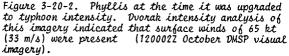


TYPHOON PHYLLIS (20W)

Typhoon Phyllis was the first of four significant tropical cyclones to develop in the monsoon trough during a two day period. Three of these would form in WESTPAC, with the fourth, Tropical Cyclone 02B developing in the Bay of Bengal. Of the four, Phyllis was by far the strongest, reaching a maximum intensity of 80 kt (41 m/s). However, despite its strength, Phyllis caused no reported damage as it remained over water throughout its life.

As an intenisfying Typhoon Ogden began to accelerate to the northeast on 7 October, a broad area of troughing and low-level convergence persisted in its wake. By late on the 7th, the seedling of Phyllis was being analyzed as a weak surface circulation embedded in the trough east of Guam. During the next day-and-a-half, the disturbance drifted to the northeast with no significant development noted. Figure 3-20-1 depicts the surface situation at 0900002 as Phyllis finally began to develop. A broad trough extends southwest from Typhoon Ogden across Guam and into the Philippine Sea. Embedded in this trough are two circulations; one to the northeast and one to the southwest of Guam. These would later develop into Typhoon Phyllis and Tropical Storm Roy respectively.

Although surface synoptic data was sparse near the circulation northeast of Guam, satellite imagery during the 9th and into the 10th indicated that a compact circulation was developing. This resulted in a TCFA being issued at 1006302. At the time the TCFA was issued, Dvorak intensity analysis indicated that surface winds of 25 kts (13m/s) were present.


Figure 3-20-1. Surface analysis at the time Typhoon Phyllis and Tropical Storm Roy began to develop (0900002 October 1984).

The first warning on Phyllis was issued at 1100002 after satellite imagery indicated the disturbance had intensified further and now supported winds of 35 kt (18 m/s). By now Phyllis had nearly detached from the trough and would soon begin to accelerate to the north. During the next twenty-four hours Phyllis intensified rapidly reaching typhoon strength by 1200002. The upgrade to typhoon status was based upon reports from reconnaissance aircraft and from Dvorak intensity analysis of Figure 3-20-2.

Phyllis continued to strengthen reaching a maximum intensity of 80 kt (41 m/s) twelve hours later at 1212002. At the time Phyllis attained its peak intensity, it was located under a well-defined synoptic scale anticyclone (Figure 3-20-3). This anticyclone provided good outflow to all quadrants of the storm. As Phyllis moved north, however, the anticyclone would remain quasi-stationary near Marcus Island (Minami Tori-Shima (WMO 47991)). As a result, less than twelve hours later Phyllis would enter the 50 to 70 kt (26 to 39 m/s) westerly flow and begin to shear and weaken.

Typhoon Phyllis maintained a predominantly northward track from the time it separated from the monsoon trough until it began to dissipate. The initial movement northward was a result of Typhoon Ogden weakening and displacing the subtropical ridge to the east. As Phyllis began to move north, a digging mid-latitude shortwave formed a vigorous cut-off low south of Honshu. This allowed the ridge east of Phyllis to rapidly build back northward, keeping Phyllis under a strong southerly steering flow. This southerly flow resulted in Phyllis accelerating to the north and prevented the typhoon from following a more typical recurvature track to the northeast.

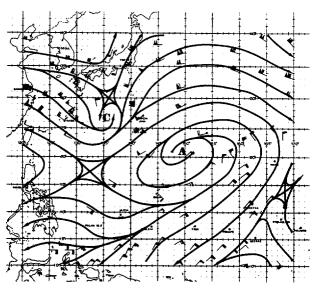
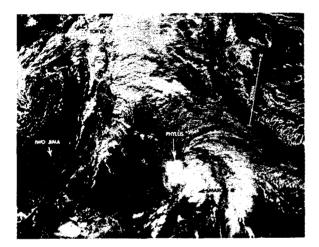



Figure 3-20-3. 200 mb analysis at the time Typhoon Phyllis attained maximum intensity. The synoptic scale anticyclone is located directly over Phyllis. The mid-level cut-off low south of Honshu extended through the 200 mb level (1212002 October 1984).

As Phyllis passed north of 25N, the cut-off low with its associated frontal system began to accelerate to the northeast. At the same time, Phyllis began to encounter the strong upper-level westerlies and the convection was displaced to the east of the low-level circulation (Figure 3-20-4). Phyllis responded by weakening at an even faster rate than it had earlier intensified.

The last aircraft reconnaissance mission was flown into Phyllis late on 13 October and found only a trough at the 700 mb level where less than twelve hours earlier, a well-developed circulation existed. At the surface, however, the

Figure 3-20-4. Typhoon Phyllis as it began to weaken under strong upper-level wind shear. Note the extratropical low with its associated frontal system to the west (1223422 October DMSP visual imagery).

aircraft still found a 999 mb surface circulation. Satellite imagery at nearly the same time showed a broad low-level circulation center defining the remnants of Phyllis (Figure 3-20-5). All the convection had been displaced to the northeast. At 1400002, the final warning was issued as Phyllis became indistinct from the cold front transiting through the region. There were no reports of damage from Phyllis although Marcus Island (Minami Tori-Shima (WMO 47991)) did report 20 to 30 kt (10 to 15 m/s) winds for almost two days as Phyllis passed some 150 nm (278 km) to the west.

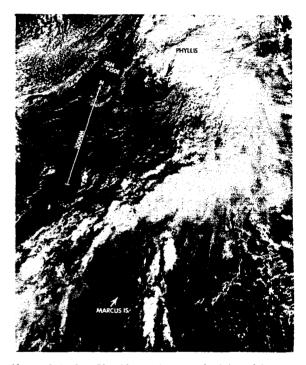


Figure 3-20-5. Phyllis as it merged with and became indistinct from a cold front. All that remained of Phyllis was a broad low-level circulation center (1323212 October DMSP visual imagery)