
Introduction to OpenCL™
Programming

| Introduction to OpenCL™ Programming | May, 2010 2

Agenda

GPGPU Overview

Introduction to OpenCL™

Getting Started with OpenCL™

OpenCL™ Programming in Detail

The OpenCL™ C Language

Application Optimization and Porting

| Introduction to OpenCL™ Programming | May, 2010 3

GPGPU Overview

| Introduction to OpenCL™ Programming | May, 2010 4

GPGPU Overview

GPGPU Overview

• What is GPU Compute?

• Brief History of GPU Compute

• Heterogeneous Computing

Introduction to OpenCL™

Getting Started with OpenCL™

OpenCL™ Programming in Detail

The OpenCL™ C Language

Application Optimization and Porting

| Introduction to OpenCL™ Programming | May, 2010 5

What is GPGPU?

• General Purpose computation on Graphics
Processing Units

• High performance multi-core processors

• excels at parallel computing

• Programmable coprocessors for other than just
for graphics

| Introduction to OpenCL™ Programming | May, 2010 6

Brief History of GPGPU

• November 2006

• Birth of GPU compute with release of
Close to Metal (CTM) API

• Low level API to access GPU resources

• New GPU accelerated applications

• Folding@Home released with 20-30x speed
increased

| Introduction to OpenCL™ Programming | May, 2010 7

Brief History of GPGPU

• December 2007

• ATI Stream SDK v1 released

| Introduction to OpenCL™ Programming | May, 2010 8

Brief History of GPGPU

• June 2008

• OpenCL™ working group formed under
Khronos™

• OpenCL™ 1.0 Spec released in Dec 2008

• AMD announced adoption of OpenCL™
immediately

• December 2009

• ATI Stream SDK v2 released

• OpenCL™ 1.0 support

| Introduction to OpenCL™ Programming | May, 2010 9

Heterogeneous Computing

• Using various types of computational units

• CPU, GPU, DSP, etc…

• Modern applications interact with various
systems (audio/video, network, etc...)

• CPU scaling unable to keep up

• Require specialized hardware to achieve
performance

| Introduction to OpenCL™ Programming | May, 2010 10

Heterogeneous Computing

• Ability to select most suitable hardware in
heterogeneous system

Serial and Task
Parallel Workloads

Data Parallel
Workloads

Graphics Workloads

Software

Applications

| Introduction to OpenCL™ Programming | May, 2010 11

Introduction to OpenCL™

| Introduction to OpenCL™ Programming | May, 2010 12

GPGPU Overview

GPGPU Overview

Introduction to OpenCL™

• What is OpenCL™?

• Benefits of OpenCL™

• Anatomy of OpenCL™

• OpenCL™ Architecture

• Platform Model

• Execution Model

• Memory Model

Getting Started with OpenCL™

OpenCL™ Programming in Detail

The OpenCL™ C Language

Application Optimization and Porting

| Introduction to OpenCL™ Programming | May, 2010 13

What is OpenCL™?

• Open Computing Language

• Open and royalty free API

• Enables GPU, DSP, co-processors to work in
tandem with CPU

• Released December 2008 by Khronos™
Group

| Introduction to OpenCL™ Programming | May, 2010 14

Benefits of OpenCL™

• Acceleration in parallel processing

• Allows us to manage computational resources

• View multi-core CPUs, GPUs, etc as
computational units

• Allocate different levels of memory

• Cross-vendor software portability

• Separates low-level and high-level software

| Introduction to OpenCL™ Programming | May, 2010 15

Anatomy of OpenCL™

• Language Specification

• Based on ISO C99 with added extension and
restrictions

• Platform API

• Application routines to query system and setup
OpenCL™ resources

• Runtime API

• Manage kernels objects, memory objects, and
executing kernels on OpenCL™ devices

| Introduction to OpenCL™ Programming | May, 2010 16

OpenCL™ Architecture – Platform Model

Host

Compute Device

Compute UnitProcessing
Element

| Introduction to OpenCL™ Programming | May, 2010 17

OpenCL™ Device Example

• ATI Radeon™ HD 5870 GPU

20 Compute Units

| Introduction to OpenCL™ Programming | May, 2010 18

OpenCL™ Device Example

• ATI Radeon™ HD 5870 GPU

1 Stream Core = 5
Processing Elements

1 Compute Unit
Contains 16 Stream
Cores

| Introduction to OpenCL™ Programming | May, 2010 19

OpenCL™ Architecture – Execution Model

• Kernel:

 Basic unit of executable code that runs on
OpenCL™ devices

 Data-parallel or task-parallel

• Host program:

 Executes on the host system

 Sends kernels to execute on OpenCL™
devices using command queue

| Introduction to OpenCL™ Programming | May, 2010 20

Kernels – Expressing Data-Parallelism

• Define N-dimensional computation domain

 N = 1, 2, or 3

 Each element in the domain is called a
work-item

 N-D domain (global dimensions) defines
the total work-items that execute in parallel

 Each work-item executes the same kernel

Process 1024x1024 image:
Global problem dimension: 1024x1024
1 kernel execution per pixel: 1,048,576 total executions

| Introduction to OpenCL™ Programming | May, 2010 21

Kernels: Work-item and Work-group

• Work-items are grouped into work-groups

 Local dimensions define the size of the
workgroups

 Execute together on same compute unit

 Share local memory and synchronization
32

3
2

Synchronization between

work-items possible only

within work-groups

Cannot synchronize

between workgroups

| Introduction to OpenCL™ Programming | May, 2010 22

Kernels: Work-item and Work-group Example

32

3
2

dimension: 2

global size: 32x32=1024

num of groups: 16

8

8
workgroup id: (3,1)

local size: 8x8=64

local id: (4,2)

global id: (28,10)

0,0 1,0

0,1

2,0 3,0

0,2

0,3

| Introduction to OpenCL™ Programming | May, 2010 23

Kernels Example

Scalar Data-Parallel

void square(int n, const float *a,
float *result)

{
int i;
for (i=0; i<n; i++)

result[i] = a[i] * a[i];
}

kernel dp_square (const float *a,
float *result)

{
int id = get_global_id(0);
result[id] = a[id] * a[id];

}

// dp_square executes oven “n” work-
items

| Introduction to OpenCL™ Programming | May, 2010 24

Execution Model – Host Program

• Create “Context” to manage OpenCL™ resources

 Devices – OpenCL™ device to execute kernels

 Program Objects: source or binary that
implements kernel functions

 Kernels – the specific function to execute on the
OpenCL™ device

 Memory Objects – memory buffers common to
the host and OpenCL™ devices

| Introduction to OpenCL™ Programming | May, 2010 25

Execution Model – Command Queue

• Manage execution of kernels

• Accepts:

 Kernel execution commands

 Memory commands

 Synchronization commands

• Queued in-order

• Execute in-order or out-of-order

| Introduction to OpenCL™ Programming | May, 2010 26

Memory Model

Host Memory

Global/Constant Memory

Local Memory

Work-
item

Work-
item

Private
Memory

Private
Memory

Workgroup

Host

Compute Device

Local Memory

Work-
item

Work-
item

Private
Memory

Private
Memory

Workgroup

| Introduction to OpenCL™ Programming | May, 2010 27

Memory Model

• Global – read and write by all work-
items and work-groups

• Constant – read-only by work-items;
read and write by host

• Local – used for data sharing;
read/write by work-items in same
work-group

• Private – only accessible to one
work-item

Host Memory

Global/Constant Memory

Local Memory

Work-
item

Work-
item

Private
Memory

Private
Memory

Workgroup

Host

Compute Device

Local Memory

Work-
item

Work-
item

Private
Memory

Private
Memory

Workgroup

Memory management is explicit
Must move data from host to global to local and back

| Introduction to OpenCL™ Programming | May, 2010 28

Getting Started with OpenCL™

| Introduction to OpenCL™ Programming | May, 2010 29

GPGPU Overview

GPGPU Overview

Introduction to OpenCL™

Getting Started with OpenCL™

• Software Development Environment

• Requirements

• Installation on Windows®

• Installation on Linux®

• First OpenCL™ Program

• Compiling OpenCL™ Source

OpenCL™ Programming in Detail

The OpenCL™ C Language

Application Optimization and Porting

| Introduction to OpenCL™ Programming | May, 2010 30

Software Development Kit

ATI Stream SDK v2
Download free at http://developer.amd.com/stream

| Introduction to OpenCL™ Programming | May, 2010 31

SDK Requirements

Supported Operating Systems:

Supported Compilers:

Windows®: • Windows® XP SP3 (32-bit), SP2 (64-bit)
• Windows® Vista® SP1 (32/64-bit)
• Windows® 7 (32/64-bit)

Linux®: • openSUSE™ 11.1 (32/64-bit)
• Ubuntu® 9.10 (32/64-bit)
• Red Hat® Enterprise Linux® 5.3 (32/64-bit)

Windows®: • Microsoft® Visual Studio® 2008 Professional
Ed.

Linux®: • GNU Compiler Collection (GCC) 4.3 or later
• Intel® C Compiler (ICC) 11.x

| Introduction to OpenCL™ Programming | May, 2010 32

SDK Requirements

Supported GPUs:

ATI Radeon™ HD 5970, 5870, 5850, 5770, 5670, 5570, 5450
4890, 4870 X2, 4870, 4850, 4830,
4770, 4670, 4650, 4550, 4350

ATI FirePro™ V8800, V8750, V8700, V7800, V7750
V5800, V5700, V4800, V3800, V3750

AMD
FireStream™

9270, 9250

ATI Mobility
Radeon™ HD

5870, 5850, 5830, 5770, 5730, 5650, 5470, 5450, 5430
4870, 4860, 4850, 4830, 4670, 4650,
4500 series, 4300 series

ATI Mobility
FirePro™

M7820, M7740, M5800

ATI Radeon™
Embedded

E4690 Discrete GPU

| Introduction to OpenCL™ Programming | May, 2010 33

SDK Requirements

Supported GPU Drivers:

Supported Processors:

 Any X86 CPU with SSE 3.x or later

ATI Radeon™ HD ATI Catalyst™ 10.4

ATI FirePro™ ATI FirePro™ Unified Driver 8.723

AMD
FireStream™

ATI Catalyst™ 10.4

ATI Mobility
Radeon™ HD

ATI Catalyst™ Mobility 10.4

ATI Mobility
FirePro™

Contact the laptop manufacturer for the appropriate
driver

ATI Radeon™
Embedded

Contact the laptop manufacturer for the appropriate
driver

| Introduction to OpenCL™ Programming | May, 2010 34

Installing SDK on Windows®

| Introduction to OpenCL™ Programming | May, 2010 35

Installing SDK on Windows®

| Introduction to OpenCL™ Programming | May, 2010 36

Installing SDK on Linux®

1. Untar the SDK to a location of your choice:

 tar –zxvf ati-stream-sdk-v2.1-lnx32.tgz

2. Add ATISTREAMSDKROOT to environment
variables:

 export ATISTREAMSDKROOT=<your_install_location>

3. If the sample code was installed, add
ATISTREAMSDKSAMPLESROOT to your environment
variables:

 export ATISTREAMSDKSAMPLESROOT=<your_install_location>

| Introduction to OpenCL™ Programming | May, 2010 37

Installing SDK on Linux®

4. Add the appropriate path to the
LD_LIBRARY_PATH:

On 32-bit systems:

 export

LD_LIBRARY_PATH=$ATISTREAMSDKROOT/lib/x86:$LD_

LIBRARY_PATH

On 64-bit systems:

 export

LD_LIBRARY_PATH=$ATISTREAMSDKROOT/lib/x86_64:$L

D_LIBRARY_PATH

| Introduction to OpenCL™ Programming | May, 2010 38

Installing SDK on Linux®

5. Register the OpenCL™ ICD to allow applications to
run by:

 sudo -s

 mkdir –p /etc/OpenCL/vendors

On all systems:

 echo libatiocl32.so > /etc/OpenCL/vendors/atiocl32.icd

On 64-bit systems also perform:

 echo libatiocl64.so > /etc/OpenCL/vendors/atiocl64.icd

| Introduction to OpenCL™ Programming | May, 2010 39

First OpenCL™ Application

see “hello_world.c”

| Introduction to OpenCL™ Programming | May, 2010 40

Compiling on Linux®

• To compile on Linux®:

 gcc –o hello_world –I$ATISTREAMSDKROOT/include

–L$ATISTREAMSDKROOT/lib/x86 hello_world.c -lOpenCL

• To execute the program:

 Ensure LD_LIBRARY_PATH environment
variable is set to find libOpenCL.so, then:

 ./hello_world

| Introduction to OpenCL™ Programming | May, 2010 41

Compiling on Windows® Visual Studio®

• Set include path:

| Introduction to OpenCL™ Programming | May, 2010 42

Compiling on Windows® Visual Studio®

• Set library path:

| Introduction to OpenCL™ Programming | May, 2010 43

Compiling on Windows® Visual Studio®

• Set additional library to link:

| Introduction to OpenCL™ Programming | May, 2010 44

OpenCL™ Programming in Detail

| Introduction to OpenCL™ Programming | May, 2010 45

GPGPU Overview

GPGPU Overview

Introduction to OpenCL™

Getting Started with OpenCL™

OpenCL™ Programming in Detail

• OpenCL™ Application Execution

• Resource Setup

• Kernel Programming and Compiling

• Program Execution

• Memory Objects

• Synchronization

The OpenCL™ C Language

Application Optimization and Porting

| Introduction to OpenCL™ Programming | May, 2010 46

OpenCL™ Program Flow

Context

Programs Kernels
Memory
Objects

Command
Queue

__kernel void
sqr(__global float *input,

__global float *output)
{
size_t id = get_global_id(0);
output[id] = input[id] *

input[id];
}

__kernel void
sqr(__global float *input,

__global float *output)
{
size_t id = get_global_id(0);
output[id] = input[id] *

input[id];
}

__kernel void
sqr(__global float *input,

__global float *output)
{
size_t id = get_global_id(0);
output[id] = input[id] *

input[id];
}

sqr

arg[0] value

arg[1] value

imagesimagesimages

imagesimagesbuffers

Compile Create data & arguments
Send to

execution

In
Order
Queue

Out of
Order
Queue

| Introduction to OpenCL™ Programming | May, 2010 47

Query for Platform IDs

• First Step in any OpenCL™ application

Returns:

 CL_INVALID_VALUE — Platforms and num_platforms is NULL or the number

of entries is 0.

 CL_SUCCESS — The function executed successfully.

cl_platform_id platforms;

cl_uint num_platforms;

cl_int err = clGetPlatfromIDs(

1, // the number of entries that can added to platforms

&platforms, // list of OpenCL found

&num_platforms // the number of OpenCL platforms available

);

| Introduction to OpenCL™ Programming | May, 2010 48

Query for Platform Information

• Get specific info. about the OpenCL™ Platform

• Use
 clGetPlatformInfo()

– platform_profile

– platform_version

– platform_name

– platform_vendor

– platform_extensions

| Introduction to OpenCL™ Programming | May, 2010 49

Query for OpenCL™ Device

• Search for OpenCL™ compute devices in system

cl_device_id device_id;

cl_uint num_of_devices;

err = clGetDeviceIDs(

platform_id, // the platform_id from clGetPlatformIDs

CL_DEVICE_TYPE_GPU, // the device type to search for

1, // the number of ids to add to device_id list

&device_id, // the list of device ids

&num_of_devices) // the number of compute devices found

cl_device_id device_id;

cl_uint num_of_devices;

err = clGetDeviceIDs(

platform_id, // the platform_id retrieved from clGetPlatformIDs

CL_DEVICE_TYPE_GPU, // the device type to search for

1, // the number of ids to add to device_id list

&device_id, // the list of device ids

&num_of_devices // the number of compute devices found

);

| Introduction to OpenCL™ Programming | May, 2010 50

Query for OpenCL™ Device

Supported device types:

 CL_DEVICE_TYPE_CPU

 CL_DEVICE_TYPE_GPU

 CL_DEVICE_TYPE_ACCELERATOR

 CL_DEVICE_TYPE_DEFAULT

 Cl_DEVICE_TYPE_ALL

clGetDeviceIDs() Returns:

 CL_SUCCESS — The function executed successfully.

 CL_INVALID_PLATFORM — Platform is not valid.

 CL_INVALID_DEVICE_TYPE — The device is not a valid value.

 CL_INVALID_VALUE — num_of_devices and devices are NULL.

 CL_DEVICE_NOT_FOUND — No matching OpenCL of device_type was found.

| Introduction to OpenCL™ Programming | May, 2010 51

Query for Device Information

• Get specific info. about the OpenCL™ Device

• Use
 clGetDeviceInfo()

– device_type

– max_compute_units

– max_workgroup_size

– …

| Introduction to OpenCL™ Programming | May, 2010 52

Creating Context

• Manage command queues, program objects,
kernel objects, memory object

cl_context context;

// context properties list - must be terminated with 0

properties[0]= CL_CONTEXT_PLATFORM; // specifies the platform to use

properties[1]= (cl_context_properties) platform_id;

properties[2]= 0;

context = clCreateContext(

properties, // list of context properties

1, // num of devices in the device_id list

&device_id, // the device id list

NULL, // pointer to the error callback function (if required)

NULL, // the argument data to pass to the callback function

&err); // the return code

| Introduction to OpenCL™ Programming | May, 2010 53

Creating Context

clGreateContext() Returns:

 CL_SUCCESS — The function executed successfully.

 CL_INVALID_PLATFORM — Property list is NULL or the platform value is not valid.

 CL_INVALID_VALUE — Either:

– The property name in the properties list is not valid.

– The number of devices is 0.

– The device_id list is null.

– The device in the device_id list is invalid or not associated with the platform.

 CL_DEVICE_NOT_AVAILABLE — The device in the device_id list is currently

unavailable.

| Introduction to OpenCL™ Programming | May, 2010 54

Creating Command Queue

• Allows kernel commands to be sent to
compute devices

cl_command_queue command_queue;

command_queue = clCreateCommandQueue(

context, // a valid context

device_id, // a valid device associated with the context

0, // properties for the queue (not used here)

&err); // the return code

| Introduction to OpenCL™ Programming | May, 2010 55

Create Command Queue

Supported Command Queue Properties:

 CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE

 CL_QUEUE_PROFILING_ENABLE

clCreateCommandQueue() Returns:

 CL_SUCCESS — The function executed successfully.

 CL_INVALID_CONTEXT — The context is not valid.

 CL_INVALID_DEVICE — Either the device is not valid or it is not associated with the

context.

 CL_INVALID_VALUE — The properties list is not valid.

 CL_INVALID_QUEUE_PROPERTIES — The device does not support the properties

specified in the properties list.

| Introduction to OpenCL™ Programming | May, 2010 56

Program Object

• Program – collection of kernel and helper functions

• Function – written in OpenCL™ C Language

• Kernel Function – indentified by __kernel

• Program Object - Encapsulates

 Program sources or binary file

 Latest successful-built program executable

 List of devices for which exec is built

 Build options and build log

• Created online or offline

| Introduction to OpenCL™ Programming | May, 2010 57

Create Program Object Online

• Use clCreateProgramWithSource()

const char *ProgramSource =

"__kernel void hello(__global float *input, __global float *output)\n"\

"{\n"\

" size_t id = get_global_id(0);\n"\

" output[id] = input[id] * input[id];\n"\

"}\n";

cl_program program;

program = clCreateProgramWithSource(

context, // a valid context

1, // the number strings in the next parameter

(const char **) &ProgramSource, // the array of strings

NULL, // the length of each string or can be NULL terminated

&err); // the error return code

| Introduction to OpenCL™ Programming | May, 2010 58

Create Program Object

clCreateProgramWithSource() Returns:

 CL_SUCCESS — The function executed successfully.

 CL_INVALID_CONTEXT — The context is not valid.

 CL_INVALID_VALUE — The string count is 0 (zero) or the string array contains a

NULL string.

• Creating program object offline

 Use clGetProgramInfo() to retrieve program
binary for already created program object

 Create program object from existing program
binary with clCreateProgramWithBinary()

| Introduction to OpenCL™ Programming | May, 2010 59

Building Program Executables

• Compile and link program object created from
clCreateProgramWithSource() or
clCreateProgramWithBinary()

• Create using clBuildProgram()

err = clBuildProgram(

program, // a valid program object

0, // number of devices in the device list

NULL, // device list – NULL means for all devices

NULL, // a string of build options

NULL, // callback function when executable has been built

NULL // data arguments for the callback function

);

| Introduction to OpenCL™ Programming | May, 2010 60

Building Program Executables

Program Build Options – passing additional options to compiler such as preprocessor options or

optimization options

Example:

char * buildoptions = "-DFLAG1_ENABLED -cl-opt-disable "

clBuildProgram() Returns:

 CL_SUCCESS — The function executed successfully.

 CL_INVALID_VALUE — The number of devices is greater than zero, but the device list is empty.

 CL_INVALID_VALUE — The callback function is NULL, but the data argument list is not NULL.

 CL_INVALID_DEVICE — The device list does not match the devices associated in the program object.

 CL_INVALID_BUILD_OPTIONS — The build options string contains invalid options.

| Introduction to OpenCL™ Programming | May, 2010 61

Retrieving Build Log

• Access build log with clGetProgramBuildInfo()

if (clBuildProgram(program, 0, NULL, buildoptions, NULL, NULL) != CL_SUCCESS)

{

printf("Error building program\n");

char buffer[4096];

size_t length;

clGetProgramBuildInfo(

program, // valid program object

device_id, // valid device_id that executable was built

CL_PROGRAM_BUILD_LOG, // indicate to retrieve build log

sizeof(buffer), // size of the buffer to write log to

buffer, // the actual buffer to write log to

&length); // the actual size in bytes of data copied to buffer

printf("%s\n",buffer);

exit(1);

}

| Introduction to OpenCL™ Programming | May, 2010 62

Sample Build Log

| Introduction to OpenCL™ Programming | May, 2010 63

Creating Kernel Objects

• Kernel function identified with qualifier __kernel

• Kernel object encapsulates specified __kernel
function along with the arguments

• Kernel object is what get sent to command queue
for execution

• Create Kernel Object with clCreateKernel()

cl_kernel kernel;

kernel = clCreateKernel(

program, // a valid program object that has been successfully built

"hello", // the name of the kernel declared with __kernel

&err // error return code

);

| Introduction to OpenCL™ Programming | May, 2010 64

Creating Kernel Object

clCreateKernel() Returns:

 CL_SUCCESS — The function executed successfully.

 CL_INVALID_PROGRAM — The program is not a valid program object.

 CL_INVALID_PROGRAM_EXECUTABLE — The program does not contain a

successfully built executable.

 CL_INVALID_KERNEL_NAME — The kernel name is not found in the program object.

 CL_INVALID_VALUE — The kernel name is NULL.

| Introduction to OpenCL™ Programming | May, 2010 65

Setting Kernel Arguments

• Specify arguments that are associated with the
__kernel function

• Use clSetKernelArg()

• Example Kernel function declaration

err = clSetKernelArg(

kernel, // valid kernel object

0, // the specific argument index of a kernel

sizeof(cl_mem), // the size of the argument data

&input_data // a pointer of data used as the argument

);

__kernel void hello(__global float *input, __global float *output)

| Introduction to OpenCL™ Programming | May, 2010 66

Setting Kernel Arguments

• Must use memory object for arguments with
__global or __constant

• Must use image object for arguments with
image2d_t or image3d_t

clSetKernelArg() Returns:

 CL_SUCCESS — The function executed successfully.

 CL_INVALID_PROGRAM — The program is not a valid program object.

 CL_INVALID_PROGRAM_EXECUTABLE — The program does not contain a

successfully built executable.

 CL_INVALID_KERNEL_NAME — The kernel name is not found in the program object.

 CL_INVALID_VALUE — The kernel name is NULL.

| Introduction to OpenCL™ Programming | May, 2010 67

Executing Kernel

• Determine the problem space

• Determine global work size
(total work-items)

• Determine local size (work-
group size – work-items share
memory in work-group)

• Use clGetKernelWorkGroupInfo

to determine max work-group
size

N=1

N=2

N=3

| Introduction to OpenCL™ Programming | May, 2010 68

err = clEnqueueNDRangeKernel(

command_queue, // valid command queue

kernel, // valid kernel object

1, // the work problem dimensions

NULL, // reserved for future revision - must be NULL

&global, // work-items for each dimension

NULL, // work-group size for each dimension

0, // number of event in the event list

NULL, // list of events that needs to complete before this executes

NULL // event object to return on completion

);

Enqueuing Kernel Commands

• Place kernel commands into command queue by
using clEnqueueNDRangeKernel()

size_t local[2]={8,8};

// clGetKernelWorkGoupInfo()

size_t global[2]={512,512};

| Introduction to OpenCL™ Programming | May, 2010 69

Creating Kernel Object

Common clEnqueueNDRangeKernel() Returns:

 CL_SUCCESS — The function executed successfully.

 CL_INVALID_PROGRAM_EXECUTABLE — No executable has been built in the program object for

the device associated with the command queue.

 CL_INVALID_COMMAND_QUEUE — The command queue is not valid.

 CL_INVALID_KERNEL — The kernel object is not valid.

 CL_INVALID_CONTEXT — The command queue and kernel are not associated with the same context.

 CL_INVALID_KERNEL_ARGS — Kernel arguments have not been set.

 CL_INVALID_WORK_DIMENSION — The dimension is not between 1 and 3.

 CL_INVALID_GLOBAL_WORK_SIZE — The global work size is NULL or exceeds the range

supported by the compute device.

 CL_INVALID_WORK_GROUP_SIZE — The local work size is not evenly divisible with the global

work size or the value specified exceeds the range supported by the compute device.

 CL_INVALID_EVENT_WAIT_LIST — The events list is empty (NULL) but the number of events

arguments is greater than 0; or number of events is 0 but the event list is not NULL; or the events list

contains invalid event objects.

| Introduction to OpenCL™ Programming | May, 2010 70

Cleaning Up

• Release resources when execution is complete

clReleaseMemObject(input);

clReleaseMemObject(output);

clReleaseProgram(program);

clReleaseKernel(kernel);

clReleaseCommandQueue(command_queue);

clReleaseContext(context);

• clRelease functions decrement reference count

• Object is deleted when reference count reaches
zero

clReleaseMemObject(input);

clReleaseMemObject(output);

clReleaseProgram(program);

clReleaseKernel(kernel);

clReleaseCommandQueue(command_queue);

clReleaseContext(context);

| Introduction to OpenCL™ Programming | May, 2010 71

Memory Objects

• Allows packaging data and easy transfer to
compute device memory

• Minimizes memory transfers from host and device

• Two types of memory objects:

 Buffer object

 Image object

| Introduction to OpenCL™ Programming | May, 2010 72

Creating Buffer Object

Memory usage flag

CL_MEM_READ_WRITE

CL_MEM_WRITE_ONLY

CL_MEM_READ_ONLY

CL_MEM_USE_HOST_PTR

CL_MEM_COPY_HOST_PTR

CL_MEM_ALLOC_HOST_PTR

cl_mem input;

input = clCreateBuffer(

context, // a valid context

CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, // bit-field flag to specify

// the usage of memory

sizeof(float) * DATA_SIZE, // size in bytes of the buffer to allocated

inputsrc, // pointer to buffer data to be copied from host

&err // returned error code

);

| Introduction to OpenCL™ Programming | May, 2010 73

err = clEnqueueReadBuffer(

command_queue, // valid command queue

output, // memory buffer to read from

CL_TRUE, // indicate blocking read

0, // the offset in the buffer object to read from

sizeof(float) *DATA_SIZE, // size in bytes of data being read

results, // pointer to buffer in host mem to store read data

0, // number of event in the event list

NULL, // list of events that needs to complete before this executes

NULL // event object to return on completion

);

Reading/Writing Buffer Objects

err = clEnqueueWriteBuffer(

command_queue, // valid command queue

input, // memory buffer to write to

CL_TRUE, // indicate blocking write

0, // the offset in the buffer object to write from

sizeof(float) *DATA_SIZE, // size in bytes of data being read

host_ptr, // pointer to buffer in host mem to read data from

0, // number of event in the event list

NULL, // list of events that needs to complete before this executes

NULL // event object to return on completion

);

| Introduction to OpenCL™ Programming | May, 2010 74

Read/Writing Buffer Objects

clEnqueueReadBuffer and clEnqueueWriteBuffer () Returns:

 CL_SUCCESS — The function executed successfully.

 CL_INVALID_COMMAND_QUEUE — The command queue is not valid

 CL_INVALID_CONTEXT — The command queue buffer object is not associated with the

same context.

 CL_INVALID_VALUE — The region being read/write specified by the offset is out of

bounds or the host pointer is NULL.

 CL_INVALID_EVENT_WAIT_LIST — Either:

– The events list is empty (NULL), but the number of events argument is greater than 0

– The number of events is 0, but the event list is not NULL

– The events list contains invalid event objects.

| Introduction to OpenCL™ Programming | May, 2010 75

Creating Image Object

• Built in support for representing image data

image2d = clCreateImage2D()

context, // valid context

flags, // bit-field flag to specify usage of memory

image_format, // ptr to struct that specifies image format properties

width, // width of the image in pixels

height, // height of the image in pixels

row_pitch, // scan line row pitch in bytes

host_ptr, // pointer to image data to be copied from host

&err // error return code

);

• For 3D image object use clCreateImage3D()

 Specify depth, and slice pitch

image2d = clCreateImage2D()

context, // valid context

flags, // bit-field flag to specify usage of memory

image_format, // ptr to struct that specifies image format properties

width, // width of the image in pixels

height, // height of the image in pixels

row_pitch, // scan line row pitch in bytes

host_ptr, // pointer to image data to be copied from host

&err // error return code

);

| Introduction to OpenCL™ Programming | May, 2010 76

Channel Order and Channel Data Type

• Built in support for representing image data

typedef struct _cl_image_format {

cl_channel_order image_channel_order;

cl_channel_type image_channel_data_type;

} cl_image_format;

• Channel Ordering:

 CL_RGB, CL_ARGB, CL_RGBA, CL_R, etc…

• Channel Data Types:

 CL_SNORM_INT8,CL_UNORM_INT16, CL_FLOAT,
CL_UNSIGNED_INT32

// Example:

cl_image_format image_format;

image_format.image_channel_data_type = CL_FLOAT;

image_format.image_channel_order = CL_RGBA;

| Introduction to OpenCL™ Programming | May, 2010 77

err = clEnqueueReadImage (

command_queue, // valid command queue

image, // valid image object to read from

blocking_read, // blocking flag, CL_TRUE or CL_FALSE

origin_offset, // (x,y,z) offset in pixels to read from z=0 for 2D image

region, //(width,height,depth) in pixels to read from, depth=1 for 2D image

row_pitch, // length of each row in bytes

slice_pitch, // size of each 2D slice in the 3D image in bytes, set to 0 for 2D image

host_ptr, // host memory pointer to store write image object data to

num_events, // number of events in events list

event_list, // list of events that needs to complete before this executes

&event // event object to return on completion

);

Reading/Writing Image Objects

err = clEnqueueWriteImage (

command_queue, // valid command queue

image, // valid image object to write to

blocking_read, // blocking flag, CL_TRUE or CL_FALSE

origin_offset, // (x,y,z) offset in pixels to write to z=0 for 2D image

region, //(width,height,depth) in pixels to write to, depth=1 for 2D image

row_pitch, // length of each row in bytes

slice_pitch, // size of each 2D slice in the 3D image in bytes, 0 for 2D image

host_ptr, // host memory pointer to store read data from

num_events, // number of events in events list

event_list, // list of events that needs to complete before this executes

&event // event object to return on completion

);

| Introduction to OpenCL™ Programming | May, 2010 78

Reading/Writing Image Objects

Common clEnqueueReadImage() and clEnqueueWriteImage() Return Codes:

 CL_SUCCESS — The function executed successfully.

 CL_INVALID_COMMAND_QUEUE — The command queue is not valid.

 CL_INVALID_CONTEXT — The command queue and image object are not associated with

the same context.

 CL_INVALID_MEM_OBJECT — The image object is not valid

 CL_INVALID_VALUE — The region being read/write specified by the origin_offset and

region is out of bounds or the host pointer is NULL.

 CL_INVALID_VALUE — The image object is 2D and origin_offset[2] (y component) is not

set to 0, or region[2] (depth component) is not set to 1.

 CL_INVALID_EVENT_WAIT_LIST — Either: The events list is empty (NULL), but the

number of events argument is greater than 0; or number of events is 0, but the event list is not

NULL; or the events list contains invalid event objects.

| Introduction to OpenCL™ Programming | May, 2010 79

Retaining and Releasing Memory Objects

• On creation reference counter set to “1”

• Counter used to track the number of references to
the particular memory object

• Object retain reference by using:

 clRetainMemObject()

• Object decrement reference by using:

 clReleaseMemObject ()

• Memory Object freed when reference counter = 0

| Introduction to OpenCL™ Programming | May, 2010 80

Synchronization

• Kernel queued may not execute immediately

• Force kernel execution by using blocking call

 Set CL_TRUE flag for clEuqueueRead*/Write*

• Use event to track execution status of kernels
without blocking host application

• Queue can execute commands

 in-order

 out-of-order

• clEnqueue*(...,num_events, events_wait_list, event_return)

 Number of events to wait on

 A list of events to wait on

 Event to return

| Introduction to OpenCL™ Programming | May, 2010 81

Synchronization Example 1: In-order Queue

Command Queue

E
n

q
u

e
u

e
 K

e
rn

e
l
1

E
n

q
u

e
u

e
 K

e
rn

e
l
2

Kernel 2 waits until

Kernel 1 is finished

Kernel 2

Time

GPU Kernel 1

| Introduction to OpenCL™ Programming | May, 2010 82

Two Command Queues Unsynchronized

Command Queue

E
n

q
u

e
u

e
 K

e
rn

e
l
1

E
n

q
u

e
u

e
 K

e
rn

e
l
2

Kernel 2 starts before

the results from

Kernel 1 is ready

Kernel 2CPU

Time

GPU Kernel 1

Command Queue

| Introduction to OpenCL™ Programming | May, 2010 83

Two Command Queues Synchronized

Command Queue

E
n

q
u

e
u

e
 K

e
rn

e
l
1

E
n

q
u

e
u

e
 K

e
rn

e
l
2

Kernel 2 waits for an

event from Kernel 1

indicating it is finished

Kernel 2CPU

Time

GPU Kernel 1

Command Queue

Event

| Introduction to OpenCL™ Programming | May, 2010 84

Additional Event Functions

• Host block until all events in wait list are complete

 clWaitForEvents(num_events, event_list)

• OpenCL block until all events in wait list are
complete

 clEnqueueWaitForEvents(queue,num_events, event_list)

• Tracking events by using event marker

 clEnqueueMarker(queue, *event_return)

| Introduction to OpenCL™ Programming | May, 2010 85

Query Event Information

• Get status of command associated with event

 clEventInfo(event, param_name, param_size, …)

CL_EVENT_COMMAND_QUEUE Command queue associated with event

CL_EVENT_COMMAND_TYPE CL_COMMAND_NDRANGE_KERNEL,
CL_COMMAND_READ_BUFFER
CL_COMMAND_WRITE_BUFFER
…

CL_EVENT_COMMAND_
EXECUTION_STATUS

CL_QUEUED, CL_SUBMITTED,
CL_RUNNING, CL_COMPLETE

CL_EVENT_REFERENCE_COUNT Reference counter of the event object

| Introduction to OpenCL™ Programming | May, 2010 86

Exercise 1

Complete code to swap 2 arrays.
See “e1/exercise1.c”

| Introduction to OpenCL™ Programming | May, 2010 87

OpenCL™ C Language

| Introduction to OpenCL™ Programming | May, 2010 88

GPGPU Overview

GPGPU Overview

Introduction to OpenCL™

Getting Started with OpenCL™

OpenCL™ Programming in Detail

The OpenCL™ C Language

• Restrictions

• Data Types

• Type Casting and Conversions

• Qualifiers

• Built-in Functions

Application Optimization and Porting

| Introduction to OpenCL™ Programming | May, 2010 89

OpenCL™ C Language

• Language based on ISO C99

 Some restrictions

• Additions to language for parallelism

 Vector types

 Work-items/group functions

 Synchronization

• Address Space Qualifiers

• Built-in Functions

| Introduction to OpenCL™ Programming | May, 2010 90

OpenCL™ C Language Restrictions

• Key restriction in the OpenCL™ language are:

 No function pointers

 No bit-fields

 No variable length arrays

 No recursion

 No standard headers

| Introduction to OpenCL™ Programming | May, 2010 91

Data Types

Scalar Type Vector Type
(n = 2, 4, 8, 16)

API Type for host app

char, uchar charn, ucharn cl_char<n>, cl_uchar<n>

short, ushort shortn, ushortn cl_short<n>, cl_ushort<n>

int, uint intn, uintn cl_int<n>, cl_uint<n>

long, ulong longn, ulongn cl_long<n>, cl_ulong<n>

float floatn cl_float<n>

| Introduction to OpenCL™ Programming | May, 2010 92

Using Vector Types

• Creating vector from a set of scalar set

float4 f = (float4)(1.0f, 2.0f, 3.0f, 4.0f);

uint4 u = (uint4)(1); // u will be (1, 1, 1, 1)

float4 f = (float4)((float2)(1.0f, 2.0f), (float2)(3.0f, 4.0f));

float4 f = (float4)(1.0f, 2.0f); // error

| Introduction to OpenCL™ Programming | May, 2010 93

Accessing Vector Components

• Accessing components for vector types with 2 or 4
components

 <vector2>.xy, <vector4>.xyzw

float2 pos;

pos.x = 1.0f;

pos.y = 1.0f;

pos.z = 1.0f ; // illegal since vector only has 2 components

float4 c;

c.x = 1.0f;

c.y = 1.0f;

c.z = 1.0f;

c.w = 1.0f;

| Introduction to OpenCL™ Programming | May, 2010 94

Accessing Vector with Numeric Index

float8 f;

f.s0 = 1.0f; // the 1st component in the vector

f.s7 = 1.0f; // the 8th component in the vector

float16 x;

f.sa = 1.0f; // or f.sA is the 10th component in the vector

f.sF = 1.0f; // or f.sF is the 16th component in the vector

Vector components Numeric indices

2 components 0, 1

4 components 0, 1, 2, 3

8 components 0, 1, 2, 3, 4, 5, 6, 7

16 components 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
a, A, b, B, c, C, e, E, f, F

| Introduction to OpenCL™ Programming | May, 2010 95

Handy addressing of Vector Components

float4 f = (float4) (1.0f, 2.0f, 3.0f, 4.0f);

float2 low, high;

float2 o, e;

low = f.lo; // returns f.xy (1.0f, 2.0f)

high = f.hi; // returns f.zw (3.0f, 4.0f)

o = f.odd; // returns f.yw (2.0f, 4.0f)

e = f.even; // returns f.xz (1.0f, 3.0f)

Vector access suffix Returns

.lo Returns the lower half of a vector

.hi Returns the upper half of a vector

.odd Returns the odd components of a vector

.even Returns the even components of a vector

| Introduction to OpenCL™ Programming | May, 2010 96

Vector Operations

• Support all typical C operator +,-,*,/,&,| etc.

 Vector operations performed on each
component in vector independently

// example 1:

int4 vi0, vi1;

int v;

vi1 = vi0 + v;

//is equivalent to:

vi1.x = vi0.x + v;

vi1.y = vi0.y + v;

vi1.z = vi0.z + v;

vi1.w = vi0.w + v;

// example 2:

float4 u, v, w;

w = u + v

w.odd = v.odd + u.odd;

// is equivalent to:

w.x = u.x + v.x;

w.y = u.y + v.y;

w.z = u.z + v.z;

w.w = u.w + v.w;

w.y = v.y + u.y;

w.w = v.w + u.w;

| Introduction to OpenCL™ Programming | May, 2010 97

Type Casting and Conversions

• Implicit conversion of scalar and pointer types

• Explicit conversion required for vector types

// implicit conversion

int i;

float f = i;

int4 i4;

float4 = i4; // not allowed

// explicit conversion through casting

float x;

int i = (int)x;

int4 i4;

float4 f = (float4) i4; // not allowed

| Introduction to OpenCL™ Programming | May, 2010 98

Explicit Conversions

• Use built-in conversion functions for explicit
conversion (support scalar & vector data types)

 convert_<destination_type>(source_type)

int4 i;

float4 f = convert_float4(i); // converts an int4 vector to float4

float f;

int i = convert_int(f); // converts a float scalar to an integer scalar

int8 i;

float4 f = convert_float4(i); // illegal – components in each vectors must be the same

| Introduction to OpenCL™ Programming | May, 2010 99

Rounding Mode and Out of Range Conversions

convert_<destination_type><_sat><_roundingMode>(source_type)

• _sat clamps out of range value to nearest
representable value

 Support only integer type

 Floating point type following IEEE754 rules

• <_roundingMode> specifies the rounding mode

_rte round to nearest even

_rtz round to nearest zero

_rtp round towards positive infinity

_rtn round towards negative infinity

no modifier default to _rtz for integer
defaults to _rte for float point

| Introduction to OpenCL™ Programming | May, 2010 100

Rounding Examples

float4 f = (float4)(-1.0f, 252.5f, 254.6f, 1.2E9f);

uchar4 c = convert_uchar4_sat(f);

// c = (0, 253, 255, 255)

// negative value clamped to 0, value > TYPE MAX is set to the type MAX

// -1.0 clamped to 0, 1.2E9f clamped to 255

float4 f = (float4)(-1.0f, 252.5f, 254.6f, 1.2E9f);

uchar4 c = convert_uchar4_sat_rte(f);

// c = (0, 252, 255, 255)

// 252.5f round down to near even becomes 252

int4 i;

float4 = convert_float4(i);

// convert to floating point using the default rounding mode

int4 i;

float4 = convert_float4_rtp(i);

// convert to floating point. Integers values not representable as float

// is round up to the next representable float

| Introduction to OpenCL™ Programming | May, 2010 101

Reinterpret Data

• Scalar and Vector data can be reinterpreted as another
data type

 as_<typen>(value)

• Reinterpret bit pattern in the source to another without
modification

uint x = as_uint(1.0f);

// x will have value 0x3f800000

uchar4 c;

int4 d = as_int4(c); // error. result and operand have different size

| Introduction to OpenCL™ Programming | May, 2010 102

Address Space Qualifiers

• __global

 memory objects allocated in global memory pool

• __local

 fast local memory pool

 sharing between work-items

• __constant

 read-only allocation in global memory pool

• __private

 accessible by work-item

 kernel arguments are private

| Introduction to OpenCL™ Programming | May, 2010 103

Address Space Qualifiers

• All functions including the __kernel function and
their arguments variable are __private

• Arguments to __kernel function declared as a
pointer must use __global, __local, or
__constant

• Assigning pointer address from on space to
another is not allowed;

• Casting from one space to another can cause
unexpected behavior.

__global float *ptr // the pointer ptr is declared in the __private address space and

// points to a float that is in the __global address space

int4 x // declares an int4 vector in the __private address

| Introduction to OpenCL™ Programming | May, 2010 104

Image Qualifiers

• Access qualifier for image memory object passed
to __kernel can be:

 __read_only (default)

 __write_only

• Kernel cannot read and write to same image
memory object

__kernel void myfunc(__read_only image2d_t inputImage,

__write_only image2d_t outputImage)

| Introduction to OpenCL™ Programming | May, 2010 105

Work-item Functions

// returns the number of dimensions of the data problem space

uint get_work_dim()

// returns the number total work-items for the specified dimension

size_t get_global_size(dimidx)

// returns the number of local work-items in the work-group specified by dimension

size_t get_local_size(dimidx)

// returns the unique global work-item ID for the specified dimension

size_t get_global_id(dimidx)

// returns the unique local work-item ID in the work-group for the specified dimension

size_t get_local_id(dimidx)

// returns the number of work-groups for the specified dimension

size_t get_num_groups(dimidx)

// returns the unique ID of the work-group being processed by the kernel

size_t get_group_id(dimidx)

| Introduction to OpenCL™ Programming | May, 2010 106

Example Work-item Functions

__kernel void square(__global int *input, __global int *output)

{

size_t id = get_global_id(0);

output[id] = input[id] * input[id];

}

4 5 2 7 1 0 9 3 1 2 7 8 5 6 1 6

16 25 4 49 1 0 81 9 1 4 49 64 25 36 1 36

input

output

get_global_id(0) = 6

9

81

| Introduction to OpenCL™ Programming | May, 2010 107

Example Work-item Functions

4 5 2 7 1 0 9 3 1 2 7 8 5 6 1 6

get_global_size(0)  16

get_work_dim()  1

get_local_size(0)  8

get_num_groups(0)  2

4 5 2 7 1 0 9 3 1 2 7 8 5 6 1 6

get_group_id(0)  0 get_group_id(0)  1

get_local_id(0)  5

get_global_id(0)  13

6

| Introduction to OpenCL™ Programming | May, 2010 108

Synchronization Functions

• Used to synchronize between work-items

• Synchronization occur only within work-group

• OpenCL uses barrier and fence

• Barrier – blocks current work-item until all work-
item in the work-group hits the barrier

• Fence – ensures all reads or writes before the
memory fence have committed to memory

void barrier(mem_fence_flag)

void mem_fence(mem_fence_flag) // orders read and writes operations before the fence

void read_mem_fence(mem_fence_flag) // orders only reads before the fence

void write_mem_fence(mem_fence_flag) // orders only writes before the fence

| Introduction to OpenCL™ Programming | May, 2010 109

Exercise 2

Complete kernel function perform
matrix tranpose.

See “e2/transposeMatrix_kernel.cl”

| Introduction to OpenCL™ Programming | May, 2010 110

Application Optimization and Porting

| Introduction to OpenCL™ Programming | May, 2010 111

GPGPU Overview

GPGPU Overview

Introduction to OpenCL™

Getting Started with OpenCL™

OpenCL™ Programming in Detail

The OpenCL™ C Language

Application Optimization and Porting

•Debugging OpenCL™

•Performance Measurement

•General Optimization Tips

• Porting CUDA to OpenCL™

| Introduction to OpenCL™ Programming | May, 2010 112

Debugging OpenCL™

• Debugging OpenCL™ kernels in Linux® using GDB

• Setup:

 Enable debugging when building program object

 Without modifying source, set environment var

 Set kernel to execute on CPU device ensure
kernel is executed deterministically

err = clBuildProgram(program, 1, devices, "-g", NULL, NULL);

export CPU_COMPILER_OPTIONS=-g

export CPU_MAX_COMPUTE_UNITS=1

| Introduction to OpenCL™ Programming | May, 2010 113

Using GDB

• Setting Breakpoints:

• Setting Breakpoint for a kernel function

 Use construct __OpenCL_function_kernel

• Conditional breakpoint

b linenumber

b function_name | kernel_function_name

__kernel void square(__global int *input, __global int * output)

b __OpenCL_square_kernel

b __OpenCL_square_kernel if get_global_id(0) == 5

| Introduction to OpenCL™ Programming | May, 2010 114

Performance Measurement

• Built-in mechanism for timing kernel execution

• Enable profiling when creating queue with queue
properties CL_QUEUE_PROFILING_ENABLE

• Use clGetEvenProfilingInfo() to retrieve timing
information

• ATI Stream Profiler plug-in for Visual Studio®

err = clGetEventProfilingInfo(

event, // the event object to get info for

param_name // the profiling data to query - see list below

param_value_size // the size of memory pointed by param_value

param_value // pointer to memory in which the query result is returned

param_actual_size // actual number of bytes copied to param_value

);

| Introduction to OpenCL™ Programming | May, 2010 115

Get Profiling Data with Built-in functions

cl_event myEvent;

cl_ulong startTime, endTime;

clCreateCommandQueue (…, CL_QUEUE_PROFILING_ENABLE, NULL);

clEnqueueNDRangeKernel(…, &myEvent);

clFinish(myCommandQ); // wait for all events to finish

clGetEventProfilingInfo(myEvent, CL_PROFILING_COMMAND_START,

sizeof(cl_ulong), &startTime, NULL);

clGetEventProfilingInfo(myEvent, CL_PROFILING_COMMAND_END,

sizeof(cl_ulong), &endTime, NULL);

cl_ulong elapsedTime = endTime-startTime;

Profiling Data ulong counter (nanoseconds)

CL_PROFILING_COMMAND_QUEUE When command is enqueued

CL_PROFILING_COMMAND_SUBMIT When the command has been
submitted to device for execution

CL_PROFILING_COMMAND_START When command started execution

CL_PROFILING_COMMAND_END When command finished execution

| Introduction to OpenCL™ Programming | May, 2010 116

General Optimization Tips

• Use local memory

• Specific work-group size

• Loop Unrolling

• Reduce Data and Instructions

• Use built-in vector types

| Introduction to OpenCL™ Programming | May, 2010 117

General Optimization Tips

• Use local memory

 Local memory order of magnitude faster

 Work-items in the same work-group share fast
local memory

 Efficient memory access using collaborative
read/write to local memory

| Introduction to OpenCL™ Programming | May, 2010 118

General Optimization Tips

• Work-group division

 Implicit

 Explicit – recommended

 AMD GPUs optimized for work-group size
multiple of 64.

 Use clGetDeviceInfo() or
clGetKernelWorkGroupInfo() to determine
max group size

| Introduction to OpenCL™ Programming | May, 2010 119

General Optimization Tips

• Loop unrolling

 Overhead to evaluate control-flow and execute
branch instructions

 ATI Stream SDK OpenCL™ compiler performs
simple loop unroll

 Complex loop benefit from manual unroll

 Image Convolution tutorial of loop unrolling at

http://developer.amd.com/gpu/ATIStreamSDK/ImageConvol
utionOpenCL/Pages/ImageConvolutionUsingOpenCL.aspx

http://developer.amd.com/gpu/ATIStreamSDK/ImageConvolutionOpenCL/Pages/ImageConvolutionUsingOpenCL.aspx
http://developer.amd.com/gpu/ATIStreamSDK/ImageConvolutionOpenCL/Pages/ImageConvolutionUsingOpenCL.aspx

| Introduction to OpenCL™ Programming | May, 2010 120

General Optimization Tips

• Use built-in vector types

 Generate efficiently-packed SSE instructions

 AMD CPUs and GPUs benefit from vectorization

• Reduce Data and Instructions

 Use smaller version of data set for easy
debugging and optimization

 Performance optimization for smaller data set
benefits full-size data set

 Use profiler data to time data set

| Introduction to OpenCL™ Programming | May, 2010 121

Exercise 3

Complete kernel function perform matrix
multiplication using local memory.

See “e3/multMatrix_kernel.cl”

| Introduction to OpenCL™ Programming | May, 2010 122

Matrix Multiplication

// simple matrix multiplication

__kernel void multMatrixSimple(__global float *mO, __global float *mA, __global float *mB,

uint widthA, uint widthB)

{

int globalIdx = get_global_id(0);

int globalIdy = get_global_id(1);

float sum =0;

for (int i=0; i< widthA; i++)

{

float tempA = mA[globalIdy * widthA + i];

float tempB = mB[i * widthB + globalIdx];

sum += tempA * tempB;

}

mO[globalIdy * widthA + globalIdx] = sum;

}

| Introduction to OpenCL™ Programming | May, 2010 123

Optimizing Matrix Multiplication

Matrix

Multiplication using

local memory

| Introduction to OpenCL™ Programming | May, 2010 124

Porting CUDA to OpenCL™

• General terminology

C for CUDA Terminology OpenCL™ Terminology

Thread Work-item

Thread block Work-group

Global memory Global memory

Constant memory Constant memory

Shared memory Local memory

Local memory Private memory

| Introduction to OpenCL™ Programming | May, 2010 125

Porting CUDA to OpenCL™

• Qualifiers

C for CUDA Terminology OpenCL™ Terminology

__global__ function __kernel function

__device__function function (no qualifier required)

__constant__ variable declaration __constant variable declaration

__device__ variable declaration __global variable declaration

__shared__ variable declaration __local variable declaration

| Introduction to OpenCL™ Programming | May, 2010 126

Porting CUDA to OpenCL™

• Kernel Indexing

C for CUDA Terminology OpenCL™ Terminology

gridDim get_num_groups()

blockDim get_local_size()

blockIdx get_group_id()

threadIdx get_local_id()

No direct global index – needs to
be calculated

get_global_id()

No direct global size – needs to be
calculated

get_global_size()

| Introduction to OpenCL™ Programming | May, 2010 127

Porting CUDA to OpenCL™

• Kernel Synchronization

C for CUDA Terminology OpenCL™ Terminology

__syncthreads() barrier()

__threadfence() no direct equivalent

__threadfence_block() mem_fence()

No direct equivalent read_mem_fence()

No direct equivalent write_mem_fence()

| Introduction to OpenCL™ Programming | May, 2010 128

Porting CUDA to OpenCL™

• General API Terminology

C for CUDA Terminology OpenCL™ Terminology

CUdevice cl_device_id

CUcontext cl_context

CUmodule cl_program

CUfunction cl_kernel

CUdeviceptr cl_mem

No direct equivalent cl_command_queue

| Introduction to OpenCL™ Programming | May, 2010 129

Porting CUDA to OpenCL™

• Host API CallsC for CUDA Terminology OpenCL™ Terminology

cuInit() No OpenCL™ initialization
required

cuDeviceGet() clGetContextInfo()

cuCtxCreate() clCreateContextFromType()

No direct equivalent clCreateCommandQueue()

cuModuleLoad() Requires pre-
compiled binary.

clCreateProgramWithSource() or
clCreateProgramWithBinary()

No direct equivalent. CUDA
programs are compiled off-line

clBuildProgram()

cuModuleGetFunction() clCreateKernel()

cuMemAlloc() clCreateBuffer()

| Introduction to OpenCL™ Programming | May, 2010 130

Porting CUDA to OpenCL™

• Host API CallsC for CUDA Terminology OpenCL™ Terminology

cuMemcpyHtoD() clEnqueueWriteBuffer()

cuMemcpyDtoH() clEnqueueReadBuffer()

cuFuncSetBlockShape() No direct equivalent; functionality is
part of clEnqueueNDRangeKernel()

cuParamSeti() clSetKernelArg()

cuParamSetSize() No direct equivalent; functionality is
part of clSetKernelArg()

cuLaunchGrid() clEnqueueNDRangeKernel()

cuMemFree() clReleaseMemObj()

| Introduction to OpenCL™ Programming | May, 2010 131

Please forward all feedback or information requests regarding
this training course to streamcomputing@amd.com

| Introduction to OpenCL™ Programming | May, 2010 132

Disclaimer and Attribution

DISCLAIMER
The information presented in this document is for informational purposes only and may contain technical
inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons,
including but not limited to product and roadmap changes, component and motherboard version changes, new
model and/or product releases, product differences between differing manufacturers, software changes, BIOS
flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise this
information. However, AMD reserves the right to revise this information and to make changes from time to time
to the content hereof without obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND
ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR
IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT,
SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED
HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

TRADEMARK ATTRIBUTION
© 2010 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ATI, the ATI logo, Catalyst,
Radeon, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Microsoft, Windows, Vista and
Visual Studio are registered trademarks, of Microsoft Corporation in the United States and/or other jurisdictions.
Other names used in this presentation are for identification purposes only and may be trademarks of their
respective owners. OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permissions by Khronos.

