

The second and last super typhoon of the 1984 season led a rather unusual life. After forming east of Guam, it made a small cyclonic loop before heading to the westsouthwest. Two days later, Bill passed just to the south of Guam by which time it had accelerated to almost 20 kt ($37 \mathrm{~km} / \mathrm{hr}$). After causing some damage on the island of Guam, Bill entered the Philippine Sea and turned to the west-northwest. Although it was expected to recurve to the northeast and follow a track similar to that of Super Typhoon Vanessa, due to a complex steering environment including interaction with Typhoon Clara, Bill instead turned to the southeast before eventually dissipating east of the Philippines. Although this track is unusual, it is not uncommon for late season storms to move erratically for at least a portion of their life.

Super Typhoon Bill originated as an area of convection on 7 November near $14 N$ 154E. The convection was at the trailing end of an eastward moving cold front and this may have supplied some low-level vorticity which contributed to the rapid development of the disturbance. The rapid development of the convection resulted in a TCFA at 0802002 . At the time of the TCFA, analysis of satellite imagery already indicated that $25 \mathrm{kt}(13 \mathrm{~m} / \mathrm{s})$ surface winds were present.

The first of a total of 35 aircraft reconnaissance flights flown against Bill found the disturbance's circulation center at 0807212 but observed surface winds of only $20 \mathrm{kt}(10 \mathrm{~m} / \mathrm{s})$. The system showed continued development during the next 12 hours, and as a result the first warning was issued at 081800 z .

From the 8th until the l0th, Bill slowly tracked in a $25 \mathrm{~nm}(46 \mathrm{~km})$ wide cyclonic loop and continued to strengthen. At 00002 on 10 November, reconnaissance aircraft reported that Bill had intensified to a $50 \mathrm{kt}(26 \mathrm{~m} / \mathrm{s})$ tropical storm with an MSLP of 990 mb .

Bill attained typhoon strength on the loth. The weak steering flow which had been present was replaced by easterly flow as the subtropical ridge strengthened to the north of the storm. At approximately 1006002 Bill completed its cyclonic loop and started to move to the west and then southwest on a course that would eventually bring the typhoon to the southern tip of Guam. On the llth and l2th, Bill accelerated and gradually intensified (Figure 3-28-1). With Bill forecast to pass within $60 \mathrm{~nm}(111 \mathrm{~km})$ of Guam, tropical cyclone Condition of Readiness III was set on the afternoon of 11 November. On the morning of the l2th, with Bill now

Figure 3-28-1. Bill consolidating east of Guam (1100032 November DMSP visual imagery).
forecast to pass less than $30 \mathrm{~nm}(56 \mathrm{~km})$ south of the island, Condition of Readiness II was set at 1123302.

Although Guam was forecast to be in the "dangerous" semicircle of the typhoon, the strength of the flow around the ridge did have a positive effect on Guam. Bill accelerated from 15 to $20 \mathrm{kt} \mathrm{(} 28$ to $37 \mathrm{~km} / \mathrm{hr}$) as it passed Guam thereby considerably shortening the time the typhoon affected the island. This rapid forward speed may also
have been a factor in the slow intensification of the system. Only a 15 kt ($8 \mathrm{~m} / \mathrm{s}$) increase in intensity occurred during the 24 hour period between 111800 Z and 121800 z as Bill approached Guam.

Condition of Readiness I was set on the evening of the l2th, as Bill neared Guam. Typhoon Bill passed the southern tip of the island at 1216302 at a distance of 12 nm (22 km). Figure 3-28-2 contains a plot of the data obtained by reconnaissance air-

Figure 3-28-2. Plot of data obtained at the 100 mb level by aircraft neconnaissance on the two missions flown as Bill passed south of Guam.
craft during the two missions flown when Bill was at its closest point of approach to Guam. On the island itself, a maximum wind of $63 \mathrm{kt}(32 \mathrm{~m} / \mathrm{s})$ was recorded at the National Weather Service Station (WMO 91217) at 121658 z , with a gust of $84 \mathrm{kt}(43 \mathrm{~m} / \mathrm{s})$ recorded at Reserve Craft Beach in Apra Harbor. Typhoon Bill caused some damage on Guam, particularly to agricultural commodities. Banana trees that had been slightly damaged during the passage of Super Typhoon Vanessa were completely destroyed by Bill. Total crop damage was estimated at
\$7,707,911. Some minor flooding also occurred but no personnel injuries were reported. Electrical power was out in certain sections of the island for several days.

Bill entered the Philippine Sea late on the 12 th moving west at $20 \mathrm{kt}(37 \mathrm{~km} / \mathrm{hr})$ and intensifying. In the 24 hour period between 1312002 and 1412002 , the MSLP dropped 54 mb to 912 mb and the wind speed increased from $95 \mathrm{kt}(49 \mathrm{~m} / \mathrm{s})$ to $125 \mathrm{kt}(64 \mathrm{~m} / \mathrm{s})$ (Figure 3-28-3). The pressure continued to drop for another 12 hours, with aircraft reconnaissance at 1422342 reporting an MSLP of 909 mb. This was the lowest pressure reported in Bill. Bill attained super typhoon strength at approximately $141800 Z$ which it then maintained for 12 hours.

Bill turned to the west-northwest early on the 14 th and by 141800 z had turned to the northwest. It now appeared that Bill was starting to move around the western end

Figure 3-28-3. Typhoon Bill as it appeared on satellite imagery while undergoing rapid intensification (140044Z November DMSP visual imagery)
of the subtropical ridge. What was initially expected to be a simple recurvature scenario would soon become a complex interaction between Bill, the approaching Typhoon Clara (now developing near Truk (WMO 91334)), the mid-latitude westerlies, and the northeast monsoon. These factors would eventually cause Bill to weaken, double back on its present track and eventually dissipate.

Bill slowed down as it moved to the northwest and by 151800 z was moving at 7 kt ($13 \mathrm{~km} / \mathrm{hr}$) down from the $15 \mathrm{kt} \mathrm{(} 28 \mathrm{~km} / \mathrm{hr}$) movement of twenty-four hours earlier. This was due to the passage of a midlatitude trough to the north which weakened the subtropical ridge. Bill now began to weaken as it encountered strong upperlevel westerlies which disrupted its outflow and sheared the convection to the northeast (Figure 3-28-4). This marked the start of a weakening trend which would continue until dissipation.

At 12002 on the 15 th, the subtropical ridge reintensified temporarily forcing Bill back on a west-northwest course which
it maintained until late on the l6th. On the lith, Bill started to track to the northwest as the ridge weakened once again. It now appeared that recurvature was finally going to occur. At 180000 Z Bill turned again, this time to the northeast but unfortunately this was not to be the start of the long awaited recurvature.

At this time, three factors were involved in the steering of Bill: Typhoon Clara had become the dominant circulation in the Philippine Sea (Figure 3-28-5), the flow around the subtropical ridge was waning, and the northeast monsoon was gaining strength. The subtropical ridge was the first loser in this tug-of-war as Clara's large low-level circulation started to draw a weakening Bill to the southeast. Figure 3-28-6 shows the rapidly weakening Bill with little convection remaining as it moved towards Clara.

Bill continued to track to the southeast and weaken under the combined influence of Typhoon Clara and the westerlies. Aircraft reconnaissance at 1911302 confirmed this weakening trend. The MSLP had risen to 997 mb and the maximum obscrved 700 mb flight

Figure 3-28-4. Bill east of Luzon as it encountered
the upper-level westerlies and began to weaken.
Note the cloud covered eye and the cirrus streaming
to the northeast (1601452 November DiMSP visual
imagery).

Figure 3-28-5. The 1812002925 mb NUA analysis showing the dominance of Tuphoon Clara in the
Philippine Sea. Bill which supported $65 \mathrm{kt}(33 \mathrm{~m} / \mathrm{s})$
winds at this time was a small circulation compared
to Clara and the northeast monsaon.
level wind was $28 \mathrm{kt} \mathrm{(14m/s} \mathrm{)}. \mathrm{(Since} \mathrm{the}$ mission was flown at night, no surface wind data were available.) Based on the aircraft reconnaissance data and the lack of convection and organization on satellite imagery, Bill was downgraded to a tropical depression and finaled at 191200z. As it turned out, this was premature. Early on the 20 th , with Clara completing recurvature along 132 E and accelerating to the northeast, its influence on Bill weakened and Bill began to regenerate some convection. Visible imagery indicated that a low-level circulation center was present. Aircraft reconnaissance a short time later, flying in the daylight at the 1500 ft (457 m) level at 2002052 reported that Bill was still moving to the southeast
and now had an MSLP of 999 mb . The aircraft also reported, that a well-defined low-level circulation with 40 to $55 \mathrm{kt}(20$ to $28 \mathrm{~m} / \mathrm{s})$ winds was present! The strongest winds were located in the western semicircle of the storm and were being enhanced by the northeast monsoon. As a result Bill was returned to warning status as a tropical storm at 2006002 (Figure 3-28-7).

Although the aircraft wind data suggests that Bill intensified between 1912002 and 200600Z, this is not considered likely. Due to the weak mid-level winds reported on the 191130 fix mission, JTWC had the impression that Bill was rapidly dissipating. In fact Bill still possessed a well-defined surface

Figure 3-28-6. A weakened Bill as it heads southeast under the influence of clara's inflow (1822582 November NOAA visual imageryl.
circulation which was weakening at a much slower rate that the mid-level circulation. If the 1911302 fix mission had been able to observe surface winds it would probably have reported that $50 \mathrm{kt}(26 \mathrm{~m} / \mathrm{s})$ surface winds were still associated with Bill.

As it turned out, the increase in convection was temporary. As Clara moved further away, its effect lessened and Bill slowed, doing a small cyclonic loop on the 2lst. Bill was now under the influence of
the northeast monsoon which pushed the lowlevel circulation to the southwest. By the 22nd the low-level circulation became embedded in the northeast monsoon, and Bill was no longer identifiable as a significant tropical cyclone. The final warning was issued at 220000z. Although the low-level circulation dissipated in the Philippine Sea, residual convection brought locally heavy rains to the central Philippines early on the $23 r d$ of November.

Figure 3-28-7. Typhoon clara accelerating to the northeast and beginning extratropical transition. Bill now has more convection than 24 hours earlier but this convective flare-up was temporary (2007002 November NOAA visual imagery).

