ing systems, and draws on a power plant exam-
ple. Boies et al., (1985) used a wooden mock-up
to begin development of the kiosk that became

an essential part of their outreach program for
OMS. They put this mock-up in the main hall-
way of the Research Center. It led to innovative
solutions to a difficult training situation they
were facing. Rather than slow down the devel-
opment process, it contributed to getting things
done on time in a six month development sched-
ule. The comments of passers-by were beneficial
in designing all parts of the kiosk, e.g., physical
locations of pamphlet holders, display, and tele-
phone; messages; display color and scrolling
techniques; security. It also led to the identifica-
tion of issues that might not have been otherwisc
as easily envisioned, e.g., air conditioning
requirements, required room inside for mainte-
nance. As the life size mock-up evolved, it
became the design model that was replicated by
the fabricators.

Simulations. Much informal experimenta-
tion can be carried out by simulating important
parts of the system. Sometimes this can be done
with paper and pencil (Thomas and Gould,
1975). Sometimes successful simulations can be
carried oul with computer systems, separate
from those that will ultimately be used in a
product (Gould, Conti, and Ilovanyecz, 1983;
Kelley, 1984). Code iteratively developed in
simulations need not be thrown away, but can
be used in the actual product if planned properly
(Richards et al., 1985). The OMS case history
gives a detailed example of simulation (Boies et
al., 1985).

More formal experimentation (i.e., carefully
designed and controlled laboratory experiments
with serious statistical analysis of the results) can
be carried out with simulations also, if you have
the expertise to do this. Erdmann and Neal
(1971) simulated an airlines reservation system in
an airport by having a hidden reservation agent
actually respond to customers who were using it.
Gould, Conti, llovanyecz (1983) simulated a
listening typewriter by having a hidden typist
actually enter what users said (Figure 1). Kelley
(1984) put himself in the human-computer loop
to answer questions his natural language calen-
dar system could not. Good, Whiteside, Wixo
and Jones (1984) intercepted inappropriate
commands of novices using an electronic mail
system, substituting the correct ones, but adding
the inappropriate ones to a new extended
command set. Some system tools allow the
creation of relatively complete early collections
of on-line user interface frames connected only
to the few functions so far written. All these
simulation techniques identified both how
people used the systems and and how they felt
about them.

Early Prototyping. Early prototyping can be
made possible through the use of designer toolk-
its or user interface management systems (sce
section on Software Tools below). Try to devel-
op picces of vour system 1o the point where
potential users can carry out pre-defined prob-
lems (even if other pieces of the system are not
vet working). You will leamn things you have
possibly missed through simulations, e.g., effects
of multiple simultaneous users, side-effects of
functions. Rapid prototyping changes work
organization. It allows and stimulates
discussions among workers. The discussions are
much different than without ijt. People that
could not previously make a contribution
because of the form that the work existed in can
now contribute usefully.

You can measure people’s performance and
feelings. In at least some cases how people feel
about a new system better predicts actual discre-
tionary use of it than does how effectively these
people actually use it (Davis and Reitrman-0l-
son, 1986). There arc many testimonics to the
value of early prototyping. Tor example, Wood-
mansec (1985) who, in writing about the cxperi-
ence of developing Visicorp’s Visi On (R),
suggests it could have been even better had carly
user interface prototyping been done. Alavi
(1984) found that prototyping, in contrast to the
traditional life-cycle approach to system develop-
ment, facilitates communication between users
and designers, but is harder to manage and
control. Mitch Kapor, the inventor of Lotus
123, in reflecting on its development process,
indicated that they continually prototyped their
work. Tl served as the main cxperimental user,
sometimes trying to get real work done, other
times demonstrating the prototype to others and
getting their comments, other times simply
trying out a new version and providing feedback
(talk given at the IBM Research Center, Hawt-
horne, 1989). Sce Case Study Evaluations below
for examples of early prototyping.

Prototyping is expensive, but necessary. Our
a priori understanding of users is imperfect at
best. Guidelines and generic behavioral research
(see Gruenenfelder and Whitten, 1985) provide
at best only approximately good recommenda-
tions. And our systems contain bugs and incon-
sistencies.

Sometimes system programmers or manage-
ment simply do not believe reports that users arce
having a difficult time learning, for example, a
new prototype system. Videotapes of users
having problems are often much more convinc-
ing than charts and oral reports. (Where possi-

ble, the effect can be even more powerful if vou
can get them to watch early testing themselves.)

Early Demonstrations. Demonstrate working
pieces of your system to anyone who will take
the time to watch. Simply going through the
motions of using it, and honestly observing
others’ reactions will be instructive. Of course, it
is even better 1o let them try it themselves on a
bricf task. Even a simple task can be revealing.
For example, when the touchscreen does not
work, you may be surprised to learn that users
do not lift their finger and press again as your
algorithm requires, but rather just press their
finger even harder and wider. This problem
would not show up in your demonstrations, but
only when somebody else tries it. Successful
demonstrations of pieces of your system and
manuals give management and customers confi-
dence that vou are making progress.

Thinking Aloud. Performance measures,
such as time and crrors, do not give a clear indi-
cation of what is bothering users or what may be
the source of an user error (Lewis, 1982).
People simply do not make the mental transi-
tions (“leaps”) that system or manual designers
expect of them. At Carnegie-Mellon Universi-
ty’s Communications Design Center, students
and faculty test out new user manuals by study-
ing individuals talking out loud as they try to get
things done. This results in both gross changes
to the manual, eg, identification of missing
sections, and subtle modifications. [uman
factors people at DEC found that having two
users think aloud, i.e., basically talk to each
other, as they tried to install a small computer
made it easicr to obtain verbal n protocols
from some users and led to additional insights
(Comstock, 1983: see also Rubinstein and
Hersh, 1984). Of course, requiring users to think
aloud can affect the precision of time and error
performance measures, and so when precise
performance measurements are sought, then you
may not want to collect verbal protocols.

Make Videotapes. Besides being uscful for
measuring tume, errors, and user attitudes, brief
videotapes of users attempting to use a new
system have tremendous impact upon manage-
ment, especially where users are having problems
(see also Rubinstein and Hersh, 1984). Design-
ers often find it impossible to believe that others
cannot use their system. These vignettes can be
mind-opening. These are often viewed over and
over, and elicit vigorous reactions -- from
colleagues and particularly from management.

Hallway and Storefront Methodology.
Gould et al (1987) coined this term on the basis

of their experience of putting parts of OMS
during its development in the hallway of the
IBM Research Center in Yorktown. By putting
a mock-up, simulation, or an early prototype in
an obvious public place (or restricted access
“public” place in the casc of a company confi-
dential system), passers-by just naturally are
attracted to usc it. This provides a source of
invaluable comments and surprises. ‘Tognazzini
in his talk at CII86 described how Apple
Computer started doing usability testing at local
computer stores, “dragging along the program-
mers,” as he put it, “and having a bunch of
random people go through their latest software.”
“It was very effective,” he said, “because not only
did they quickly discover the pitfalls, but the
programmers saw them too, avoiding all those
arguments.”

In hallway and storefront methodology, vou
must react quickly to all good suggestions,
however, if you want to keep the flow of
comments coming. This demands good tools for
interface designers (see below under Iterative
Design). Even trivial errors must be quickly
corrected. For example, if a person notices a
misspelling, correct it quickly. If it is there the
next day, it will begin to affect the confidence of
the passers-by that vyou are taking their
comments seriously. Making changes quickly
requires the project to be organized for inte-
grated usability design (see above). What gets
learned in storefront and hallway methodology is
valuable for user guides, user interfaces, display
sizes and colors, identification of required func-
tions, help systems, and the design and looks of
the workstation.

As an added benefit, hallway and storefront
adds zest, gusto, fun to a project. It can give a
project momentum that was not previously
there. People notice what you are doing.
Members of the project sec better how their
work fits in, and what other members are doing.
Your project begins to emerge from a sea of
other projects that may be going on around you.

Putting a mock-up or prototype in the hall-
way can help your cause with system colleagues
whom you may be having trouble in getting to
work on aspects of the system that contribute to
usability. Passersby’s reactions will quickly iden-
tify what is important, and may very quickly
lead to a work re-organization. The whole
project will benefit, for the right working
relations will be identified.

Some people have expressed a concern that
they cannot protect proprictary systems with
hallway and storefront methodology. Mayhe so

in some cascs, but there is still much that can be
learned. At IBM Boca Raton lab where IBM
PC plans arc carefully guarded, the human
factors people have placed displays in the library
and cafeteria and obtained reactions from
passers-by about color and sereen layout. They
were able to do this without associating these
designs with any particular future product.

Computer Bulletin -~ Boards, TForums,
Networks, and Conferencing, Existing, extensive
computer networks allow designers to send out a
partial or an entire new user interface and obtain
feedback from users all over the world -- most
of whom would otherwise be unknown to the
designer. Cowlishaw (1984) did this in a very
serious way during the four years he was devel-
oping REXX, an interpretive language often
used for command and macro programming,
prototyping, education, and personal program-
ming. “The most important factor in the devel-
opment of REXX,” he writes, “began to take
effect when the first interpreter was distributed
over the the IBM communications network
known as VNTT. (This network links over
1400 mainframe computers in forty countries.)
From the beginning, many hundreds of people
were using the language...from temporary staff to
professional programmers. (They) provided
immediate fecdback to the designer on their pref-
erences, needs, and suggestions for change. An
informal language committee then appeared
spontaneously and communicated among them-
selves and with the designer entirely electron-
ically. The discussions...grew to hundreds of
thousands of lines. Using the network, the
designer could interactively explain and discuss
the changes that were required.” Cowlishaw
concludes modestly that “Many if not most of
the good ideas embodied in the language came
directly from users. It is impossible to overesti-
mate the value of the direct feedback from
users.” One factor that motivated users to
provide feedback was the speed with which
Cowlishaw responded to them.

Electronic bulletin boards allow you to “tack
up” electronic requests for help, advice.
comments. Like traditional bulletin boards, for
example in universities or in super markets,
people unknown 1o you will read your message.
Computer conferencing facilities have enhanced
the basic bulletin board notion by giving the
reader many aiding functions. [For example, the
reader is provided with ways to look up all refer-
ences on your topic, all messages you may have
posted in the past on this subject, an casy way
to reply to your request, and ways o run your
program should you post a program on the
bulletin board or forum (Flavin, Williford, and

Barzilai, 1986). Oftentimes forums develop on
the basis of user comments about using an
already-designed system, c.g., Lotus 1-2-3.
These forums center on users sharing tricks in
using the system of interest, and feedback to the
designers for the next version. Clearly, however,
on-going forums, either public or private, can be
useful while design of a new system is on-going.
People’s comments are usually informal, but
informed -- and come from ego-involved users.

Formal Prototype Test. ~ Much of the
emphasis so far has been upon informal exper-
imental results, e.g., create a scenario, simu-
lation, or prototype; measure the performance of
some users doing real work; get their reactions;
modify the user interface; then repeat the proc-
ess. Informal empirical and experimental work
are very valuable, and give an idea of where you
stand vis a vis the hehavioral targets you estab-
lished earlier.

TABLE 8. The percentage of partic-
ipants who successfully completed all
three programming problems in each of
four iterative tests of a system under
development. Data adopted from Bury

(1985).

Iteration 3 -- 75% tasks completed
Iteration 4 -- 33% tasks completed
lteration 5 -- 65% tasks completed
Iteration 6 -- 92% tasks completed

NOTE: Data are based upon the three
problems common to all iterations.
Participants’ performance improved
during the first three iterations. The
results “go up and down” because prior
to Iteration 4 a new training approach
was developed, and the deleterious
effects of it were identificd.

These activities can be carried out without
some of the technical skills of trained human
factors people, e.g., psychophysics, experimental
design, or statistics. But we certainly encourage

formal experimentation where possible. If

skilled human factors people arc available to
develop the experimental and statistical designs,

then an even more accurate and valuable assess-
ment can be made. As shown in Table 8, Bury
(1985) provides an example of how formal
experimental iteration can improve a system.
“Give me numbers like iterative design provides,”
said onc corporate officer, “and vou take user
interfaces out of the realm of taste and prefer-
ence only.”

There are many formal behavioral methods
for designing software systems (see, for example,
a National Academy of Science/National
Research Council recent report which summa-
rizes many (Anderson and Olson; 1985)).

As your project nears its end, you are really
busy and of necessity have become part salesper-
son to push it to completion. Thus, even
though you have done much behavioral work
already, it is better if you can have an outside
group do the final evaluation. It is just too hard
to be objective under the final pressures, even
though you have been objective up to this point.

Trv-to-Destroy-It Contests. The design team
of OMS, near the end ol development, turned
over their system to a group of college students
and let them try to find bugs, crash it, break into
it, etc. (Gould, et al., 1987). College students
require little extrinsic reward for doing this type
of work! A sociology develops that may initially
be humbling to you, but is ultimately of
immense value. If there is a need to keep this
test proprietary, it is still not hard to find coop-
erative. motivated people to carry it out.

Field Studies. Laboratory and hallway
studies go only so far. [Each methodology
mentioned so far yiclds somewhat different infor-
mation. Putting your system into the field for a
test reminds you of problems that that you have
put out of mind or identifies problems that other
methodologies do not get at (see Boies et al.
(1985) for a detailed example). While laboratory
studies of computer installation are valuable,
relates John Whiteside of DEC (personal
communication, 1987), it took a field study to
identify the customer problem of what to do
with all the cartons and packing materials after
installing a small system on the 32nd floor of a
downtown building. Tield test clearly suggest
priorities about which problems to solve first.
So-called “early customer shipment,” vendor-cus-
tomer agreements, and early site installations are
mechanisms for doing field tests.

TABLE 9. Checklist for achicving
Early User Testing.

We made informal, preliminary
sketches of a few uscr scenarios -
specifying exactly what the user
and system messages will be --
and showed them to a few
prospective users.

We have begun writing the user
manual, and it is guiding the
development process.

We have vsed simulations to try out
the functions and organization of
the user interface.

We have used mock-ups to try out
the functions and organization of
the user interface.

We have done early demonstrations.

We invited as many people as possi-
ble to comment on on-going
instantiations of all usability
components. ’

We had prospective users think
aloud as they used simulations,
mock-ups, and prototypes.

We used hallway and storefront
methods.

We wused computer conferencing
forums to get feedback on usabili-
ty.

We did formal prototype user test-
ing.

We_ compared our results to estab-
lished behavioral target goals.

We met our behavioral benchmark
targets.

We let mnlivated people try to find
bugs in our systems,

We did field studies.

We included data logging programs
in our system.

We did follow-up studies on pcople
who are now using the system we

made.

Follow-Up Studies. Once a system has been
released, studying how actual customers use it
has value for subsequent releases and related new
products. This work serves as a validation of the
earllqr pmwtyping and iterative design efforts,
and it is particularly important in assessing the
usr:fu}ness of various functions and what new
functions arc required. These studies illustrate
the need to provide automatic data collection
tools in your system.

Studying hot-line calls or service center
requests and complaints related to your system
can be insightful in identifying problems users
are having. For example, Sony Corporation’s
telephone-based “customer-information center”
receives 1200 phone calls per day. A computer
record summarizing the questions people asked
is used to modify the company’s user manuals
(Schrage, 1986). At Apple, all senior exccutives
learn of real user problems by listening to them
on ::m:nii}]frcc 800 customer call-in line. Occa-
sionally thev try to answer t i P
and Austin, 1985). A R

A Checklist. Table 9 is a checklist to help
you carry out carly -- and continual -- user test-
ing.

Principle 3. Iterative Design

The key requirements for iterative
design are:

Identification of required changes.

An ability to make the changes.

A willingness to make changes.

The required or recommended changes can
be identified with measurements made on
mtcr_xded users and the results compared against
previously established behavioral goals. 1
make these changes, however, requires that
designers have good tools, and that the work is

organized in a way that enables them to be
responsive.

. When vou find a problem, what to do about
it may not be clear. There is no prncipled
method to determine what the solution is.
There are only empirical methods -- to be used
after careful analysis, critical thinking, and inno-
vation have been applied. The empirical meth-
ods can either be wused during system

development or they, in effect, will be used after
the system is delivered -- which is usually an
inopportune time. Sometimes you may make
changes that will cause other problems. You
will only know if you test them.

Methods To Carry Out Tterative Design

Software Tools. There has been recent wide-
spread recognition of the importance of provid-
ing designers with good tools. In the past,
particularly as deadlines approached, there has
been great reluctance to make even simple
changes to an user interface because these chang-
es might introduce bugs into the application
code. That is, code for an user interface and an
application were mixed together. Experience
with this problem has lud to the development of
toolkits (e.g, the MAC toolkit) and user interface
management systems (UIMS).

You need good tools. First, tools arc needed
to make changes in an user interface possible
and easy. Without this, there can be no iterative
design, which is so necessary for the design of
good systems. These tools can be the basis of
rapid prototyping. Second, they bring an user
interface within the control of human factors
people and other non-programming specialists
who understand the application. Third, good
tools reduce cost by making individual program-
mers and designers more productive, and by
speeding up schedules. This in tumn further
reduces cost by reducing disproportionately more
the number of required people. Fourth, inherent
in tools are “ways of doing things.” These can
automatically contribute to improved usability
(or reduced usability if they enforce bad
constraints). Fifth, good tools can facilitate user
interface consistency and cross-system consisten-

cy.

The basic characteristic of UIMSs is that
there is a separation between an user interface
and the functions that it uses. That is, there is a
well defined interface between that portion of the
code that contains an user interface and that
portion of the code that implements the func-
tions of that user interface. The driving force for
this separation is that it enables an user interface
to co-evolve with an application. This sepa-
ration reduces or climinates the need to test
application code each time a change is made in
an user interface. That is, an user interface can
be changed independently from the function
code.

UIMSs are cvolving from several orien-
tations. Some UIMSs are created in the scrvice
of developing a specific system, e.g., as was the
case in IBM’s voice messaging systems (Rich-
ards, et al., 1985). These may have generality to
other applications in the same domain. Some
UIMSs are available only within the company
that developed them, eg. Xerox's Trillium
(Henderson, 1986); tools from several aerospace
companies (Overmyer, 1987). Some UIMSs
provide a means of rapid prototyping, but once
an user interface is settled on, then the system
must be re-coded. Softright's DEMO is an
example. The MAC toolkit, designed for appli-
cation programmers, aims at reducing develop-
ment costs and encouraging consistency in an
user interface across applications. Some UIMSs
are commercially available, e.g., Apollo Comput-
er's ADM: Cosmic’s (NASA software) TAL.
The intent here is to_ handle a broad range of
applications. Good general references to read on
UIMSs arc Bennett (1986); Buxton, Lamb,
Sherman, and Smith (1983); Green (1985); Pfaff
(1985).

Designers who have actually used UIMSs in
the development of their own systems describe
them in very positive terms (Richards, et al.,
1985; Shulert, Rogers, and Ilamilton, 1985;
[layes, Szekely, and | erner, 1985)

Are UIMSs and toolkits easy for non-pro-
grammers to use? They arc evolving, but ease of
use does not seem to be the prime consideration.
To be successful in using an UIMS, you must at
present become a skilled user of it, even if not a
skilled programmer.

System Development Work Organization.
Required changes to various aspects of usability
(Table 1) cannot be carried out in a coordinated
way if the work is not organized to make change
possible. Indeed, none of this will work at all if
there is not a willingness to live in a sea of
changes, and react to required changes quickly
and appropriately. Busy white collar workers
live in a sea of interruptions, and realize that
unexpected changes are part of their job. It is
part of the job of designing good systems to
manage change, and not make contracts to
ignore required change. You can’'t manage
change by pretending it is not needed.

A Checklist. Table 10 is a checklist to help
vou carry out iterative design.

TABLE 10. Checklist for carrving out
Tterative Design.

All aspects of usability could be
casily changed, i.c., we had good
tools.

We regularly changed our system,
rn:muals,l etc., based upon testing
results with prospective users.

Principle 4. Integrated Design

As explained in Boics et al. (1985), we
recommend that all aspects of usability evolve in
parallel. At the outset, work should begin on
skctghmg an user interface, user guides, other
reading materials, the language translation
approach, the help system, and so forth. In
order f(:!:: this to happen successfully, all aspects
of usability should be under one focus or person.
Of course, that person will probably have other
usability people working for him/her. Usability
cannot be coordinated otherwise. This one-fo-
cus recommendation presumes line-management
responsibility, and is thus different from Usabili-
ty Committees (Demers, 1984).

An example illustrates the need for integrated
design. Dunng a field test of OMS (Boies, et al.
1985) before the Olympics started it was learned
!_hal the word “Olympics” had to be changed to
Olympic.” This would seem to be a trivial
change. But alas. All user interface messages
and all help messages with the word "Olympics”
had to be changed. Since these messages were
recorded in twelve languages, speakers for each
of these languages had to be obtained. The user
guides (and other printed material) had to be
changed. These were in twelve languages also
some of which involved alphabets that most
prnters do not handle, e.g., Arabic, Russian.
The lettering on signs had to be changed. Since
one person was in charge of usability (and OMS
was organized so that all messages were in one
file), this clearly modest change was done in all
appropriate places. Under the usual organiza-
tion, however, this would have been much more

difficult. For example, the required change
might have been recommended by human
factors people, who would have had to negotiate
it with the several different managers (e.g., the
project manager, user interface manager, help
system manager, documentation manager, adver-
tising manager). Even if they were all convinced,

they would then have to negotiate it with their
programmers or other relevant staflf people.
T'hen there would be the required inquiries to be
sure gl] relevant people agreed to do it, and did
it. This trivial change is typical of many, many
trivial changes one discovers that need to be
made during the Jast stages of development. He
who has the stuff in his computer has the power.
A more detailed example of the need for inte-
grated design is in Boies, et al. (1985).

Methods To Carry Out Integrated Design

A project can be managed to only a few
goals, e.g., low cost, processing speed, 'cumpal-
ibility with the past, reliability, short develop-
ment schedule, usability. With the methods
deseribed in this paper, you can measure usabili-
ty, therefore control it, and therefore manage it.
Integrated design is an essential approach if one
of the goals of your project is usability.

The methods just outlined under early focus
on users Emd those mentioned below to carry out
user testing must be brought to bear on all
aspects of usability. Technically, these methods
are sufficient to guarantee an acceptable system.
Th? main difficulty in carrving out integrated
design will be organizational. Integrated design
requires a departure from fractionated develop-
ment practices where various aspects of usability
are developed in different loosely-related depart-
ments, divisions, cities, companies.

Integrated design assumes a recognition at
the very outsct that usability is important, that it
includes many factors (Table 1), and that work
must begin on it from the start. Integrated

design requires a sincere dedicati I
e a s < ication to m
for usability, T

Inlcgrateq design requires that one group, at
the very beginning, be given sufficient resources
(money, personnel, time, authority) to drive and
control usability, and to invent what is needed to
make usability good. This organization may
have critical mass early enough to be an effective
lobby for usability -- to assure that usability gets
its share of the resources of the project. Inte-
grated design requires that this group sign up to
guarantee good usability. Their duties include
carrying out the methods described under each

duf the other three principles, or see that others
0.

Today development groups are not organized
to facilitate integrated design. Development of
the funcliqns. user interface, manuals, help
system, training materials, ctc. are often cach
done in a scparate department in large projects.

Because of these traditions integrated Design
may be tough to carry out in many organiza-
tions. It requires that the usability people be
outstanding, be given the responsibility (and
accountability), and have good tools. It is not
just a plug for more jobs for human factors
people. The responsibility will be extremely
demanding, especially on large systems. Very
special people will be required. We have been
told that no one person could possibly control
all aspects of usability on large systems. This is
simply not logical, since there is generally one
person in charge of the whole system (of which
usability is only a part).

A Checklist. Table 11 is a checklist to help

you carry out integrated design.

TABLE 11. Checklist for achicving
Integrated Design.

We considered all aspects of usabili-
ty in our initial design.

One person (with an appropriate
number of people) had responsi-
bility for all aspects of usability.
User manual

Manuals for subsidiary groups,
e.g., operators, trainers, etc.

Identification of required func-
tions

User interface

Assure adequate system reliability
and responsiveness

Outreach program, eg., help
system, training materials, hot-
lines, videotapes, etc.

__Installation

Customization

FField Maintenance

Support-group users

Evaluation Of The Usability Design Process

In recent informal surveys we have made of
system designers, we have been struck that most
of their technical concerns would be addressed
by using the methods just described.

A distinguishing feature of successful Ameri-
can companics e.g., fast food vendor, grocery
store, computer manufacturer, and government
units is their long term dedication to customer
satisfaction (Peters and Waterman, 1982; Peters
and Austin, 1985). Methodologically, people in
these success stories stay close to their customers
(“users”); they wander around. We have been
told that several years ago a large corporation
studied their twelve major business failures.
They concluded that in each failure they ‘dzd_noi
know that particular "business” or "ap:phcatmn
or “user set” for which they were creating a new
product. IBM'’s market success has qflcn been
attributed 1o “knowing the customers’ business
better than they.” The point here is that these
examples illustrate the value of knowing and
serving users.

We have talked about the process of design.
As part of this process, it is possible to select as
starting points good designs from an existing
inventory, e.g., pull-down menus, pf)mtmg anq
selecting with a mouse, icons, Lotus “menu-bar,
multiple windows on a screen. These designs
have themselves stood the test of empirical
usage. (see scction on Starting Points below)

Comparison to Other Approaches. Gould
and Lewis (1985) have compared usability design
with other design approaches, e.g., getting it
right the first time. You simply cannot fully
specify a system in advance -- even when using a
methodology that tries to do so (Swartout and
Balzar, 1982). Further, Gould and Lewis (1985)
explicitly raised, and then addressed, several
reasons why the principles of usability design are
often not used, e.g., belief that the development
process will be lengthened, belief that iteration is
just fine-tuning. Iuman factors is more than
just frosting that can be spread on at the end.
“What if the development schedule is so tight
that you cannot afford the luxury 0{ talking to
users,” we are sometimes asked. Talking to users
is not a luxury; it is a necessity. f['h'c methods
described here should help with achieving a sche-
dule. They introduce reality into the schedule,
since you must do all these things eventually
anyway. “Can't talking to just a few pewplc’bc
misleading,” we are sometimes asked. Yes,
possibly -- but you will be far, far better off than
if you talk to none. Talking to no one is a
formula for failure.

Comparison to other “User Interface Princi-
ples”. The process advocated here is proce-
durally or methodologically oriented. In
contrast, sometimes designers use the term
“design principles” to refer 10 certain features
they believe are important to incorporate into
their user interfaces, e.g., icons, desk-top meta-
phor, consistency. Case studies that illustrate
this include Xerox's Star (R) system (Smith,
Irby, Kimball, Verplank, and 1larslen, 1982),
Visicorp’s Visi On (R) (Woodmansee, 1985),
some IBM Research popular PC packages
(Foulger, 1986).

Case Study Evaluations. Two common
threads running through reports on the develop-
ment of several recent computer systems are the
need for using and the effectiveness of using the
design methods described here: IBM’s Audio
Distribution System (ADS) (Gould and Boies,
1983); Tektronixs Graphic Input Workstation
(Weiner, 1984); Boeing's banking terminal
(Butler, 1985); Digital Equipment Corporation’s
VAX Text Processing Utility (Good, 1985);
Xerox's Star system (Smith, Irby, Kimball,
Verplank, and Harslen, 1982); Apple’s Lisa (R)
system (Williams, 1983); IBM Research
Computer Systems Department systems (Foul-
ger, 1986); IBM's QMTI (Boyle, QOgden, Uhlir,
and Wilson, 1985). See also Akscyn and
MeCracken (1985). When designers follow the
process advocated here, they brag about it. Not
so with most other design approaches. Indeed,
we have heard presentations where designers
claim to have done much of what is advocated
here, but clearly have not.

The development process used in OMS
(Boies et al., 1985) directly tested and demon-
strated the value of this process for developing a
significant system. So have other case studies
(Good et al., 1986; Ilewett and Meadow, 1986).
Because of practical limitations, these have not
been controlled experiments wherein another
group of designers built the same system follow-
ing a different design methodology. One study,
in conjunction with a one-semester course, did
use a controlled experimental paradigm to
compare protyping and specifying design
approaches (Bochm, Gray, and Seewaldt; 1984).
They found that with prototyping these student
designers wrote 40% less code, required 45%
less time to complete their system, and created
systems that were rated higher on ease of lecarn-
ing and use, compared with the systems created
by the students in the specifying groups. Partic-
ipants in the specifying groups, on the other
hand, created systems that had more functions,
were more robust, had more coherent designs,
and their systems were more easily integrated.

Design is a series of on-going tradeofTs
among hardware, software, usability, economic,
and scheduling factors. The usability design
process must be followed if usability is to reccive
its due.

Status. If all of this is so good, why doesn’t
everybody do it? We previously thought that
the principles of the usability design process were
almost trvially simple to follow -- they are so
commonsensical, and they are not difficult tech-
nically to carry out. We were wrong. They are
not commonsensical to many designers (Gould
and Lewis, 1985). They are hard to carry out,
mainly for organizational and motivational
reasons. In addition, designers in the early stages
of work on a new and innovative system (a rela-
tively rare situation in most environments, since
most systems are really follow-on systems)
sometimes {ind it hard to map the principles and
methods of usability design onto their work.
Once a user group is defined this becomes easicr,
however.

Practicing usability design is especially diffi-
cult for managers. Being willing to live in a sea
of changes, which the usability design process
requires, on very large projects with hundreds of
people presents a significant stumbling block.
Groups that report practicing the usability design
process typically have a strong, committed
manager, These groups are often, but not
always, relatively small.

Taking the opportunity to think about the
process with which you will design something
rather than the design of that something, can be
difficult. Designers always seem to be in the
middle of something -- and never at the begin-
ning of something with time to think about
global issues.

We have met designers who are certain that
the development process will be lengthened and
more expensive if they practice the usability
design process. They would be adding on more
work, they reason, and thercfore more time and
effort would be required. This view fails to
recognize that you learn things with this
approach which eliminate a lot of work that
would otherwise go on (see Boies et al., 1985
Gould and Lewis, 1985). Imagine building a
house without knowing pretty much what you
wanted when you started. Without a plan, you
would save some time getting started, but it
would certainly cost vou later.

Experimental psychologists sometimes see
some of our recommended methods as requiring

inordinate drudge work. “I dont want to sit and
watch people for hours in the experiments.”
Observing, listening, and making notes provide
valuable insights that can be gained no other
way. “Why not just completely automate
computer-controlled experiments™ This auto-
mation itsell requires iteration: usually there is
not enough time.

To some, user testing and iterative design
may scem like a pessimistic design philosophy.
Do I always have to start from scratch? When
will we have a scientific, analytic approach that
leads to getting a good user interface right the
first time? User testing and iterative design will
probably always be necessary to be sure you did
get it right the first time. [ven expert bridge
players do not always make their bids,

Nevertheless, there appears to be an increase
in the use of our recommended methods, and an
increased desire on the part of individual design-
ers to try them.

Recent Advances. Two recent conceptual
advances are integrated design and usability engi-
ncering. Tirst, integrated design was added to
the process of Gould and T ewis (1985) bascd
upon the OMS cxperience as a test case of the
other three principles (Gould, ct al., 1987) (sce
Table 2). 1t may prove, organizationally, to be
the hardest to follow.

Second, usability engineering, formulated at
DEC (Good, et al., 1984: 1985), is a methodical,
quantitative way 1o improve usability. Typical-
ly, the design team, in cooperation with human
factors people, develops behavioral goals about
how much better they want their new system to
be than a competitive or previous system. For
example, they may want to reduce turn-around
time of a process control report by 25% or
reduce hot-line questions by 20%. Then in
small formal experiments, participants are given
benchmark tasks to carry out on the new
system. They may also carry out very similar
tasks on the comparison system if these results
may have not been obtained previously. These
comparative results, together with other usability
observations, drive the next iteration on the new
system. The team trics to identify components
of the new system contributing the most to the
comparative results (on the targeted goals of
tumn-around time and hot-line calls in the exam-
ple) and then improve these components. John
Whiteside (personal communication, 1987), the
manager of this DEC human factors group, and
his group have used this approach successfully
on over twenty DEC development projects. As
part of this, the group is increasingly spending

up to fifty per cent of their time in the ficld
(rather in their offices or labs) visiting and
observing customers.

Necessary, But Not Sufficient. Using the
methods advocated here does not guarantee a
GREAT system. The methods are necessary
but not sufficient, as pointed out in Boies et al.
(1985), to achieve acceptable usability. As in all
other professions, designers have a range of abili-
ty. By definition, most systems are designed by
average designers. Practicing usability design
greatly increases the probability that average
designers will design systems with acceplable
usability. Good starting points further help (see
next Section). To go beyond this and design
GREAT systems requires innovation and creati-
vity, as in the invention of the electronic spread-
sheet. Also required is an outstanding leader
and very good, committed people, dedication,
hard work, and lots of self-imposed pressure.

New Technologics. While the usability
design process is certainly useful for development
projects, it is less clear how they relate to the
early stages of very new rescarch technologics
and ideas. When new ideas are just beginning,
they are fragile; potentially good ones can often
be rejected. Imagine some new technical ideas
that hardly exist today, e.g., remote control tech-
nology (maybe eventually it might be used to
control or monitor your fawn mowers, children,
or as a mouse replacement); locator technology
(that might eventually indicate within a few feot
where a particular person or object is, no matter
where in the world it is; would you ever lose
anything again?); a new programming technolo-
gy (with which people might eventually work
very differently); a brain wave recognizer (which
might eventually automatically drive a typewriter
or word processor, or aid in world peace negoti-
ations); storage technology a billion or trillion
times larger than today’s but with “immediate”
response time. The key points with these exam-
ples are that the very tough carly problems are
(a) to demonstrate technical feasibility apart
from any application, and (b) until then it is
hard to study seriously or even envision many
applications that may result from a new technol-
ogy (but not impossible, sce Gould, Conti, and
Hovanyecz, 1983).

Since the original publication of this manual
five years ago, we have learned a good deal
about practicing usability design on very
advanced new technologies, in this case a very
advanced programming technology (Gould,
Boies, and Iewis. 1991).

STARTING POINTS

Where should a designer start when designing
a computer system? There are several beginning
points, prior to talking with potential users.

Define The System

The most important starting point is to
define at least in general terms what the system
will be, c.g., who will use i, what should it do,
and why the users and/or organization will bene-
fit from it. Write these down, so everyone is
getting the same message. Where appropriate,
define in one simple sentence the problem this
system will solve for the customer. While this
may scem obvious and easy, it is our observa-
tion that it is often missing, largely because of
mixed motives, organizational conflicts, and
focus on other things. When this is done, espe-
cially at the outset, great progress has already
been made on the design problem. These goals
are at least as critical in the design space as are
weight, cost, MIPS, disk size, ctc. Try to devel-
op a system that users and their organizations
really want.

Follow-on Systems

Most computer systems are not new. They
are new releases by a vendor of existing systems
(e.g., Lotus 123 (R), version 2), or extensions of
already existing in-housc applications. In effect,
the designer is not getting started, but is already
started. On the one hand the existing release of
a system helps define the new design prohlem,
but on the other hand it puts compatibility
constraints on what the designer may do. The
constraints may involve a trade-off between
establishing positive transfer for the existing
users and greatly improving the system for new
users. Of importance is that the architecture of
an existing system allow for easy change
although it often does not.

New Influential Systems

A frequently used source of ideas for all
aspects of system usability is imitation of key
advances made by designers of related user inter-
faces, manuals, maintenance strategies, training
strategies, and system functions. In user inter.
faces, for example, it appears that many systems
have adopted the use of a mouse, icons,
windows, and desktop metaphor popularized in
the Xerox Star system (sec Smith, Irby, Kimball,
and Verplank, 1982 for descriptions of these
features), or the menu style popularized in Lotus
123,

New Technologies

New technologies are often the driving force
lo create new systems. Examples include very
large-sereen displays, speech recognition, hand-
writing recognition, touch screens. Such projects
involve innovative research. The people
involved attempt to solve very difficult technical
challenges. As a consequence, the work is often
technology-oricnted, designed to demonstrate
feasibility or to contribute to the scientific disci-
plines from which they emanate.

While inventors want to get their ideas into
use, they are not always usability oriented. It is
our view that the mid-stages of the development
process of new technologies can be hastened if a
usability approach as described in the section on
Usability Design Process is taken.

User Circumstances

Sometimes a good starting point is to build
on existing user knowledge, skills, and resources.
What do users expect to happen in certain
circumstances? Users of computers can often
describe how they wish things could be. You
could talk with users in their work environments
or, if appropriate, attend meetings of large user
groups. In the latter case, there are official user
groups associated with most large computer
companies, and a list of these groups has been
recently published (Datamation, 1987). Discuss-
ing advanced research technology with relevant
computer users, e.g., discussing a handmarking
command language with secretaries, can identify
useful directions to pursue. In some large organ-
izations marketing groups sometimes use tech-
niques like “focus groups” to elicit some of this
information. Consistent with our recommenda-
tion of direct involvement of designers with
users, we recommend that designers observe
these sessions, and not get the data second-hand.

Journals, Proceedings, Demonstrations

Paging through journals and proceedings can
be a source of starting ideas. Journals include
Human Factors, Behaviour and Information
Technology, Ergonomics, Human-Computer
Interaction, Infernational Journal of Man-Ma-
chine Studies, ACM journals, particularly
Communications of the ACM. and SIGHCII]
Bulletin. "The Proceedings of the annual meeting
of the TTuman Factors Society (e.g., 1986) and
the Proceedings of Computer Human Inter-
action conferences (e.g., 1986) contain many
relevant papers of the most recent work in the
field. Such articles can he helpful. but they are

usually not written in a tutorial or procedural
way as are, for example, the handbooks
described below. Demonstrations at national
mectings, e.g., SIGCII, and trade-shows can
also be a source of ideas.

Other Designers And Consultants

Talk over your possible system with other
designers. Let the attitudes of successful design-
ers rub off on you. Benefit from lessons they
have learned. These conversations can help you
develop notions of good usability design and
poor usability design. There are many analogics
between designing good computer systems and
designing other types of systems. Draw upon
lessons you have learned, via successes and
mistakes, in other domains. Think about how
carefully you design something very important to
yoursell personally, e.g., a modification or addi-
tion to your house or living system. You proba-
bly have many conversations with your family
(i.e., “the users”) and with friends, architects,
carpenters, clectricians, plumbers, suppliers
before going ahcad with the project. Use this
same sensitivity and care with the computer
system you are designing.

You can obtain a list of possible consultants
by looking in the Directory of the ITuman
Factors Society. Associated with each member’s
name is a one-line description of their speciality
and whether they are available as a consultant.
You can find members living near you via the
geographical area listing in it. University profes-
sors, and their students, are often interested in
consulting and contract work. Try Psychology
Departments and Computer Science Depart-
ments.

Sections on User Interface Standards, Handbooks and
Guidelines, Development Procedures Books and Rules,
and Formal Models for Design omitted because they
duplicate material presented elsewhere in this book or
because they oo rapidly become out-of-date.

SUMMARY AND CONCLUSIONS

Usability is combination of many factors,
each of which is often developed independently.
User interface code is becoming an increasingly
large percentage of the total system code. Stand-
ards are beginning to emerge for user interface
design. Establishing standards for software
aspects of user intcrfaces is probably premature.
There are lots of guidelines for good system
design. However, these are not enough for the
design of good systems. You must at the very
beginning and throughout development focus on
prospective users and their work. We often hear
that people buy computer systems for the func-
tions in them. You are unlikely to figure out
what the functions should be without talking
with users. You must continuously measure
each aspect of usability, and then iteratc in a
hill-climbing way toward a better system. All
aspects of usability should begin evolving from
the very beginning, and should be under one
focus. Tests to date of this recommended
approach lead to the conclusion that it is neces-
sary for the design of a good system, but not
sufficient. Innovation and creativity are still
required to make a great system.

Acknowledgements and References
ommitted in this excerpt...

	page 1
	Images
	Image 1

	Titles
	ABsrRAcr
	TAB!.E 1. Com!",oents of nsability.
	System Functions
	Ii'iTRODUCTION
	t.
	Installation
	Field Maintenance and serviceability
	Advertising
	(J~ahilily lias i\1any Aspects

	page 2
	Titles
	TA fiLE 2. lJ~ahiliC)' Dc..ij!n I'roCl'SS -- Thc Femr Principl~.
	"We didn't anticipate TillS:
	worked:
	INTEGRATED DESIGN
	Us:lbilit). J)~ij!n ProcC$ n 11.c Four Principles
	"What do users REA LL Y want"'?
	U~bilit). J)~iJ:n Pha~cs
	'We arc surprised that..:
	"It worked before..:
	!he manual will take care of this..:
	"We'll take care of it in the NEXT release:
	US,\BJI.ITY DESIGN PROCF~')S
	"eyond Standards, (;uidclincs, Etc.
	living in a ~ea of changes.
	Designers need good tools.

	page 3
	Titles
	. .
	Ie
	:'
	rl
	Users
	fi
	., ome
	(Bennett, 1984, Bury, , .
	19
	83'
	W'I 1980' Me".
	ter 1986' Reitman.Olson, 1985; Rtlbl,:,~lem an.
	n.. g gr
	19
	of
	sv<tem desI
	gn
	Identify t~~ks users must perfonn
	Learn user e~pabilities
	Learn hardware/software constraints
	tenns)
	Sketch out user secnarios
	Dcsign and build prototype
	Test prototype
	test again until:
	Behavioral targets are met
	/\ critical de~dline is renehed
	Install system at customer loe~tion
	acceptance
	How to Design Usable Systems
	97
	Methods Tn CarT)' Oul F~'�rly Fncus On Users
	Dc
	Often
	gr

	page 4
	Titles
	il. cards by insel1ing them in the wr
	rated intu the desi
	Videotaoe Users Working. Make 'd
	mb
	solve desi"" inade
	qu
	~ (0 tahles with lots of
	. a es, Incldentallv
	o talned onlv with
	mucl
	Learn about the W k 0 . .
	man
	s .
	re
	port
	'
	Kentucky Fried Chicken ex .
	Pal1icioali\'e Desil'!n M
	. SIgn IS not Just a
	ood t
	'
	ate in
	de
	. . m eS
	ab'
	.
	ped
	es. omellmes
	19
	5)
	s person was a
	'. eonst! lant and not a full
	, 0 eSlgn a patlenl manito'
	'lv u I
	to
	ph
	partlclpattVe design" Th ' rase
	hod
	of
	etl
	tl
	a$
	Ob,,~, U"" Wmlcin ~" ,h",
	Thinking Alo d I r .
	. ,Ime comments that .
	eati~ns ~f Possib~ec t~~~~k:~~at~~t o~a~h: :1~P
	wait for it 10 wann ~
	ve 10
	Tn: !! Yourself. Sometimes
	rewardlllg to-'--- ,. . can e
	customers

	page 5
	Titles
	TAnLE o. A.lllilion:\! cxnmplcs or teslahlc bchayiural spccifications,
	e.J
	On Task I 8~ol f th d
	ate a query on the dIsplayed query panel using the table .,
	5. Get the current query panel displayed.
	~~~~~s~~~~d bi 
	n sthe P 
	ro~ess .?f 
	creating documents: t~~s, ~;Pd:r~~ng~~f]lg~ 
	es. The S 
	st 
	em 
	II 
	lJlsms suJta c for these users, as evidenced by the ahiJity of at least 8~;.e 
	- 
	Example 3 Nine of t rt' . 
	English, must be-'abl t 
	Ik 
	m hi 
	without wa~ching anyone disc u;; it 1:n~07~~~~u:n;sekin 1 
	n: 
	Example 4. Test partic' t d 
	t .., P 
	~~s~~~~~~sh~o~t~~~~ I~ i~etl~~i:~;~~~E~~~~~i~t~;:,s ~f~~ :~;\~~ 


	page 6
	Titles
	We talked wilh Ihese users about 
	Our preliminary syslem design 
	We watched these users doing their 
	We asked them 10 think aloud M 
	_We did a formal task analysis. 


	page 7
	page 8
	Titles
	forums to get feed hack on usabili- 
	ing. 
	111 our system_ 
	made. . 
	I'rinciplc J. I\eracive I)c<ign 


	page 9
	Titles
	Methuds To C~rry 011\ Iterati\'c D""i\:n 
	Principle 4. InlC\:r:tled D""ign 
	Arc U I MSs and toolkits easy for non-pro- 
	Mcthods To Carry Oul Integra1cd Dc:<ig" 


	page 10
	Images
	Image 1

	Titles
	TA BI.E 11. Checklist for aehie"ing 
	We considered aU aspcets of u""bili. 
	User manual 
	Manuals for subsidiary groups, 
	Identilieation of required func- 
	_User interface 
	- and responsiveness 
	Outreach program. e.g., help 
	_Installation 
	_Field Maintenance 
	Support-group users 
	Evaillation (H The Usahilit)' De"i!:n Pro('css 


	page 11
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Titles
	New Teehnolo~es. While the usability 
	srARTING POINTS 
	Nell' 'nnllcntial Systems 
	New T,'chIlClIClgics 


	page 12
	Titles
	()lh~r J)""igncrs Ami Consollants 
	SUMi\IARY AND CONCI.USIONS 



